Wireless world in NS

Padma Haldar
USC/ISI

Outline
- Introduction
 - Wireless basics
 - Wireless internals
- Ad hoc routing
- Mobile IP
- Satellite networking
- Directed diffusion

Contributions to mobility in ns
- Original mobility model in ns contributed by CMU’s Monarch group
- Other major contributions from UCB, Sun microsystems, univ of cincinnati, ISI etc
- Other contributed models (not integrated) in wireless ns includes Blueware, BlueHoc, Mobiwan, GPRS, CIMS etc

Wireless model
- Mobilenode at core of mobility model
- Mobilenodes can move in a given topology, receive/transmit signals from/to wireless channels
- Wireless network stack consists of LL, ARP, MAC, IFQ etc
- Allows simulations of multi-hop ad hoc networks, wireless LANs, sensor networks etc

Wireless Example for ad hoc routing
- Scenario
 - 3 mobile nodes
 - moving within 670mX670m flat topology
 - using DSDV ad hoc routing protocol
 - Random Waypoint mobility model
 - TCP and CBR traffic
- ns-2/tcl/ex/wireless-demo-csci694.tcl

An Example – Step 1
Define Global Variables
create simulator
set ns [new Simulator]

create a flat topology in a 670m x 670m area
set topo [new Topography]
$topo load_flatgrid 670 670
An Example – Step 2
Define standard ns/nam trace
ns trace
set tracefd [open demo.tr w]
$ns trace-all $tracefd
nam trace
set namtrace [open demo.nam w]
$ns namtrace-all-wireless $namtrace 670 670

GOD (General Operations Director)
- Stores smallest number of hops from one node to another
- Optimal case to compare routing protocol performance
- Automatically generated by scenario file
- set god [create-god <no of mnodes>]
- $god set-dist <from> <to> <#hops>

Example – Step 3
- Create God
 set god [create-god 3]
 $ns at 900.00 "$god setdist 2 3 1"

An Example – Step 4
Define how a mobile node is configured
$ns node-config
- adhocRouting DSDV
- llType LL
- macType Mac/802_11
- ifqLen 50
- ifqType Queue/DropTail/PriQueue
- antType Antenna/OmniAntenna
- propType Propagation/TwoRayGround
- phyType Phy/WirelessPhy
- channelType Channel/WirelessChannel
- topoInstance $topo
- agentTrace ON
- routerTrace OFF
- macTrace OFF

An Example – Step 5
Next create a mobile node, attach it to the channel
set node(0) [$ns node]
disable random motion
$node(0) random-motion 0
Use "for" loop to create 3 nodes:
for {set i < 0} {$i < 3} { incr i } {
 set node($i) [$ns node]
 $node($i) random-motion 0
}

MobileNode Movement
- Node position defined in a 3-D model
- However z axis not used
 $node set X_ <x1>
 $node set Y_ <y1>
 $node set Z_ <z1>
 $node at $time setdest <x2> <y2> <speed>
- Node movement may be logged
Scenario Generator: Movement

- **Mobile Movement Generator**

 `setdest -n <num_of_nodes> -p pausetime -a <maxspeed> -t <sintime> -x <maxx> -y <maxy>

 Source: ns-2/indep-utils/cmu-scenscen-gen/setdest/

- **Random movement**

 - `node random-motion 1`
 - `node start`

Scenario Generator: Traffic

- **Generating traffic pattern files**

 - **CBR traffic**

 `ns ns cbrgen.tcl [-type type cbr|tcp] [-n nnodes] [-seed seed] [-mc connections] [-rate rate]

 - **TCP traffic**

 `ns ns tcpgen.tcl [-n nnodes] [-seed seed]`

 Source: ns-2/indep-utils/cmu-scenscen-gen/

A Movement File

```bash
$node_(2) set Z_ 0.000000000000
$node_(2) set Y_ 395.256560999999
$node_(1) set Z_ 0.000000000000
$node_(1) set Y_ 257.5462983233
$node_(0) set Z_ 0.000000000000
$node_(0) set Y_ 239.4380098313
$ns_ at 50.000000000000 "$node_(2) setdest 369.463244915743
$ns_ at 51.000000000000 "$node_(1) setdest 221.826585497093
$ns_ at 33.000000000000 "$node_(0) setdest 89.663708107313
```

A Traffic Scenario

```bash
set udp_(0) [new Agent/UDP]
$cbr_(0) set packetSize_ 512
$cbr_(0) set interval_ 4.0
$cbr_(0) set random_ 1
$cbr_(0) set maxpkts_ 10000
$cbr_(0) attach-agent $udp_(0)
$ns_ connect $udp_(0) $null_(0)
$ns_ at 127.93667922166023 "$cbr_(0) start"
```

A Movement File

```bash
$node_(2) set Z_ 0.000000000000
$node_(2) set Y_ 199.373306816804
$node_(1) set Z_ 345.35737731779204
$node_(1) set Y_ 257.0462983233
$node_(0) set Z_ 0.000000000000
$node_(0) set Y_ 239.4380098313
$ns_ at 50.000000000000 "$node_(2) setdest 369.463244915743
$ns_ at 51.000000000000 "$node_(1) setdest 221.826585497093
$ns_ at 33.000000000000 "$node_(0) setdest 89.663708107313
```

A Traffic Scenario

```bash
set udp_(0) [new Agent/UDP]
$cbr_(0) set packetSize_ 512
$cbr_(0) set interval_ 4.0
$cbr_(0) set random_ 1
```

An Example – Step 6

```bash
# Define node movement model
source <movement-scenario-files>

# Define traffic model
source <traffic-scenario-files>
```

An Example – Step 7

```bash
# Define node initial position in nam
for {set i 0} {$i < 3 } { incr i } {
  $ns initial_node_position $node($i) 20
}

# Tell ns/nam the simulation stop time
$ns at 200.0 "$ns nam-end-wireless 200.0"
$ns at 200.0 "$ns halt"

# Start your simulation
$ns run
```
Energy Extension

- Node is energy-aware
- Define node by adding new options:

  ```
  $ns _node-config \n  -energyModel EnergyModel
  -initialEnergy 100.0
  -txPower 0.6
  -rxPower 0.2
  ```

nam Visualization

- Use nam to visualize:
 - Mobile node position
 - Mobile node moving direction and speed
 - Energy consumption at nodes (color keyed)

nam Visualization

- Replace

  ```
  $ns _namtrace-all $fd
  with
  $ns _namtrace-all-wireless $fd
  ```

At the end of simulation, do

```
$ns nam-end-wireless [$ns now]
```

Outline

- Introduction
 - Wireless basics
 - Wireless internals
- Ad hoc routing
- Mobile IP
- Satellite networking
- Directed diffusion

Wireless Internals

- Mobilenode
 - Basic node that has address and port de-muxes, routing agent etc
 - Stack of network components consisting of LL, MAC, NetIF radio-model etc
- Wireless channel

Portrait of A Mobile Node

- Classifier: Forwarding
- Agent: Protocol Entity
- Node Entry
 - LL: Link layer object
 - IFQ: Interface queue
 - MAC: Mac object
 - PHY: Net interface
 - Radio propagation/antenna models
Mobile Node: Components

- Classifiers
 - defaulttarget_ points to routing agent object
 - 255 is the port id assigned for rtagent_
- Routing agent
 - May be ad hoc routing protocol like AODV, DSDV or directed diffusion

Link Layer
- Same as LAN, but with a separate ARP module
- Sends queries to ARP

ARP
- Resolves IP address to hardware (MAC) address
- Broadcasts ARP query

Interface queue
- Gives priority to routing protocol packets
- Has packet filtering capacity

Mobile Node: Components

- MAC
 - 802.11
 - IEEE RTS/CTS/DATA/ACK for unicast
 - Sends DATA directly for broadcast
 - SMAC (work in progress)
- Network interface (PHY)
 - Used by mobilenode to access channel
 - Stamps outgoing pkts with meta-data
 - Interface with radio/antenna models

Radio Propagation Model
- Friis-space model – attenuation at near distance
- Two-ray ground reflection model for far distance
- Shadowing model - probabilistic

Antenna
- Omni-directional, unity-gain

Wireless Channel

- Duplicate packets to all mobile nodes attached to the channel except the sender
- It is the receiver’s responsibility to decide if it will accept the packet
 - Collision is handled at individual receiver
 - \(O(N^2) \) messages \(\rightarrow \) grid keeper, reference-copying etc

Grid keeper: An Optimization
Mobile Node: Misc.
- Energy consumption model for sensor networks
- Visualization of node movement, reachability, and energy
- Validation test suites

Wireless Trace Support
- Original cmu trace format
- A separate wireless trace format developed later at ISI
- Current ongoing effort to have ONE format to combine all wired and wireless formats

Ad Hoc Routing
- Four routing protocols currently supported:
 - DSDV
 - Contributed by CMU
 - DSR
 - Contributed by CMU; recently updated
 - AODV
 - Recently updated version from univ. of cincinnati;
 - TORA
 - Contributed by CMU
- Examples under tcl/test/test-suite-wireless-
 { lan-newnode.tcl, lan-aodv.tcl, lan- tora.tcl }

A Brief on MobileIP Support
- Developed by Sun
 - Require a different Node structure than MobileNode
 - Co-exists with wired world in ns
- Wired-cum-wireless extension
 - Base-stations, support hier-rtg
- Standard MobileIP
 - Home Agent, Foreign Agent, MobileHosts
- Example
 Under tcl/test/test-suite-wireless-lan-
 newnode.tcl (tests: DSDV-wired-cum-wireless
 and DSDV-wireless-mip)

A Brief on Satellite Networking
- Developed by Tom Henderson (UCB)
- Supported models
 - Geostationary satellites: bent-pipe and processing-payload
 - Low-Earth-Orbit satellites
- Example: tcl/ex/sat-*.tcl

A Brief on Directed Diffusion
- Developed by SCADDS group at USC/ISI
- Diffusion model in ns consists of
 - A core diffusion layer
 - A library of APIs for diffusion applications
 - Add-on filters (for gradient routing, logging, tagging, srctag, GEAR etc)
- Much in development
- Source code in ~/ns/diffusion3
- Examples under tcl/ex/diffusion3 and test/test-suite-diffusion3.tcl
<table>
<thead>
<tr>
<th>SMAC</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMAC – MAC designed for sensor networks</td>
<td>Wireless support in ns continuously evolving</td>
</tr>
<tr>
<td>Similar RTS/CTS/DATA/ACK like 802.11</td>
<td>Many other contributed models (not integrated into ns distribution) include:</td>
</tr>
<tr>
<td>Additional sleep-wakeup cycles</td>
<td>- Mobiwan, GPRS, Bluehoc and blueware, CIMS etc</td>
</tr>
<tr>
<td>Reduce energy consumptions during idle phases</td>
<td></td>
</tr>
<tr>
<td>Much in development</td>
<td>Available from ns' contributed code page at http://www.isi.edu/nsnam/ns/ns-contributed.html</td>
</tr>
<tr>
<td>Examples under tcl/test/test-suite-smac.tcl</td>
<td></td>
</tr>
</tbody>
</table>