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Abstract

We studyautomatafor capturingtransforma-
tions employed by practicalnaturallanguage
processingsystems,suchas thosethat trans-
late betweenhumanlanguages. For several
variationsof finite-statestring andtreetrans-
ducers,we askformalquestionsaboutexpres-
siveness,modularity, teachability, andgener-
alization.

1 Introduction

Many problemsin naturallanguageprocessing(NLP)
consistof transformingone string (or structure)into
another. These include translation, summarization,
questionanswering,speechrecognition,speechsyn-
thesis,semanticinterpretation,and languagegenera-
tion. Mappinginputsto their properoutputsamounts
to capturinga mathematicalrelation,i.e, a possiblyin-
finite setof input/outputpairs. Given sucha relation,
we canask: for input x, what is thesetY of all possi-
bleoutputs?Dueto incompleteknowledgeaboutthese
complex domains,weusuallyneedto reasonunderun-
certainty, sowe oftenaddnumericalweights. We can
thenask:for inputx, whatis thehighest-scoringoutput
y?

Automata theory provides numerousframeworks
andformalismsfor conciselycapturingrelations.NLP
practitionersare frequently interestedin making use
of these,in order to exploit formal propertiesandef-
ficientalgorithms.Of course,they only wantto do this
to the extent that the formalism is a good fit for the
problem(s)they areworking on. In this paperwe will
look at somedesirablepropertiesof automata,from an
NLP perspective,andinvestigatewhethertheseproper-
tieshold acrossa wide rangeof formalisms.In partic-
ular, we look at:

� Expressiveness.We canexpressthe requiredlin-
guisticknowledgein theformalism.

� Modularity. We can break a complex problem
down into pieces,modelthosepieces,andassem-
ble theminto a solution.

� Inclusiveness.In moving from asimplerto amore
expressiveformalism,wedonot losetheability to
expressthesimplethings.

� Teachability. Linguistic knowledge can be ob-
tainedefficiently from sampleinput/outputpairs.

For eachof these,we will selecta more specific,
provable formal propertyto investigate. Becausewe
wantto bridgebetweenautomatatheoryandNLP prac-
tice, we have written this paperin a styleaccessibleto
both.We concludewith someopenissuesto consider.

2 String transducers

A finite-statestringtransducer(FST)proceedsthrough
its input string from left to right in discretesteps. At
eachstep,somenumberof input-stringsymbols(pos-
sibly zero)areconsumed,andasaresult,somenumber
of output-stringsymbols(possiblyzero)areemitted.In
addition,eachsteptakesthemachinefrom onestateto
another. If themachinecanstartin stateqstart, thenaf-
ter a seriesof stepsconsumeall of input x, emit string
y, andfinish in stateqfinal, then<x,y> is an element
of the machine’s modeledrelation. BecauseFSTsare
non-deterministic,agiveninputmaymapto many out-
puts.

An FST can be defined as a 5-tuple
<
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>, where
�

is a finite set of
states,

�
is an alphabetof input symbols,

�
is an

alphabetof outputsymbols,
	 �

is adistinguishedinitial
state,

� �
is a distinguishedfinal state,and

�
is a setof

transitionswhich arethemselves4-tuples.A transition
like <

	����������
���
> allows the FST, whenin stateq, to

consumesymbolA, emit symbolsB andC, andmove
to stater.

Thereareseveral variationsfor the transitionmap.
Drawing transitionsfrom Q x Q x

���
x
���

provides
flexibility , and it admitsa usefulnormal form Q x Q
x (
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) x (
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). The generalizedsequentialma-
chine(GSM) variationis restrictedto Q x Q x

�
x
���

,
requiringthat eachtransitionconsumeexactly onein-
put symbol.WeightedFSTsadda numericalweightto
eachtransition.



FSTs have nice computationalproperties,one of
which is closureunder composition.1 A pipeline of
FSTscan always be re-built as a single FST, allow-
ing the systemdesignerto breaka complex problem
down into simplepieces,andto assemblethosepieces
automatically. Compositioncanhappenoff-line (e.g.,
D = A o B o C), andtheresultingcomposedmachine
canbeappliedto input (e.g.,E = best-path(Io D)). Al-
ternatively, we canwait until we have the input, then
perform a synchronizedsearchusing all of the FSTs
in the pipelinesimultaneously(e.g.,E = best-path(Io
A o B o C)). In this case,a nodein the synchronized
searchspaceis taken to be an n-tupleof statesdrawn
from the input andpipelinedFSTs(e.g.,<i4, a1, b17,
c3>). This lazy composition(Mohri et al., 2000) is
practicalin memoryusage,andsearchbeamscan be
appliedto make for an efficient approximationto the
best-pathcomputation.Thesearchis integrated,in that
x is processedsimultaneouslyby all of theFSTsin the
pipeline,ratherthanbeingpassedfrom oneto thenext
sequentially. Closureundercompositionallows all of
thesetypesof inference.

FSTs are also efficiently trainable. Exposedto a
corpusof input/outputstringpairsof maximumlength# , theforward-backwardalgorithm(BaumandEagon,
1967)candetermineweightsfor thetransitionsthatlo-
cally optimize the corpusprobability (either joint or
conditional)in time O(#%$ ).

Portableimplementationsof FST compositionand
training can be found in software toolkits such as
(Mohri et al., 2000;Graehl,1997).

3 Tree transducers

FSTs are a good fit for NLP problemsthat can be
characterizedby statefulleft-to-right substitution.One
example is acousticmodelingfor speechrecognition
(Mohri et al., 2000), and anotheris transliterationof
namesacrosslanguagepairs with different orthogra-
phiesand soundsystems(Knight and Graehl,1998).
However, their expressivenessbreaksdown for more
complex problems,suchasmachinetranslation,where
thereis a greatdeal of re-ordering,and wheremany
operationsaresensitiveto syntacticandsemanticstruc-
ture. Figure1 shows anexampleof Arabic-to-English
translation,in which thetranslationof theArabic verb
(at thebeginning)mustbemovedto themiddleof the
Englishoutputsentence.Figure2 shows thereverse.

The utility of hierarchical tree structurewas no-
ticedearlyby Chomsky, andautomatatheoristsdevised
treeacceptorsandtransducers(Doner, 1970;Rounds,
1970; Thatcher, 1970), whosemathematicalaim was
to generalizethepreviously-developedstringautomata.
Recently, NLP practitionershave been constructing
weightedsyntaxmodelsfor variousproblems(includ-
ing machinetranslation),soit it hasbecomeimportant

1(Karhumaki,2005)givesa shortproof of this usingthe
FSTnormalform.
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Figure1: Arabic-to-Englishtranslationexample. We
wouldliketo captureall input/outputpairsof thisform,
wheresubtrees
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Figure2: English-to-Arabictranslationexample.This
is theinverseof therelationin Figure1.

to understandthe match betweenpractical problems
andautomataformalisms.

A top-down treetransducercanbedefinedasatuple
<
�����������
�*��	 �

>, where
�

is a finite setof states,
�

is an alphabetof input symbols,
�

is an alphabetof
outputsymbols,

	��
is a distinguishedinitial state,and�

is a setof productions(or rules).A samplerule is:

q S(x0,x1, x2) + S(rx1, VP(sx0, q x2))

Eachrulehasaone-levelLHS (left handside)with a
state,aninput-treesymbol,and(optionally)asequence
of variablesx0, x1 ... xn. TheRHSshowswhattherule
emits.TheRHSmaybemulti-leveled.It containsboth
output-treesymbolsandlabelsx0, x1 ... xn, the latter
of whicharelabeledwith statesfor recursivetop-down
processing.

Thereare different typesof tree transducersbased
on the typesof rules that areallowed. A rule is said
to be deletingif its LHS containsa variablethat does
notappearon theRHS.TheRHSin acopyingrulewill
containat leasttwo instancesof someLHS variable.A
transduceris non-copying (linear) andnon-deletingif
all of its rulesarelikewise. Theclassof non-copying,
non-deletingtransducersis calledLNT (L for linear, N
for non-deleting,T for top-down). If we allow delet-
ing, wewind upwith theclassLT, andif weallow both
deletingandcopying, we wind up with the classT of
top-down transducers.T can expressmore relations
thanLT, which can expressmore relationsthanLNT
(Gécseg andSteinby, 1984).

LNT is describedin the literatureas a generaliza-
tion of string transduction,in the following sense.If
wewrite stringsverticallyasnon-branchingtrees,then
we can view string transductionas tree transduction,



albeit, on skinny trees.We canautomaticallyconvert a
normal-formFST into an LNT transducer. For each
transition in the FST, we constructa corresponding
LNT rule. Therearefour casesof interest:

<q,r,A,B> q A(x0) + B(r x0)
<q,r,A,

 
> q A(x0) + r x0 “output-

 
”

<q,r,
 
,B> q x0 + B(r x0) “input-

 
”

<q,r,
 
,
 
> q x0 + r x0

In eachcase,wesubstitutetheLNT ruleon theright
for the FSTtransitionon the left. We mustalsoapply
a technicalfix to accountfor theFST’s final state;part
of this involvesaddinganEND tokento thebottomof
theskinny treesthatrepresentstrings.

In this paper, we refer to the secondkind of rule
aboveasanoutput-

 
rule,andthethirdkind asaninput- 

rule, in analogyto FSTs,eventhoughthereareno lit-
eral

 
symbolsin theLNT rules.Notethatnoneof the

four rulesabovearedeletingrules—tobedeleting,the
ruleswould haveto lackx0 on theRHS.

4 Properties

Now we re-visit the four desirablepropertiesof trans-
formationformalismsfromSection1,assigningto each
a particularformal propertyto investigate.Eachbroad
topic is potentially very large, so we pick issuesthat
arisefrequentlyin practice:

� Expressiveness.Canthe transducerclassexpress
thetransformationsin Figures1 and2?

� Modularity. Is the transducerclassclosedunder
composition?

� Inclusiveness.Doesthe transducerclassgeneral-
ize FST?

� Teachability. Doesthe transducerclassadmit an
efficientalgorithmfor optimizingparameters?

4.1 Basic and Extended Transducers

LNT is closedundercomposition(Gécseg andSteinby,
1984),but it is not expressive (in thesenseabove),be-
causeit cannotencodethe transformationin Figure2.
An LNT rule matchingFigure2 musthave theform q
S(x0,x1) + ???.Thereis noway for theRHSto insert
x0 into themiddleof x1.

By contrast,T is expressive, despitethe fact that it
alsohasasingle-level LHS (Shieber, 2004;Knight and
Graehl,2005).Weaccomplishthiswith acopying rule:

q S(x0,x1) + S(qleftx1, q x0, qright x1)

followedby two deletingrules:

qleft VP(x0,x1) + q x0
qrightVP(x0,x1) + q x1

However, T is not closedundercomposition(Rounds,
1970).

The fact that LNT can expressthe transformation
in Figure1 but not Figure2 is unsatisfying.As a re-
sult, (GraehlandKnight, 2004)definetheclassxLNT,
which allows rules with a multi-level LHS. xLNT is
shown to beexpressiveby thesimplerule

q S(x0,VP(x1,x2)) + S(x1,x0, x2)

(Graehlet al., 2007)show that xLNT, xLT, andxT
arestrictly morepowerful thanLNT, LT, andT, respec-
tively. They alsoshow thatxLT andxT arenot closed
undercomposition.

Interestingly, xLNT is alsonot closedundercompo-
sition. This is illustratedby thefollowing example:

f(g - (f( &�' , & $ )), &)( ) .0/
1
f(f(

&�'
,
& $ ), &)( ) .2/)3

e(
& '

,
& $ , & ( )

g- refersto a non-branchingtree with i numberof g
symbols. 4 ' is the treerelationconsistingof all pairs,
for all valuesof i, of theform <f(g - (f( &�' , & $ )), &)( ), f(f(

&�'
,& $ ), &)( )>, wherethe

&�'
,
& $ , and

&)(
areidenticalin both

elementsof thepair.
It is easyto modeleachof 4 ' and 4 $ by xLNT trans-

ducers,but no single xLNT transducercan bring to-
getherthethreesubtrees

&�'
,
& $ , and

&)(
, becausethey are

separatedby an unboundednumberof g’s. This is in-
terestingbecausexLNT doespreserve regularity—i.e.,
it is possibleto sendaninput tree(or forest)through4 '
andsendtheresultingtree(or forest)through4 $ . How-
ever, it is not possibleto do composition(andit seems
difficult to do integratedsearch),andthis haspractical
consequences.

Synchronoustreesubstitutiongrammar(STSG),of
the linear non-deletingvariety, is shown in (Graehlet
al., 2007)to be slightly lesspowerful thanxLNT, but
only becausexLNT usesstatesthat areseparatefrom
theinput-symbolvocabulary.

4.2
 
-Rules

Now we askwhich of the above formalismsis inclu-
sive, i.e., which generalizeFST. Noneof themdo. As
definedin theautomataliterature,LNT allowsoutput-

 
rules,but not input-

 
rulesof theform:

q x0 + A(r x0)

While FSTs can generateunboundedamountsof
outputgiven finite input, LNT doesnot allow this, so
it is not a generalizationof FST. Ratherit is a general-
izationof string-basedGSMs,which consumeexactly
oneinputsymbolpertransition.Thesameholdsfor the
variationof xLNT asdefinedin (Graehlet al., 2007).
However, xLNT as originally definedin (Graehland
Knight, 2004)allows both output-

 
and input-

 
rules,

andsogeneralizesFST.
How importantare

 
-rulesin practice?We canfirst

considerexamplesfrom the string transduction.One
of the mostwidely adoptedmachinetranslationmod-
els is IBM 3, which caststranslationasa word substi-



tution/permutation
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process. (Knight andAl-Onaizan,
1998)give a reconstructionof this modelasa pipeline
of FSTs,andbothtypesof

 
-transitionsappear. Output- 

transitionseliminate“zero-fertility” input wordsthat
should not be translated,such as the word “do” in
English/Spanishtranslation. Likewise, input-

 
transi-

tionsgeneratetargetfunctionwordsthathavenocorre-
spondingsourceword,suchastheSpanishdirectobject
marker “a”. Interestingly, IBM 3 boundsthe latter by
the numberof Englishwords,so theseinput-epsilons
couldbeeliminatedin theory.

In many currentphrase-basedmodelsof translation,
by contrast,phrasalchunksaresubstitutedone-for-one,
with no deletionor spuriousgeneration—thus,the 2-
word phrase“seesVictoria” might be substitutedby
the3-word phrase“ve a Victoria”. (KumarandByrne,
2003)presenta practicalphrase-basedtranslationsys-
tembuilt from genericFST tools. Becausethereis no
unboundedgenerationof output (or unboundedcon-
sumptionof input), this model can be encodedas an 
-freeFST(thoughnot in normal-form).

Similar variations exist in tree-basedtranslation
models. For example,the xLNT systemof (Galley et
al., 2004)acquiresrulesof theform

q A(B, x0) + q x0

to modelthenon-translationof wordslikeB = “please”
(in travel corpora)or B = “the” (in English/Chinese
translation). Likewise, (Graehl and Knight, 2004)
employ

 
-rules to betterparameterizetheir system—

beforeconsuminganinput treenode,themodelmakes
a 3-way decision about generatingtarget-language
functionwords,with competingrules

qsx0 + qs1x0
qsx0 + qs2x0
qsx0 + qs3x0
qs1S(x0,x1) + ...
qs1S(x0,x1) + ...

the first threeof which have probabilitiesthat sumto
one.

Hence,
 
-transitionsareusedfrequentlyin practice,

eventhoughit is not obviousthatsystemdesignersre-
ally needgenerationof unboundedoutput,or consump-
tion of unboundedinput. Unboundedoutputdoesap-
pearin n-bestlists,wherea translationlike “pleaseX”
is accompaniedby lower-scoringalternatives “please
pleaseX”, “pleasepleasepleaseX”, andsoon.

4.3 Generalizing FST

To make LNT a generalizationof FST, we needto add 
-input ruleslike q x0 + A(r x0). Unfortunately, this

destroys closureundercomposition. The relevant ex-
ampleis:

e(c,c, c) .0/
1
f(f(c, c), c) .0/)3
f(g - (f(c, c)), c)

where 4 $ generatesanunboundednumberof g’s. This
example is simpler than the previous example for
xLNT, as the c symbolsare atomic anddo not stand
for wholesubtrees.Thepracticalsignificanceis thata
generalLNT compositionalgorithmcannotdo every-
thing thatageneralFSTcompositionalgorithmcan,so
bothalgorithmsmaystill beneeded.

The example above also covers xLNT. Therefore,
while xLNT hasexpressivenessthatseemsto beagood
match for NLP problems,both input-

 
and output-

 
rules indepedentlycausenon-closureundercomposi-
tion. Becausepracticionersmay be able to re-work
their models into

 
-free versions,it is worth asking

whether
 
-freexLNT is closedundercomposition.The

answeris shown to be no in (Arnold and Dauchet,
1982),with thefollowing example:

h(
&�'

,
& $ , h(

&)(
,
&76

, h(...g(
&)8�9%'

,
&)8

)))) .2/�1
g(
&�'

, g(
& $ , g(...g(

&)8:9;'
,
&)8

)))) .0/)3
g(
&�'

, h(
& $ , &)( , h(

&76
,
&)<

, h(...h(
&)8�9 $ , &)8:9;' , &)8 )))))

Here,4 $ is any relationthatmapsits above-specified
input to a set that includesits above-specifiedoutput;
it may non-deterministicallyproduceotheroutputsas
well. While both relationscanbe modeledindividu-
ally with

 
-freexLNT, it is impossiblefor onexLNT to

maketheentireleap.
We cannow summarizetheeffectson top-down tree

transducersof all combinationsof: (1) extendedLHS,
(2) input-

 
rules,and(3) output-

 
rules:

x-LHS input-= output-= expressive composable inclusive
no no no no yes no
no no yes no yes no
no yes no no no no
no yes yes no no yes
yes no no yes no no
yes no yes yes no no
yes yes no yes no no
yes yes yes yes no yes

4.4 Teachability

Finally, we look atwhetherefficientparametertraining
proceduresexist for variousclasses.Giveninput/output
treesof maximumsize # , (GraehlandKnight, 2004)
presentanexpectation-maximizationalgorithmfor xT
transducerswith

 
rules, which coversall of the top-

down classesin this paper. This algorithm runs in
O(#%$ ) time, which is thesameasymptoticbehavior as
the forward-backwardalgorithmfor FSTs(Baumand
Eagon,1967). Like forward-backward,it guaranteesa
setof parametervaluesthatlocally optimizetheproba-
bility of thetrainingcorpus.

5 Conclusion

Figure3 summarizesthe top-down transducerclasses
analyzedin this paper, plus someof the bottom-up
transducerclasses(suffixedwith B), togetherwith their
properties.

Immediately, wecanseethatnotransducerclasshas
all of the desirablepropertieswe laid out. Classesof



Figure3: Classesof treetransducersandtheir proper-
ties.

interestincludeLNT (which offersclosureundercom-
position),xLNT (whichoffersexpressivenessandgen-
eralizesFST),andxT (which offerscopying, deleting,
andtrainability). Due to LNT not generalizingFST, it
is still thecasethatstringsoftwaretoolkits like (Mohri
et al., 2000)andtreesoftwaretoolkits like (May and
Knight, 2006)offer overlappingcapabilities.

Future problemsinclude exploring more automata
frameworks. For example, it appearsthat bottom-
up transducersare not expressive, even with copy-
ing anddeletingpower. However, within the bottom-
up family, (Maletti, 2007)hasrecentlyanalyzednon-
deterministic multi-state transducers(MLB in Fig-
ure3), which canremembermultiple outputtreefrag-
ments as they crawl up the input tree. Thesema-
chinescan carry out the transformationof Figure 2,
andtheirnon-copyingversionis closedundercomposi-
tion (though,likeLNT, they donotgenerateunbounded
outputanddo not generalizeFST).Anotherfuture di-
rection is to investigateother desirableformal prop-
ertiesfrom an NLP perspective. Finally, it would be
usefulto beableto test,for two individual transducers
(both in someclass),whethertheir compositionlies in
thesameclass.This would covermany commoncases
of NLP transducersandwould allow tree transducers
with

 
-rulesto generalizeFST.
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