CS544: Classification Algorithms

February 2, 2012

Zornitsa Kozareva
USC/ISI
Marina del Rey, CA
kozareva@isi.edu
www.isi.edu/~kozareva

Today

• Named Entity Recognition

• Multi-class classification
 – Decision trees
 – k Nearest Neighbor

• Binary classification
 – Perceptron
Named Entity Recognition

Adam Smith works for IBM, London since February 2010.

- Identify mentions in text and classify them into a predefined set of categories of interest:
 - Person: Adam Smith
 - Organizations: IBM
 - Locations: London
 - Date: February 2010
Types of Machine Learning

- **Supervised Learning**
 - labeled training examples with correct responses (targets) are provided
 - based on the training set, the algorithm *generalizes* to respond correctly to all possible inputs

- **(Some) Methods:**
 - Hidden Markov Models, k-Nearest Neighbors, Decision Trees, AdaBoost, SVM

- **NLP Tasks:**
 - Named Entity recognition, POS tagging, Parsing

Types of Machine Learning

- **Unsupervised Learning**
 - correct responses (targets) are not provided
 - the algorithm identifies similarities between the inputs based on something in common

- **Method:**
 - Clustering

- **NLP Tasks:**
 - Named Entity Disambiguation, Text Categorization
Types of Machine Learning

• Semi-Supervised Learning
 – small percentage of labeled examples with correct responses are provided, the rest are unlabeled
 – label the unlabeled examples using the labeled ones, add the newly labeled data to the training data set

• Method:
 – Co-training, self-training, active learning

• NLP Tasks:
 – Named Entity Recognition, POS-tagging, Parsing

Multi-Class Classification (Example)

• Named Entity Recognition
 – person, organization, location, miscellaneous name

• Text Categorization by Topic
 – economy, sport, entertainment

• Weather Forecast
 – sunny, foggy, snowy, rainy

• Author Identification
Muti-Class Classification

• **Given**: some data items that belong to one of N possible classes

• **Task**: train a classifier to predict the class for a new data item

• Geometrically: hard
(Some) Multi-class Classification Algorithms

- Linear
 - Decision trees
 - Naïve Bayes

- Non Linear
 - K-nearest neighbors
 - Neural Networks
Things Students Enjoy Doing

✓ going to pub
✓ watching TV
✓ going to a party
✓ Studying

Build an algorithm that will let you decide what to do each evening without having to think about it every night?

• If you have an assignment due next day, you need to study
• If you feel lazy, the you don’t like going to the pub
• If there is no party, you cannot go to it

Decision Trees

• The classifier has a tree structure, where each node is either:
 – a leaf indicating the value of the target attribute (class) of examples
 – a decision specifying some test to be carried out on a single attribute-value, with one branch and sub-tree for each possible outcome of the test

• An instance x_v is classified by starting at the root of the tree and moving through it until a leaf node is reached, which provides the classification of the instance
Decision Tree on How to Spend the Evening

Constructing Decision Trees

- Build a tree in a greedy manner starting at the root
- Choose the most informative feature at each step by computing the entropy
 \[H(p) = -\sum_i p_i \log_2 p_i \]
- Estimate how much the entropy of the whole training set would decrease if a particular feature is chosen for the next classification step

\[\text{Gain}(S,F) = \text{Entropy}(S) - \sum_{f \in \text{values}(F)} \frac{|S_f|}{|S|} \text{Entropy}(S_f) \]
Walkthrough Example

Set of Examples (S)	Feature (f1)	Feature (f2)	Feature (f3)	Outcome
s1	0	1	0	True
s2	0	1	0	False
s3	0	0	1	False
s4	1	0	0	False

\[
\text{Entropy}(S) = -p_{true} \log_2 p_{true} - p_{false} \log_2 p_{false}
\]

\[
= -\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4}
\]

\[
= 0.5 + 0.311 = 0.811
\]

Walkthrough Example

Set of Examples (S)	Feature (f1)	Feature (f2)	Feature (f3)	Outcome
s1	0	1	0	True
s2	0	1	0	False
s3	0	0	1	False
s4	1	0	0	False

\[
\frac{|S_f|}{|S|} \text{Entropy}(S_f) = \frac{1}{4} \times \left(-\frac{0}{1} \log_2 \frac{0}{1} - \frac{1}{1} \log_2 \frac{1}{1} \right) = 0
\]

\[
\frac{|S_f|}{|S|} \text{Entropy}(S_f) = \frac{2}{4} \times \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = \frac{1}{2}
\]

\[
\frac{|S_f|}{|S|} \text{Entropy}(S_f) = \frac{1}{4} \times \left(-\frac{0}{1} \log_2 \frac{0}{1} - \frac{1}{1} \log_2 \frac{1}{1} \right) = 0
\]

\[
\text{Gain}(S,F) = \text{Entropy}(S) - \sum_{f \in \text{value}(F)} \frac{|S_f|}{|S|} \text{Entropy}(S_f)
\]

2/2/12
Walkthrough Example

<table>
<thead>
<tr>
<th>Set of Examples (S)</th>
<th>Feature (f1)</th>
<th>Feature (f2)</th>
<th>Feature (f3)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>True</td>
</tr>
<tr>
<td>s2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>False</td>
</tr>
<tr>
<td>s3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>False</td>
</tr>
<tr>
<td>s4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>False</td>
</tr>
</tbody>
</table>

Gain(S, F) = $0.811 - (0 + 0.5 + 0) = 0.311$

Another Classification Example

- List everything that you have done for the past few days to get a decent dataset

<table>
<thead>
<tr>
<th>Deadline?</th>
<th>Is there a party?</th>
<th>Lazy?</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urgent</td>
<td>Yes</td>
<td>Yes</td>
<td>Party</td>
</tr>
<tr>
<td>Urgent</td>
<td>No</td>
<td>Yes</td>
<td>Study</td>
</tr>
<tr>
<td>Near</td>
<td>Yes</td>
<td>Yes</td>
<td>Party</td>
</tr>
<tr>
<td>None</td>
<td>Yes</td>
<td>No</td>
<td>Party</td>
</tr>
<tr>
<td>None</td>
<td>No</td>
<td>Yes</td>
<td>Pub</td>
</tr>
<tr>
<td>None</td>
<td>Yes</td>
<td>No</td>
<td>Party</td>
</tr>
<tr>
<td>Near</td>
<td>No</td>
<td>No</td>
<td>Study</td>
</tr>
<tr>
<td>Near</td>
<td>No</td>
<td>Yes</td>
<td>TV</td>
</tr>
<tr>
<td>Near</td>
<td>Yes</td>
<td>Yes</td>
<td>Party</td>
</tr>
<tr>
<td>Urgent</td>
<td>No</td>
<td>No</td>
<td>Study</td>
</tr>
</tbody>
</table>
Decision Trees

Pros
+ generate understandable rules
+ provide a clear indication of which features are most important for classification

Cons
- error prone in multi-class classification and small number of training examples
- computationally expensive to train (need to compare all possible splits; and also because of pruning)

$O(N \log N)$ tree construction
$O(\log N)$ to return particular leaf

Non Linear (ex: k Nearest Neighbor)
k Nearest Neighbor

- Classification rule:
 - to classify a new object, find the object in the training set that is most similar
 - then assign the class of this neighbor to the new object

- **k Nearest Neighbor:**
 - consult k nearest neighbors
 - decision based on majority category of the neighbor
3-Nearest Neighbor

choose the category of the majority of the neighbors

but wait, this one is closer

4-Nearest Neighbor?

It is good for the value of k to be odd to avoid ties
k Nearest Neighbor Algorithm

- Learning is just storing the representations of the training examples.

- Testing instance x_0:
 - compute similarity between x_0 and all training examples
 - take vote among x_0, k nearest neighbours
 - assign x_0 with the category of the most similar example in T

Similarity Computation

- Nearest neighbor method uses similarity (or distance) metric.

- Given two objects x and y both with n values

\[
x = (x_1, x_2, \ldots, x_n)
\]

\[
y = (y_1, y_2, \ldots, y_n)
\]

calculate the Euclidean distance as

\[
d(x, y) = \sqrt{\sum_{i=1}^{n} [x_i - y_i]^2}
\]
An Example

<table>
<thead>
<tr>
<th></th>
<th>isPersonName</th>
<th>isCapitalized</th>
<th>isLiving</th>
<th>teachesCSS44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zornitsa Kozareva</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>USC</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>eduard hovy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>and</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>no</td>
</tr>
</tbody>
</table>

\[
d(ZornitsaKozareva, USC) = \sqrt{(1^2 + 0 + 1^2)} = 1.41
\]

\[
d(ZornitsaKozareva, eduardhovy) = \sqrt{(0 + 1^2 + 0)} = 1
\]

\[
d(ZornitsaKozareva, and) = \sqrt{(1+1+1)} = 1.73
\]

k Nearest Neighbours

Pros
+ robust
+ simple
+ training is very fast (storing examples)

Cons
- depends on similarity measure & k-NNs
- easily fooled by irrelevant attributes
- computationally expensive
Next Couple of Lectures

- Perceptron
- Putting Machine Learning into practice - NER
- Types of Features and Feature Generation
- Semi-Supervised Algorithms
- Introduction to Weka
- Homework #2