
IKRIS Scenarios Inter-Theory (ISIT) 
 

Jerry Hobbs 
 

with the IKRIS Scenarios Working Group 
 

 
Contributions from Danny Bobrow, Chris Deaton, Mike Gruninger, Pat 
Hayes, Arun Majumdar, David Martin, Drew McDermott, Sheila McIlraith, 
Karen Myers, David Morley, John Sowa, Marco Valtorta, and Chris Welty. 
 

IKRIS Scenarios Fundamentals 
 

Events 
 
Most ontologies dealing with processes or scenarios will have 
something corresponding to events.  PSL uses the term 
"activity_occurrence" for events.  Cyc uses the term "Event".  Other 
possible terms have drawbacks.  "Action" connotes an event that has an 
agent, so it is only a subclass of events.  "Process" and "Procedure" 
connote complex events that have subevents, and we need a term that 
will cover primitive events as well.  One can argue that "activity" 
and "activity occurrence" have the same problem.  For these reasons, 
we have chosen the term "Events". 

Types and Tokens 
 
We can refer to both event types and event tokens.  PSL uses the terms 
"activity" and "activity_occurrence" for these two.  Cyc uses the 
terms "EventType" and "Event".  Another possible pair of term is 
"EventClass" and "EventInstance", but this biases one toward 
interpretation of types as classes, which may not be desirable (see 
below).   
 
It may seem desirable to make the type-token distinction explicit in 
the terms, and thus use "EventType" and "EventToken".  But as Pat 
Hayes has pointed out, an event token may be a token of many types of 
events.  A specific event may be a token of a running event type, an 
exercising event type, a winning event type, and numerous other types. 
Essentially, "token" is a relation between specific events and event 
types.  An event token is simply an event.  Thus, we will use the Cyc 
terms "EventType" and "Event". 
 
Events do not necessarily have to occur in the real world.  They can 
occur in possible worlds as well.  So the type-token distinction 
crosscuts the real-hypothetical distinction.  If an Event occurs in 
the real world, this is something that can be explicitly stated, with 
a predicate like "Rexists" (a la Hobbs, 1985), "Real", or "Occurs". 



One could also have a "occursIn" predicate that takes a possible world 
or some other notion of context as an argument.  We can revisit this 
issue later. 
 
The principal relation between EventTypes and Events is that one of 
the latter can be an instance of one of the former.  The terminology 
for this in PSL is "occurrence_of"; in Cyc, "isa".  Another 
possibility is "instanceOf".  The problem with "isa" is that its use 
has a long history of confusion between implication/subset ("elephant 
isa mammal") and predication/membership ("Clyde isa elephant").  So we 
will use "instanceOf". 
 
The articulation or bridging axioms for PSL, Cyc, and the inter-theory 
are as follows.  (Coloned predicates are in the theory indicated by 
the label.  Uncoloned predicates are in the inter-theory.) 
 
    (forall (x)  
            (if (EventType x) 
                (exists (y)  
                        (and (psl:activity y) 
                             (forall (e)  
 
  
                                     (iff (psl:occurrence_of e y) 
                                          (instanceOf e x))))))) 
 
    (forall (y)  
            (if (psl:activity y) 
                (exists (x)  
                        (and (EventType x) 
                             (forall (e)  
                                     (iff (psl:occurrence_of e y) 
                                          (instanceOf e x))))))) 
 
    (forall (x)  
            (if (EventType x) 
                (exists (y)  
                        (and (cyc:genls y cyc:Event) 
                             (forall (e)  
                                     (iff (cyc:isa e y) 
                                          (instanceOf e x))))))) 
 
    (forall (y)  
            (if (cyc:genls y cyc:Event) 
                (exists (x)  
                        (and (EventType x) 
                             (forall (e)  
                                     (iff (cyc:isa e y) 
                                          (instanceOf e x))))))) 
 
These axioms are written in terms of the inter-theory's "x" and the 
resource theory's "y" to protect each resource theory from problematic 
properties it might inherit from another resource theory.  For 
example, in Cyc EventTypes are classes; classes/sets are full-fledged 
individuals in Cyc.  In PSL activities are full-fledged individuals, 
but they are not classes.  The inter-theory is neutral on the issue. 
Stronger commitments can be triggered, as follows. 



 
    (forall (x) 
            (if (TypesAreClasses) 
                (iff (cyc:genls x cyc:Event) 
                     (EventType x)))) 
 
    (forall (x) 
            (if (not (TypesAreClasses)) 
                (iff (psl:activity x) 
                     (EventType x)))) 
 
The bridging axioms for event tokens are as follows: 
 
    (forall (x) 
            (iff (cyc:isa x cyc:Event) 
                 (Event x))) 
 
    (forall (x) 
            (iff (psl:activity_occurrence x) 
                 (Event x))) 
 

States and Events 
 
An event is normally something that involves a change of state, 
although one might want to argue that waiting is an event and does not 
involve a change of state (except on the clock).  By contrast, a state 
is some property or relation or collection of properties and relations 
that hold generally over an interval of time; that is, the relevant 
properties and relations do not change during the course of a state's 
holding.  A state is homogeneous, in the sense that if a state holds 
over an interval of time, it holds (or a state of the same type holds) 
over any subinterval.  To describe a state is to provide a partial 
description of the world over a period of time. 
 
There is another notion of "state" often used in computer science, 
e.g., in denotational semantics.  It refers to the total state of the 
relevant world at a given instant; we can call it a "w-state".  At the 
next instant, we are in a different w-state.  This kind of state does 
not persist over time.  Neither PSL nor Cyc has a notion of w-state, 
and we will not need it here.  This notion of state will consequently 
be ignored in the IKRIS Scenarios effort. 
 
The other notion of state is the one in ordinary language.  It is a 
property or relation holding, perhaps for some interval of time, or 
perhaps only for an instant.  It can persist over time and is only 
one aspect of the total world state at any given moment.  An example 
would be the road being slippery.  It is a reification of a 
proposition being true for a while.  Other examples are "George Bush's 
being President", "Jerry's believing that Bush is a bad president", 
"Block A's being on top of Block B", and "John's being retired".  It 
is generally a property of an entity or a relation between entities or 
a combination of such properties and relations of entities.  We could 
thus call it an "e-state", in contrast to "w-state".  But since we 
will not need the notion of "w-state", we can just dispense with the 
"e-" and call it a "State".  Corresponding to "EventType" and "Event", 



we will have the terms "StateType" and "State".  As with all 
polysemous words, it is important to keep in mind the sense in which 
the term "State" is used.  It does not correspond to the use of the 
word in computer science (or in political geography). 
 
The reason one would like to reify states is that they can themselves 
have various properties and relations, and treating them as 
individuals in the domain of discourse leads to a simple 
representation for this.  For example, states can be causes and 
effects: 
 
    The road's being slippery caused the accident. 
    The freezing rain caused the road to be slippery. 
 
They can be located in time and space and can be qualified in various 
ways: 
 
    The road was extremely slippery last night between New Haven and 
        Hartford.  
 
They can be the objects of perception and cognition: 
 
    John saw that the road was slippery. 
    John sensed the road's slipperiness immediately. 
 
In language, they can be nominalized and referred to pronominally: 
 
    The road's slipperiness worried John. 
    The road was slippery, and John knew it. 
 
Representating these sentences is more straightforward in a notation 
that reifies states. 
 
There have been prominent approaches in AI that have reified events 
but have not reified states.  These approaches have generally 
developed perfectly adequate other means for doing the work done by 
reified states.  In this effort, we do not intend to try to convince 
anyone to adopt one approach or the other.  Rather, our goal is to 
bridge between the two classes of approaches.   
 
A State is the same as Cyc's StaticSituation.  So the bridging 
axioms are as follows: 
 
    (forall (x) 
            (iff (cyc:isa x cyc:StaticSituation) 
                 (State x))) 
 
    (forall (x) 
            (iff (cyc:genls x cyc:StaticSituation) 
                 (StateType x))) 
 
There is no entity in PSL that corresponds precisely to States. 
Suppose we perform a sequence of lifting a block and then lowering it. 
In between those two activities or events, the block is up.  There is 
no individual in the PSL ontology that corresponds to that condition 
holding at that moment.  However, the work to be done by States in the 
inter-theory and by StaticSituations in Cyc can be done in a somewhat 



different way by fluents in PSL.  A fluent is a reified eternal 
propostion that can be the first argument of the predicates 
"Holds(f,e)" and "Prior(f,e)".  "Prior(f,e)" means that the fluent f 
is true before the beginning of the activity occurrence e. 
"Holds(f,e)" means that the fluent f is true after the end of the 
activity occurrence e.  In the above situation, the fluent  
"(up BlockA)" is true after the lifting and not after the lowering. 
 
A State and a fluent are different in that a State is generally 
temporally bounded, whereas a fluent is eternal.  Thus, there was a 
state of George Washington's being alive that occurred during the 
interval from 1732 to 1799.  That State does not exist today, in the 
same way that the Event of George Washington's crossing the Delaware 
does not exist today; it existed in December 1776.  By contrast, the 
fluent "(alive GW)" does exist today; it is eternal; it just happens 
not to hold today.   
 
There can be many States corresponding to a single fluent.  The fluent 
"(SunShiningOn LA)" holds on many days and never holds at night (in 
LA).  Each of these holdings can be viewed as a separate State, e.g., 
the Sun's shining on LA on September 7, 2005, is a State, and the 
Sun's shining on LA on September 8, 2005, is a different State.  (We 
can also have the State that is the aggregate of the two.)  
 
But the notions of "State" and "fluent" are clearly closely related. 
 
To bridge between these two perspectives, we will say that every State 
has a corresponding fluent, that fluent that describes the State, or 
holds in circumstances when the State exists.  So the fluent we might 
represent as "full(GLASS1)" is the fluent corresponding to the State 
of GLASS1 being full between 10 and 11 am today.  (Hobbs (1985) uses 
the notation, "full'(e,GLASS1,T)" to mean that e is the state of 
GLASS1 being full during time interval T.)  There is one fluent for 
many States.  One can think of the State as having a time argument and 
the fluent as representing the same proposition without the time 
argument, although this is not strictly necessarily true. 
 
We will use the inter-theory predicate "fluentFor" to 
express the relation between an State and its corresponding 
fluent.  The meaning of "fluentFor" is constrained by at least the 
following axioms: 
 
    (forall (e f) 
            (if (fluentFor f e) 
                (and (psl:fluent f) (State e)))) 
 
    (forall (e) 
            (if (State e) 
                (exists (f)(fluentFor f e)))) 
 
 
That is, "fluentFor" is a relation between a PSL fluent and an 
inter-theory State, and there is a fluent corresponding to every 
State.  
 
Before we further constrain "fluentFor", it will be useful to have a 
way of saying that a fluent holds at or for a particular time instant 



or interval.  In PSL, "holds" is a relation between a fluent and an 
activity occurrence.  We will assume, quite reasonably, that fluents 
only change as the result of activity occurrences, or Events.  Thus, 
for a fluent to hold for a time is for some Event to make the fluent 
hold before that time where no other Event between the first Event and 
the time makes the fluent not hold. 
 
First, it will be convenient to augment the time ontology with one 
predicate.  A prefix of "t:" before a predicate means that it comes 
from the OWL-Time ontology. 
 
    (forall (t1 t2) 
            (iff (t:before/= t1 t2) 
                 (or (t:before t1 t2) (= t1 t2)))) 
 
The predication "holdsFor(f,t)" says that the fluent holds for the 
instant or interval t.  t may or may not be the entire time during 
which it holds.  The definition of "holdsFor" is complicated somewhat 
by the necessity of taking infinite intervals into account, where 
infinite intervals are taken to have no beginning and/or no end. 
 
    (forall (f t t1) 
       (if (t:begins t1 t) 
          (iff (holdsFor f t) 
             (exists (o1) 
                (and (psl:activity_occurrence o1) 
                   (psl:holds f o1) 
                   (t:before/= (psl:end_of o1) t1)  
                   (not (exists (o2) 
                           (and (psl:activity_occurrence o2) 
                                (psl:falsifies o2 f) 
                                (t:before/= (psl:end_of o1)  
                                           (psl:end_of o2)) 
                                (forall (t2) 
                                   (if (t:ends t2 t) 
                                      (t:before (psl:end_of o2) t2) 
         )))))))))) 
 
This says that if t has a beginning t1, then f holds for t if and only 
if there is an Event or activity occurrence o1 beginning before or at 
the same time as t which makes the fluent f true, and there is no 
event or activity occurrence o2 after o1 and before the end of t that 
makes f false.  The latter condition is embedded within an implication 
to accommodate positively infinite intervals. 
 
The following axiom handles the case of negatively infinite intervals. 
 
    (forall (f t) 
       (if (not (exists (t1) (t:begins t1 t))) 
          (iff (holdsFor f t) 
               (forall (o) 
                  (if (and (psl:activity_occurrence o) 
                           (forall (t2) 
                                   (if (t:ends t2 t) 
                                      (t:before/= (psl:end_of o) t2)))) 
                           (psl:holds f o)))))) 
 



That is, if t has no beginning, then f holds for t if and only if f 
holds after any event that ends before the end of t, if t has an end. 
 
Now we can state two more axioms constraining the interpretation of 
the predicate "fluentFor".  If a State e obtains during a time t, then 
the fluent f for e holds for t. 
 
    (forall (e f t) 
       (if (and (State e) (t:during t e) (fluentFor f e)) 
           (holdsFor f t))) 
 
If a fluent f holds for a time t, then there is a state e whose fluent 
is f and which holds during time t. 
       
    (forall (f t)                                         
       (if (and (psl:fluent f) (holdsFor f t)) 
           (exists (e) 
                   (and (fluentFor f e) (t:during e t))))) 
 
We should decide how states are to be individuated.  For example, if 
there is a state of John's sleeping from 8pm to midnight, is there 
another state of John's sleeping from 8pm to 9pm?  If states are 
interpreted as Pat Hayes's histories, that is as a chunk of 
space-time, then the answer is yes.  In that case, we can strengthen 
the above axiom by saying that there is a state e whose fluent is f 
and whose time span is t. 
 
    (forall (f t)                                         
       (if (and (psl:fluent f) (holdsFor f t)) 
           (exists (e) 
                   (and (fluentFor f e) (t:timeSpanFor t e))))) 
 
(Recall that "(t:during e t)" only says that the state e obtains all 
through time t, whereas "(t:timeSpanFor t e)" says that t is the 
entire time during which e obtains.) 
 
We can view a fluent as a StateType: 
 
    (forall (f) (if (psl:fluent f) (StateType f))) 
 
But the converse does not hold.  If time is continuous and thus cannot 
be modelled as a sequence PSL activity occurrences, then there can be 
no temporal properties as parts of fluents.  So there is no fluent 
corresponding the the StateType of Pat's wearing a hat on a Wednesday. 
(This is a StateType that is instantiated whenever Pat wears a hat on 
a Wednesday.)  Moreover, one can imagine an ontology that is richer in 
states than in events, where there may be states that are not viewed 
as brought about as events.  Since all fluents either hold initially 
or are brought about by activity occurrences, we could not have a 
fluent corresponding to such StateTypes in an ontology like this. 
 

Eventualities 
 
It will be useful to have a term that covers both States and Events. 
As illustrated above, States and Events occur in English sentences in 



mostly the same contexts.  As Chris Deaton has pointed out, for 
neither States nor Events can you go directly from an English sentence 
to a unique instance; you always go via types; both share the property 
of being nonrepeatable.  Both have role relationships with the 
entities participating in them.  Both can be located in time, and at 
least in the case of physical States and Events, both can be located 
in space. 
 
There are so far two contenders for a cover term.  Hobbs (1985 and 
subsequently) uses the term "eventuality".  It was first used as a 
cover term for states and events by the linguist Emmon Bach.  Cyc uses 
the term "Situation".  Neither word is ideal.  The American Heritage 
Dictionary gives the following definitions for the senses closest to 
the desired concept:  
 
    "eventuality":  Something that may occur; contingency; 
                    possibility.  
 
    "situation":  A combination of circumstances at a given moment; a  
                  state of affairs. 
 
"Eventuality" can be used for both states and events, as seen in the 
following examples: 
 
    The road might be slippery [state], and in that eventuality I 
        won't know what to do. 
 
    The car might skid [event], and in that eventuality I won't know 
        what to do.  
 
It covers both real and hypothetical events and conditions, which is 
desirable in the term we are looking for.  However, it connotes 
something in the future, which is not part of the meaning we want. 
 
  ? The road was slippery, and in that eventuality I didn't know what 
        to do.  
 
"Situation" does not have the connotation of something in the future, 
but it does connote "static", and is thus not a good cover term 
for events.   
 
    The road was slippery [state], and that situation surprised me. 
 
  ? The car suddenly skidded [event], and that situation surprised me. 
 
Moreover, "situation" is a very loaded term in AI and the philosophy 
of language, meaning many different things to different people. 
"Eventuality" carries less of a load.   
 
So in this exposition, we will use the term "Eventuality", but we are 
open to changing it to something better 
 
As mentioned above, an eventuality can be located in time.  We might 
also want to say it can be located in space, and this is certainly 
true for physical States and Events.  But for more abstract States, it 
is harder to pin down a location in space.  Is the State of America's 
being a democracy coterminous with the physical location of America? 



It seems strange to say 
 
    In Europe, America is not a democracy. 
 
except metonymically.  Is John's being retired coterminous with John's 
body, so that it is not true in my office right now?  Where we are 
dealing with physical events and can locate them in space, one 
possible interpretation of Eventualities is as Pat Hayes's histories, 
as seen above, and, also as seen above, this interpretation can often 
be useful in deciding thorny issues. 
 
The predicates "EventualityType" and "Eventuality" are defined as 
follows:  
 
    (forall (x) 
            (iff (EventualityType x)  
                 (or (EventType x) (StateType x)))) 
 
    (forall (x) 
            (iff (Eventuality x) (or (Event x) (State x)))) 
 
The bridging axioms for Cyc are as follows, although these can be 
derived from the above two axioms and previous bridging axioms: 
 
    (forall (x) 
       (iff (cyc:genls x cyc:SituationType) 
            (EventualityType x))) 
 
    (forall (e) 
       (iff (cyc:isa e cyc:SituationType) 
            (Eventuality e))) 
 
To bridge between Eventualities in the inter-theory and activities and 
fluents in PSL would have to be indirect, unpacking Eventualities into 
Events and/or States and using the bridging axioms for those. 
 
We should keep in mind that the boundary between States and Events 
(and objects) is not always clear.  Is rain a state, an event, or an 
object?  We think of fog as a state and a cloud as an object.  English 
has a way of turning one into the other; "John ran" seems like it 
describes an event; "John was running" seems like it describes a 
state.  
 

Preconditions 
 

Overview 
 
We begin with a note on PSL fluents and activities as eventuality 
types.  We then posit a predicate "precondition" that will apply to 
eventuality types.  We define the predicate as it is applied to 
fluents and activities in terms of the current PSL language.  This 
consititutes the interface between the inter-theory and PSL.   



 
The inter-theory predicate "precondition" applies to types, whereas 
the Cyc precondition predicates apply to tokens.  We introduce a 
predicate "preconditionToken", relate it to "precondition", and 
present the axioms that articulate it with the Cyc predicates. 
 
Finally, we present the restrictions on "precondition" that align it 
with the FLOWS/SWSO precondition predicate.   
 

Eventuality Types, Fluents, and Activities 
 
In the write-up on Fundamentals, we said that a PSL fluent can be 
viewed as a StateType. 
 
    (forall (f) (if (psl:fluent f) (StateType f))) 
 
However, we cannot say that that every StateType is a PSL fluent. 
There we said, "If time is continuous and thus cannot be modelled as a 
sequence of PSL activity occurrences, then there can be no temporal 
properties as parts of fluents.  So there is no fluent corresponding 
the the StateType of Pat's wearing a hat on a Wednesday.  (This is a 
StateType that is instantiated whenever Pat wears a hat on a 
Wednesday.)  Moreover, one can imagine an ontology that is richer in 
states than in events, where there may be states that are not viewed 
as brought about by events.  Since all fluents either hold initially 
or are brought about by activity occurrences, we could not have a 
fluent corresponding to such StateTypes in an ontology like this." 
 
Esoteric Example: Let's take as our model one in which eventualities 
(states and events) are Pat Hayes's chunks of space-time and in which 
eventuality types are lambda expressions that describe those chunks. A 
token is an instance of the type if the lambda expression correctly 
describes the chunk.  Fluents are a subset of the lambda expressions, 
the ones that include no temporal properties.   
 
Warning:  This is not _THE_ model for eventuality types and tokens, 
only a possible model that may sometimes clarify intuitions. 
 
The same issues arise when trying to relate inter-theory (and Cyc) 
event types and PSL activities.  They are not the same, because we can 
talk about event types that have temporal properties, such as Pat's 
wife cooking him dinner on a Sunday, which is instantiated every time 
Pat's wife cooks him dinner and it happens to be Sunday that day.   
 
Just as we stipulated that PSL fluents are state types, we can 
stipulate that PSL activities are event types. 
 
    (forall (a) (if (psl:activity a)(EventType a))) 
 

Ontology Mismatches 
 
There are three mismatches between the way PSL and Cyc handle 



preconditions.   
 
    1.  PSL has no explicit treatment of preconditions, but it does 
        have the notion of "legal" occurrences of activities. 
 
    2.  The most straightforward way of defining "precondition" in PSL 
        makes it a relation between a fluent and an activity, whereas 
        Cyc allows any eventuality (Situation) to be a precondition to 
        any other eventuality (Situation).  
 
    3.  Cyc precondition predicates take tokens rather than types as 
        their arguments.  
 
We will introduce an inter-theory predicate "precondition" that will 
take eventuality types as its arguments.  We will define it in terms 
of PSL concepts when its arguments are restricted to fluents and 
activities.  We will then relate it to the Cyc precondition 
predicates. 
 
 

Preconditions in PSL 
 
The predicate "precondition" takes eventuality types as its arguments. 
 
   (forall (e1 e2) 
           (if (precondition e1 e2) 
               (and (EventualityType e1)(EventualityType e2)))) 
 
We can define the predicate "precondition" for fluents and 
activities in terms of PSL predicates.  But since the class of event 
types is larger than the class of activities and since the class of 
state types is larger than the class of fluents, the axioms will not 
define "precondition" in general.  That can't be done in PSL. 
 
For example, since fluents and activities cannot have temporal 
qualifiers, we can't state in PSL that Pat's wearing a hat on 
Wednesday is a precondition for Pat's wife's fixing him dinner on 
Sunday.  We can state in PSL that Pat's wearing a hat is a 
precondition for Pat's wife's fixing him dinner, but that is not the 
same, and neither implies the other, since in PSL the precondition has 
to be true immediately before the event.   
 
Our approach will thus be to _constrain the interpretation_ of the 
inter-theory predicate "precondition" by these axioms relating it to 
PSL, even though we can't define it.  It will acquire further 
constraints as we relate it to other existing theories and frameworks. 
 
PSL does not have an explicit predicate expressing a precondition 
relation between fluents and activity occurrences.  But the same work 
is done in PSL by the predicate "legal".  An activity occurrence is 
legal if it is possible for it to happen in a given state of the 
world.  That is, it is legal if all its preconditions obtain.  We can 
turn this around and say that if a fluent holds prior to all 
occurrences of some activity and there are no occurrences of that 
activity when the fluent doesn't hold prior to it, then the fluent is 



a precondition for that activity.  The reason for our choice of 
variable names will emerge below. 
 
    (forall (f1 a2) 
            (if (and (psl:fluent f1)(psl:activity a2)) 
                (iff (precondition f1 a2) 
                     (forall (o2) 
                             (if (and (psl:occurrence_of o2 a2) 
                                      (psl:legal o2)) 
                                 (psl:prior f1 o2)))))) 
 
This takes care of the case where the first argument is a fluent and 
the second an activity.  Now we need to handle the other possibilities. 
A good way to visualize the cases is by imagining an occurrence of an 
activity a1 resulting in a fluent f1, which is a precondition for an 
activity a2, which results in a fluent f2.  The four cases we need to 
consider are then illustrated as follows: 
 
    1. (precondition f1 a2):         f1 --> a2 
 
    2. (precondition a1 a2):  a1 --> f1 --> a2  
 
    3. (precondition f1 f2):         f1 --> a2 --> f2 
 
    4. (precondition a1 f2):  a1 --> f1  
 
In Case 2 the activity a1 is the only possible cause of the fluent f1, 
which is a precondition for a2.  The definition in this case is thus 
as follows. 
 
    (forall (a1 a2) 
            (if (and (psl:activity a1)(psl:activity a2)) 
                (iff (precondition a1 a2) 
                     (exists (f1) 
                        (and (precondition f1 a2) 
                             (forall (o1) 
                                (if (psl:achieved f1 o1) 
                                    (psl:occurrence_of o1 a1)))))))) 
 
Note that "(precondition f1 a2)" is defined because it was covered 
in Case 1. 
 
In Case 3 the fluent f1 is a precondition for every activity 
occurrence that results in fluent f2. 
 
    (forall (f1 f2) 
            (if (and (psl:fluent f1)(psl:fluent f2)) 
                (iff (precondition f1 f2) 
                     (forall (a2 o2) 
                             (if (and (psl:occurrence_of o2 a2) 
 
  
                                      (psl:achieved f2 o2)) 
                                 (precondition f1 a2)))))) 
 
In Case 4 the only way to make fluent f1 hold is by an occurrence of 
activity a1. 



 
    (forall (a1 f1) 
            (if (and (psl:activity a1)(psl:fluent f1)) 
                (iff (precondition a1 f1) 
                     (forall (o) 
                             (if (psl:achieved f1 o) 
                                 (psl:occurrence_of o a1)))))) 
 
The extension of "precondition" to Cases 2-4 is not necessitated by 
the nature of PSL, but by the treatment of preconditions in Cyc. 
 

Articulation with Cyc Predicates 
 
The first problem with linking the predicate "precondition" with Cyc 
predicates is that the inter-theory "precondition" takes eventuality 
types as arguments, whereas the Cyc precondition predicates take 
eventuality (Situation) tokens.  So we first introduce a predicate 
"preconditionToken" that applies to eventuality tokens in an obvious 
and hopefully correct way.  The variable c1 and c2 will be used for 
types, e1 and e2 for tokens. 
 
If there is a precondition relation between eventuality types, there 
is a corresponding preconditionToken relation between eventuality 
tokens.  
 
    (forall (c1 c2) 
            (if (precondition c1 c2) 
                (exists (e1 e2) 
                        (and (instanceOf e1 c1)(instanceOf e2 c2) 
                             (preconditionToken e1 e2))))) 
 
We can't make this axiom an if-and-only-if rule, because the 
"instanceOf" relations always have to be in the consequent.  But we 
can say that a precondition relation between tokens implies a 
precondition relation between _some_ pair of types. 
 
    (forall (e1 e2) 
            (if (preconditionToken e1 e2) 
                (exists (c1 c2) 
                        (and (instanceOf e1 c1)(instanceOf e2 c2) 
                             (precondition c1 c2))))) 
 
The constraints on the arguments of "preconditionToken" are as 
follows: 
 
    (forall (e1 e2) (if (preconditionToken e1 e2) 
                        (and (Eventuality e1)(Eventuality e2)))) 
             
We can then relate the Cyc precondition predicates to the inter-theory 
predicate "preconditionToken". 
 
The Cyc predicate "preconditionFor-Events" is defined in terms of the 
inter-theory as follows.  As before, Cyc predicates are prefixed with 
"cyc:"; inter-theory predicates have no prefixes. 
 



   (forall (?COND ?EVENT) 
           (iff (cyc:preconditionFor-Events ?COND ?EVENT) 
                (and (Event ?COND)(Event ?EVENT) 
                     (preconditionToken ?COND ?EVENT)))) 
 
Now that we have made this link, we can use Cyc axioms to tell us, for 
example, that EVENT is not a precondition for COND and that EVENT 
starts after the beginning of COND.  However, see the note below on 
one of the Cyc axioms. 
 
Cyc has a predicate "situationIsSuchThat" which relates an 
eventuality/situation to its corresponding proposition.  For example, 
the event of John's running would be linked to the proposition 
"run(John)", and the state of John's sitting would be linked to the 
proposition "sit(John)".  In a sense, the predicate does the same kind 
of linking work for us between eventualities/situations and 
propositions that "fluentFor" does between states and fluents.  Rather 
than invent an inter-theory predicate to do the same thing, we will 
simply use the Cyc predicate. 
 
The Cyc predicate "preconditionFor-SitProp" is a relation between an 
eventuality/situation and a proposition.  It says that the 
eventuality's occurrence is a precondition for the proposition's being 
true.  We coerce the proposition into the corresponding situation. 
 
   (forall (?PROP ?SIT2) 
           (iff (Cyc:preconditionFor-SitProp ?SIT1 ?PROP) 
                (exists (?SIT2) 
                        (and (Cyc:situationIsSuchThat ?SIT2 ?PROP) 
                             (preconditionToken ?SIT1 ?SIT2))))) 
 
The Cyc predicate "preconditionFor-PropSit" is a relation between a 
proposition and an eventuality/situation.  It says that proposition's 
being true is a precondition for the eventuality.   
 
   (forall (?PROP ?SIT2) 
           (iff (Cyc:preconditionFor-PropSit ?PROP ?SIT2) 
                (exists (?SIT1) 
                        (and (Cyc:situationIsSuchThat ?SIT1 ?PROP) 
                             (preconditionToken ?SIT1 ?SIT2))))) 
 
Note on the Subevent Axiom for "preconditionFor-Events":  The axiom 
 
   (if (and (Cyc:preconditionFor-Events ?COND ?EVENT) 
             (Cyc:subEvents ?EVENT ?SUB)) 
       (Cyc:preconditionFor-Events ?COND ?SUB)) 
 
is probably not correct, given the most likely interpretations of the 
predicates.  Consider a composite event StandUp-SitDown, which is 
comprised of a StandUp followed by a SitDown.  Both the StandUp and 
the SitDown would be subevents of the composite event.  A precondition 
for the composite event would be that one has to be sitting down.  But 
this is not a precondition for the subevent SitDown; quite the 
contrary.  
 
 



Articulation with FLOWS/SWSO 
 
 
In FLOWS/SWSO, preconditions are characterized as follows: 
 
  "A precondition of an atomic process is a formula that states that 
   the atomic process cannot be executed until this formulae [sic] 
   holds."  
 
The specification of preconditions is restricted to atomic processes 
because of the difficulty in maintaining consistency among the 
preconditions of a composite process and those of the atomic processes 
of which it is comprised (cf. the Cyc subevent axiom). 
 
First we need to spell out in the inter-theory what an atomic process 
is.  It is at least a process or event which does not have subevents. 
A consequence of this, that should follow once we have developed a 
treatment of failures and interruptions, is that an atomic process 
cannot fail or be interrupted.  We employ the predicate "subevent" that 
will be explicated in subsequent IKRIS Scenarios notes; "(subevent e1 
e2)" means that e1 is a subevent of e2. 
 
   (forall (e) 
           (iff (atomic e) 
                (and (Event e) 
                     (forall (e1) (not (subevent e1 e)))))) 
 
One may also want to say that atomic events are instantaneous.  This 
seems to be controversial, so we will place a trigger condition on 
it.  
 
   (forall (e) 
           (if (and (AtomicInstantaneous)(atomic e)) 
               (exists (t) 
                       (and (t:instant t)(t:timeSpanOf t e))))) 
 
The FLOWS precondition predicate is between a formula, i.e., a 
proposition, and a process, i.e., an event.  To coerce from the 
proposition to the corresponding state, we will use the Cyc predicate 
"situationIsSuchThat". 
 
   (forall (e p) 
           (iff (flows:precond e p) 
                (exists (e1 c1) 
                        (and (atomic e) 
                             (cyc:situationIsSuchThat e1 p) 
                             (instanceOf e1 c1) 
                             (precondition c1 e))))) 
 
That is, to do the mapping between the FLOWS predicate "precondition" 
and the inter-theory predicate "precondition", we have to restrict the 
process argument to atomic processes and coerce the FLOWS proposition 
into an inter-theory eventuality type.  Both the type c1 and the token 
e1 are introduced because the Cyc predicate situationIsSuchThat maps 
propositions into eventuality _tokens_ and it seems safer to relate 
the FLOWS/SWSO precondition predicate to the basic inter-theory 



predicate "precondition".   
 

Effects 
 

Overview 
 
In this section we introduce the predicate "effect" which is a relation 
between two eventuality types.  In a manner analogous to our treatment 
of preconditions, we link it with PSL by extending it from an 
"achieved" relation between an activity occurrence and a fluent to a 
relation between eventuality types in general.  Cyc has predicates 
corresponding to both type-type effect or causality and token-token 
causality.  They are weakly related in Cyc.  In this note we 
strengthen that relation somewhat, in the interests of constraining 
the interpretations of our predicates as much as possible.  Finally, 
we present the restrictions on the FLOWS/SWSO "effect" predicate and 
define it in terms of PSL predicates. 
 
We will use the predicate "effect", which takes eventuality types as 
its arguments.  
 
   (forall (e1 e2) 
           (if (effect e2 e1) 
               (and (EventualityType e1)(EventualityType e2)))) 
 
The expression "(effect e2 e1)" says that eventualities of type e1 
have effects of type e2, i.e., that an e2-type state or event is an 
effect of  an e1-type state or event. 
 
Note that the order of arguments follow the order in the English 
sentence "e2 is an effect of e1" rather than in the causal/temporal 
order "e1 then e2". 
 

Effects in PSL 
 
Recall that the class of state types properly includes the class of 
fluents.  So when the "effect" predicate is used in PSL for state 
types, it will be restricted to fluents. 
 
In PSL, the predicate "achieved" between a fluent and an activity 
occurrence means that the fluent did not hold before the occurrence 
and did hold after it.  This is the key property of effects. 
 
    (forall (f a) 
            (if (and (psl:fluent f)(psl:activity a)) 
                (iff (effect f a) 
                     (forall (o) 
                             (if (psl:occurrence_of o a) 
                                 (psl:achieved f o)))))) 
 



That is, a fluent is an effect of an activity if and only if any 
occurrence of the activity achieves the fluent.  An example of this is 
when an activity of a coffee cup falling to the floor has the effect 
that the coffee cup is on the floor. 
 
This takes care of the case where the first argument is a fluent and 
the second an activity.  Now we need to handle the other 
possibilities. 
 
We often talk about activities or events being the effect of a fluent. 
For example, an effect of the slipperiness of the floor is John's 
falling.  For an activity to be the effect of a fluent, it must be the 
inevitable outcome of that fluent.  That is, activity a is an effect 
of fluent f provided whenever f holds, the only legal activity 
occurrences are those that have a as a subactivity.  (This allows 
other things to happen concurrently.) 
 
    (forall (a f) 
            (if (and (psl:activity a)(psl:fluent f)) 
                (iff (effect a f) 
                     (forall (o a1) 
                             (if (and (psl:prior f o)(psl:legal o) 
                                      (psl:occurrence_of o a1)) 
                                 (psl:subactivity a a1) 
 
That is, the only things that can happen after f are occurrences of 
activities that include a.   
                                  
An activity can be an effect of an activity.  My swinging my arm can 
have the effect of my coffee cup falling to the floor.  This can be 
captured by hypothesizing an intermediate fluent that causes the 
second activity. 
 
    (forall (a1 a2) 
            (if (and (psl:activity a1)(psl:activity a2)) 
                (iff (effect a2 a1) 
                     (exists (f) 
                             (and (psl:fluent f)(effect f a1) 
                                  (effect a2 f)))))) 
 
That is, fluent f is an effect of activity a1 and activity a2 is an 
effect of f. 
 
Finally, a fluent can have a fluent as an effect.  The slipperiness of 
the ice can have John's leg being broken as an effect.  This generally 
holds because there is an intervening activity. 
 
    (forall (f1 f2) 
            (if (and (psl:fluent f1)(psl:fluent f2)) 
                (iff (effect f2 f1) 
                     (exists (a) 
                             (and (psl:activity a)(effect a f1) 
                                  (effect f2 a)))))) 
 
Activity a is an effect of f1 and f2 is an effect of a. 
 



Articulation with Cyc 
 
Cyc has a predicate that directly corresponds to "effect" -- 
"causesSitTypeSitType".  So we can interdefine the two predicates: 
 
    (forall (e1 e2) 
            (iff (effect e2 e1) 
                 (cyc:causes-SitTypeSitType e1 e2))) 
 
Cyc also has a predicate that applies to eventuality tokens -- 
"causes-SitSit".  It is not _defined_ (iff) in terms of 
"causesSitTypeSitType", but its meaning is _constrained_ (implies) by 
the Cyc axiom 
 
    (forAll ?X 
     (forAll TYPE1 
      (forAll TYPE2 
         (implies (and (cyc:causes-SitTypeSitType ?TYPE1 ?TYPE2) 
                       (cyc:isa ?X ?TYPE1)) 
                  (thereExists ?Y 
                      (and (cyc:isa ?Y ?TYPE2) 
                           (cyc:causes-SitSit ?X ?Y))))))) 
 
Or in terms of the inter-theory predicate "effect" we have the axiom 
 
    (forall (c1 c2 e1) 
            (if (and (effect c2 c1)(instanceOf e1 c1)) 
                (exists (e2) 
                        (and (instanceOf e2 c2) 
                             (cyc:causes-SitSit e1 e2))))) 
 
As with preconditions, we can't state an if-and-only-if relation 
between "effect"/"causesSitTypeSitType" and "causes-SitSit".  But we  
we would like to say that for any case of causality between 
particulars, there is a corresponding causal regularity between types 
that it instantiates.   
 
However, we cannot state this in the way that might occur to us 
initially, saying that corresponding to a token-token causal relation, 
there is a type-type causal relation between types of those tokens.   
For example, we may say that someone's running with scissors had the 
effect that his face was cut.  But it is not the case that every token 
of a running-with-scissors event type causes a token of a face-cutting 
event type.  
 
We can get a clearer picture of what we want by examining it in terms 
of the framework in Hobbs (2005).  Briefly, there is a distinction 
between the monotonic notion of a causal complex, and the nonmonotonic 
notion of "cause".  The causal complex consists of everything that 
must hold or happen in order for the effect to happen, and the effect 
always occurs if the whole causal complex occurs.  (The causal complex 
also contains only eventualities relevant to the effect, in a way that 
can be defined.)  Out of all the states and events in the causal 
complex, we often pick one or several that count as "causes", for a 
variety of reasons, e.g., they don't normally occur, or they require 
some action on our part to make them occur.  The trouble with causal 



complexes is that we almost never know them completely.  So for 
commonsense reasoning we make do with mere causes.  In AI, the 
preconditions plus the body of a planning operator constitute an 
attempt to capture the notion of a causal complex, and the body would 
normally correspond to the cause. 
 
When planning what actions to take in a given situation, we make use 
of causal relations between types of causal complexes and types of 
 
effects.  We want to instantiate the causal complex in order to get an 
instance of the effect.  But most of our causal knowledge is not about 
causal complexes but about "causes".  So we instantiate the event type 
that is the "cause" and expect to get an instance of the effect.  But 
sometimes things misfire because the rest of the causal complex is not 
in place. 
 
When seeking to explain states or events that have actually occurred, 
we could in principle discover the entire causal complex that had the 
state or event as its effect.  If we did, then we would have a causal 
complex-effect relation among types that was instantiated in tokens 
that actually occurred.  But again, we normally won't be able to 
identify the entire causal complex, so we just identify the "cause". 
And here there won't necessarily be a type relation between the cause 
and effect.   
 
In the scissors example, the causal complex contains not just the 
running with scissors event but also the state of the scissors being 
pointed toward the person's face just before contact.  We can see the 
incident as a token of a causal relation between types, but one of 
those types is the whole causal complex, not just the state or event 
we picked out as the "cause". 
 
Thus, the proper implication from token causality to type causality is 
 
     (forall (e1 e2) 
             (if (cyc:causes-SitSit e1 e2) 
                 (exists (c1 c2 s) 
                         (and (instanceOf e1 c1)(instanceOf e2 c2) 
                              (member c1 s)(effect c2 s))))) 
 
That is, the type c1 of the "cause" e1 is a member of a causal complex 
type s that has the type c2 as its effect, where the effect token is 
an instance of c2.  This would accommodate the scissors example, but 
still would not allow causation strictly between particulars, with no 
support from a causal regularity. 
 

Articulation with FLOWS/SWSO 
 
In FLOWS/SWSO, effects, like preconditions, only apply to atomic 
processes.  We defined "atomic" there.  Effects can be conditional. 
The condition is a fluent that holds before the atomic process is 
executed and the effect occurs only if the condition holds.  For 
example, the effect may be that your credit card balance is debited, 
and the condition is that your credit card has not expired.  The 
FLOWS/SWSO predicate "effect" can be defined naturally in terms of PSL 



predicates. 
 
    (forall (a f1 f2) 
            (if (and (atomic a)(psl:fluent f1)(psl:fluent f2)) 
                (iff (flows:effect a f1 f2) 
                     (forall (o) 
                             (if (and (psl:occurrence_of o a) 
                                      (psl:prior f1 o)) 
                                 (psl:achieves o f2)))))) 
 

Inputs and Outputs as Preconditions and Effects 
 
 
The purpose of this section is to reduce the IOPE problem to the PE 
problem. 
 
If we can define inputs and outputs in terms of preconditions and 
effects, then we can work on interoperability for only the latter 
concepts.  In this note, until the final paragraph we are only talking 
about informational inputs and outputs, not consumable physical 
resources, e.g., in a manufacturing process. 
 
In the write-up on preconditions, we introduced a "precondition" 
predicate that takes eventuality types as its arguments. 
 
    (precondition e1 e2) 
 
Suppose we also have a similar "effect" predicate: 
 
    (effect e1 e2) 
 
There is a distinction between an action and the agent of the action. 
Agents persist through time, whereas actions are PSL's activity 
occurences or Cyc's events (event tokens).  The relation between the 
agent and the action is 
 
    (agentOf a p) 
 
i.e., agent a is the agent of action p.  We will assume there is a 
population of agents, but we relegate the details of what counts as an 
agent to another ontology.   
 
Inputs and outputs can then be grounded in an account of messages 
among agents.  We will assume we have an ontology of messages (prefix 
"m:") which provides a primitive notion of "message".  The 
expression  
 
    (m:message m a b x y) 
 
says that m is a messaging act in which a communicates to b the 
information y via the physical object or signal x.  That is, x is the 
message or information-bearing object that is sent and y is its 
content.  The separate ontology of messages needs to be developed. 
Cyc has one; Hobbs (2005) presents another one.  But that is out of 



scope.  Here we will say nothing about the nature of y; it may be a 
proposition or some nonpropositional concept. 
 
We will assume that the underlying ontology of messages explicates two 
properties of messaging events: 
 
    (m:sent s m) 
    (m:received r m) 
 
The first says that s is the state type of the originator of the 
messaging act m having done its part in sending the message.  The 
second says that r is the state type of the messaging act being 
complete in that the content of the message has been received.  We 
define these in terms of state types because that's what the 
"precondition" predicate requires. 
 
In order to be an agent capable of sending and receiving messages, the 
agent has to have the capability of using the information in some 
fashion.  We will say that when an agent is in some sense in 
possession of the content of the message, then that content is 
"availableTo" the agent. 
 
    (m:availableTo y a t) 
 
This concept is related to "sent" and "received" by the following 
axioms:  
 
    (forall (m a b x y s t) 
            (if (and (m:message m a b x y) 
                     (m:sent s m) 
                     (instanceOf e s) 
                     (t:atTime e t)) 
                (m:availableTo y a t))) 
 
That is, if an instance e of a state s of a message being sent holds 
or obtains at time t, where the message is sent by a and has content 
y, then y is available to a at time t. 
 
    (forall (m a b x y r t) 
            (if (and (m:message m a b x y) 
                     (m:received r m) 
                     (instanceOf e r) 
                     (t:atTime e t)) 
                (m:availableTo y b t))) 
 
That is, if an instance e of a state r of a message being received 
holds or obtains at time t, where the message is received by b and has 
content y, then y is available to b at time t. 
 
If the agent has some sort of "cognitive state" and can be said to 
"know" things, then we can say if the agent knows some information, 
the information is available to the agent. 
 
    (forall (a y t) 
            (if (know a y t) 
                (availableTo y a t))) 
 



This axiom makes sense of the impulse to treat inputs and outputs as 
knowledge preconditions and effects.  But using the broader concept of 
availability overcomes qualms about referring to knowledge when 
talking about very simple processes. 
 
Inputs and outputs can be defined in terms of messages sent and 
received as preconditions and effects.  They will both be relations 
between some kind of content and an eventuality type.   
 
    (forall (y p) 
            (if (input y p)(Eventuality p))) 
 
    (forall (y p) 
            (if (output y p)(Eventuality p))) 
 
We have omitted constraints on y because explicating a theory of 
possible contents of messages would take us too far afield. 
 
The definition of "input" is as follows: 
 
    (forall (b p y) 
            (if (agentOf b p) 
                (iff (input y p) 
                     (exists (m a x r) 
                             (and (m:message m a b x y) 
                                  (m:received r m) 
                                  (precondition r p)))))) 
 
That is, content y is input to process or eventuality p if and only if 
there is a message event m from some a to the agent b of p in which 
the message is x and its content is y, there is the state type r of 
that message having been received, and r is a precondition for p. 
 
The definition of "output" is as follows: 
 
    (forall (a p y) 
            (if (agentOf a p) 
                (iff (output y p) 
                     (exists (m b x s) 
                             (and (m:message m a b x y) 
                                  (m:sent s m) 
                                  (effect s p)))))) 
 
That is, content y is output to process or eventuality p if 
and only if there is a message event m from the agent a of p to some b 
in 
which the message is x and its content is y, there is the state type s 
of that message having been sent, and s is an effect of p. 
 
Defining inputs and outputs in terms of messages rather than in terms 
of availability or knowledge takes care of the case where the agent 
already knows the supposed "input" or does not reveal the supposed 
"output".  It's not input unless someone puts it in, and it's not 
output unless the agent puts it out. 
 
Consider an example that is as simple as McCarthy's thermostat.  The 
agent is a calculator (or abacus even) capable of computing sums; 



that's the action.  The message is the user typing in the numbers (or 
moving the right number of beads).  The output is the display. 
"Availability" for the calculator is simply having the received the 
input numbers and calculated the output number.  For the abacus, 
availability is having a representation of a number on its display. 
 
Most examples will be more interesting. 
 
Optional inputs can be accommodated by extending the domain over which 
the y argument ranges, to include a symbol whose meaning is "null". 
When the input y is not null, the option is exercised.  When it is 
null, the option is not.  The transmission of a null message is a 
definite event, and not the same as the absence of a message.  To say 
that an input is optional is to say that "null" is one possible value 
of y.  To say that it is obligatory is to say that y cannot be "null". 
So suppose process p has two integer inputs, an optional y and an 
obligatory z.  Then the precondition is 
 
    (and (input y p)(input z p) 
         (or (integer y)(= y null)) 
         (integer z)) 
 
Inputs and outputs can interact with other preconditions and effects. 
Suppose a process requires a credit card number y as input and then 
has to check that it is unexpired (at time t).  The precondition is  
 
    (and (input y p)(unexpired y)) 
 
We have defined inputs and outputs here in terms of messages.  In any 
given system or framework, it is perfectly possible to treat "input" 
and "output" as primitive concepts.  Grounding the concepts in 
messages in the inter-theory will enable such a system to interoperate 
with systems or frameworks that use a similar grounding or that have 
no notion of inputs and outputs, only preconditions and effects. 
 
A question arises as to what relation there is between these 
informational inputs and outputs and material inputs and outputs in 
manufacturing processes.  For example, one might call steel one of the 
"inputs" to a vehicle-manufacturing process and SUVs as one kind of 
"output".  This is a different notion than what we have explicated 
here.  However, a theory of physical inputs and outputs will be 
analogous to our account here, with a predication like 
 
    (move m x a b) 
 
replacing  
 
    (message m a b x y) 
 
The former expression says that m is a moving act in which x is moved 
from a to b.  Corresponding to the informational notion of 
availability is the physical notion of "locationAt".  In fact, our way 
of conceiving knowledge and communication among agents is generally 
via a spatial metaphor resting on the identification of "availability" 
or "knowing" with "locationAt".  It is not surprising that the two 
theories will be analogous.  Of course, one distinction between the 
two theories is that physical inputs are consumed by physical 



processes whereas informational inputs are not consumed by their 
processes. 
 

SPARK as a Declarative Representation 
 
 
The aim of this section is to show that the ostensibly procedural 
language SPARK can be viewed declaratively, and thus as something that 
doesn't just execute, but also is a means of encoding information 
about the structure of processes.  This will enable us in subsequent 
work to relate SPARK with PSL, ResearchCyc and other event 
representation frameworks by means of the same sort of IKL 
articulation axioms we have been constructing so far.  This will be 
particularly valuable since SPARK is relatively rich in control 
structures, or possibilities for the internal structure of events. 
 
Consider a simple SPARK procedure: 
 
   {defprocedure reportSpam                                      (1)  
      cue:  [do: (forwardMessage $message)] 
      precondition:  (IsSpam $message) 
      body:  [do: (sendTo SpamCollection $message)]} 
 
We would like to turn this into the following declarative 
representation in IKL: 
 
   (and (procname e reportSpam)                                  (2) 
        (cue e1 e) (forwardMessage' e1 $message) 
        (precondition e2 e) (IsSpam' e2 $message) 
        (body e3 e) (sendTo' e3 SpamCollection $message)) 
 
This relies on the reification of states and events, where if 
 
   (see Pat Kim) 
 
means that Pat sees Kim, then  
 
   (see' e Pat Kim) 
 
means that e is the event of Pat seeing Kim.   
 
So the above IKL statement says that e has the procedure name 
"reportSpam", e1 is a cue for e where e1 is the action of forwarding 
$message, e2 is a precondition for e where e2 is the state of $message 
being spam, and e3 is the body of e where e3 is the action of sending 
$message to SpamCollection. 
 
We could also reify the states of something being a cue, precondition, 
or body of a procedure as well:  (cue' e0 e1 e) says that e0 is the 
state or property of e1 being a cue for e.  
  



Translation Rules 
 
The following context-dependent translation rules effect this 
translation.  Here TR<...> is the translation function, acting 
recursively on SPARK expressions.  The asterisk * is used to indicate 
zero or more instances of the string it follows, and the expressions 
on the right and left side of the rule are kept in sequence.  I've 
used / and \ as metalanguage brackets, just because I ran out of other 
brackets.  The vertical bar | is a way of keeping things in place 
until they have been translated.  After translation is complete, they 
are removed by the following rule: 
 
   (p x|(q y)*) ==> (and (p x) (q y)*)                          (3) 
 
where x and y stand for any sequence of arguments.  "tag" stands for 
anything that can precede a colon in SPARK, such as "cue", 
"precondition", "body", and "do".  Variables of the form "e" or "en", 
for some number n, appearing on the right side of a rule and not on the 
left are new variables. 
 
1. TR<{defprocedure name defn}> ==> (procname e|TR<defn> name) 
    
2. e|TR</tag: expr\*>           ==> e|(tag TR<expr> e)* 
 
3. TR<[tag: expr*]>             ==> e1|(tag' e1 TR<expr>*) 
 
4. TR<(p x*)>                   ==> e|(p' e TR<x>*) 
 
5. TR<constant>                 ==> constant 
 
6. TR<variable>                 ==> variable 
 
7. TR<[variable]>               ==> variable 
 
Here's a detailed example that illustrates this translation. You can 
skip to the semantics section if you believe the rules already. 
 
Applying Rule 1 to procedure definition (1)  
 
   TR<{defprocedure reportSpam                                       
         cue:  [do: (forwardMessage $message)] 
         precondition:  (IsSpam $message) 
         body:  [do: (sendTo SpamCollection $message)]}> 
 
yields 
 
   (procname e|TR<cue:  [do: (forwardMessage $message)] 
                  precondition:  (IsSpam $message) 
                  body:  [do: (sendTo SpamCollection $message)]> 
             reportSpam) 
 
Applying Rule 2 to this yields 
 
   (procname e|(cue TR<[do: (forwardMessage $message)]> e) 
               (precondition TR<(IsSpam $message)> e) 
               (body TR<[do: (sendTo SpamCollection $message)]> e) 



             reportSpam)  
 
Applying Rule 3 to this yields 
 
   (procname e|(cue e1|(do' e1 TR<(forwardMessage $message)>) e) 
               (precondition TR<(IsSpam $message)> e) 
               (body e2|(do' e2 TR<(sendTo SpamCollection $message)>) 
e) 
             reportSpam) 
 
Applying Rule 4 to this yields 
 
   (procname e|(cue e1|(do' e1 e3|(forwardMessage' e3 TR<$message>)) e) 
               (precondition e4|(IsSpam' e4 TR<$message>) e) 
               (body e2|(do' e2 e5|(sendTo' e5 TR<SpamCollection> 
                                            TR<$message>)) e) 
             reportSpam) 
 
Applying Rules 5 and 6 to this yields 
 
   (procname e|(cue e1|(do' e1 e3|(forwardMessage' e3 $message)) e) 
               (precondition e4|(IsSpam' e4 $message) e) 
               (body e2|(do' e2 e5|(sendTo' e5 SpamCollection 
                                            $message)) e) 
             reportSpam) 
 
Now we've translated all the way down to the bottom, and we can use 
(3) to unwind this successively into a conjoined expression. 
 
   (procname e|(cue e1|(and (do' e1 e3)(forwardMessage' e3 $message)) 
e) 
               (and (precondition e4 e)(IsSpam' e4 $message)) 
               (body e2|(and (do' e2 e5)(sendTo' e5 SpamCollection 
                                                 $message)) e) 
             reportSpam) 
 
   (procname e|(and (cue e1 e)(and (do' e1 e3) 
                                   (forwardMessage' e3 $message))) 
               (and (precondition e4 e)(IsSpam' e4 $message)) 
               (and (body e2 e)(and (do' e2 e5) 
                                    (sendTo' e5 SpamCollection 
$message))) 
             reportSpam) 
 
   (and (procname e reportSpam) 
        (and (cue e1 e)(and (do' e1 e3)(forwardMessage' e3 $message))) 
        (and (precondition e4 e)(IsSpam' e4 $message)) 
        (and (body e2 e)(and (do' e2 e5) 
                             (sendTo' e5 SpamCollection $message)))) 
 
Then flattening out the and's gives us  
 
   (and (procname e reportSpam) 
        (cue e1 e)(do' e1 e3)(forwardMessage' e3 $message) 
        (precondition e4 e)(IsSpam' e4 $message) 
        (body e2 e)(do' e2 e5)(sendTo' e5 SpamCollection $message)) 
 



which except for the do's is the same as expression (2).  More about 
"do" below. 
 
Call this form SPARK Expressed Declarative, or SPARKED. 
 

The Semantics of SPARKED 
 
We introduce two predicates that describe the world and the action of 
the SPARK processor on the world. 
 
   holds(State):    true iff the State holds 
   executed(Task):  true iff the Task is executed by the processor 
 
Then we can constrain the meanings of the top-level tags by the 
following axioms: 
 
   (forall (e1 e) 
           (if (and (cue e1 e)(executed e)) 
 
               (executed e1))) 
 
That is, if e1 is a cue for e and e is executed, then e1 is executed. 
 
   (forall (e2 e3 e) 
           (if (and (precondition e2 e)(body e3 e)(holds e2) 
                    (executed e3)) 
               (executed e))) 
 
That is, if the precondition for a procedure holds and its body is 
executed, the procedure is executed. 
 
The above translation rules translate logical operators into primed 
predicates.  The semantics of the primed predicates can be defined as 
follows:  
 
   (forall (e e1 e2) 
           (if (and' e e1 e2) 
               (iff (holds e) 
                    (and (holds e1)(holds e2)))) 
 
   (forall (e e1 e2) 
           (if (or' e e1 e2) 
               (iff (holds e) 
                    (or (holds e1)(holds e2))))) 
 
   (forall (e e1) 
           (if (not' e e1) 
               (iff (holds e) 
                    (not (holds e1))))) 
 



Basic Task Components 
 
Similar rules can be defined for the basic task components, such as 
do:, achieve:, and so on. 
 
   (forall (e1 e2) 
           (if (do' e1 e2) 
               (iff (executed e1)(executed e2)))) 
 
For example, in the SPARK expression "[do: (paint $house red)]", the 
doing is executed if and only if the painting is executed. 
 
   (forall (e1 e2) 
           (if (achieve' e1 e2) 
               (iff (executed e1)(holds e2)))) 
 
That is, an achieve is executed if and only if its operand holds. 
 
   (forall (e1) 
           (if (noop' e1) 
               (executed e1))) 
 
A noop is always executed.  
 
The "fail:" task component requires a little more to be explicit than 
we have so far.  I will assume for now that when we encounter "fail'" 
in declarative form, it has an argument for the fail event e1, an 
argument e2 for a condition under which the failure occurs, and the 
procedure e in which it is embedded, without saying how we would get 
the last of these in the translation process (e.g., a global 
variable). 
 
   (forall (e1 e2 e) 
           (if (fail' e1 e2 e) 
               (iff (executed e1) 
                    (and (holds e2) 
                         (not (executed e)))))) 
 
That is, the fail is executed exactly when the condition e2 holds and 
the embedding procedure e is not executed. 
 
The operators "conclude:" and "retract:" presuppose a knowledge base. 
I will use the predicate "known'" to represent the presence of some 
fact p in the knowledge base.  Thus, "(known' e p)" says that e is the 
state of p being in the knowledge base.  I'll say nothing about the 
nature of p.  I will assume that if we conclude something that is 
already in the knowledge base, no change occurs, and similarly with 
retraction.  
 
   (forall (e1 p t1) 
           (if (conclude' e1 p) 
               (if (and (executed e1)(t:timeSpanOf t1 e1)) 
                   (exists (e2 t2) (and (known' e2 p) 
                                        (t:timeSpanOf t2 e2) 
                                        (or (t:intMeets t1 t2) 
                                            (t:intDuring t1 t2))))))) 



 
That is, if e1 is a concluding of p, then immediately after the 
concluding, p is known. 
 
The axiom for retracting is similar. 
 
   (forall (e1 p t1) 
           (if (retract' e1 p) 
               (if (and (executed e1)(t:timeSpanOf t1 e1) 
                        (t:ends t0 t1)) 
                   (forall (e2 t2) 
                           (if (and (known' e2 p) 
                                    (t:timeSpanOf t2 e2))  
                               (not (or (t:starts t0 t2) 
                                        (t:inside t0 t2)))))))) 
 
Here, the endpoint t0 of the execution of the retraction cannot start 
or be inside any interval during which p is known. 
 

Control Structures 
 
The control structures or compound task expressions can also be 
defined or constrained in terms of what counts as their being 
executed 
 
   (forall (e e1 e2 t1 t2) 
           (if (and (seq' e e1 e2)(t:timeSpanOf t1 e2) 
                    (t:timeSpanOf t2 e2)) 
               (iff (executed e) 
                    (and (executed e1)(executed e2) 
                         (t:intBefore t1 t2))))) 
 
It's not clear to me that "parallel:" means anything.  For example, 
suppose Chris gives a task to me and a task to Karen to execute in 
parallel.  Karen does her task right away.  I put mine off til 
tomorrow.  Have we done the tasks in parallel or not?  Does there have 
to be an overlap in the time span of the two executions?  A weak 
notion of "parallel" is given by this axiom: 
 
   (forall (e e1 e2) 
           (if (parallel' e e1 e2) 
               (iff (executed e) 
                    (and (executed e1)(executed e2))))) 
 
The stronger notion of "parallel" requires some overlap in the 
executions.  
 
   (forall (e e1 e2 t1 t2) 
           (if (and (parallel' e e1 e2)(t:timeSpanOf t1 e2) 
                    (t:timeSpanOf t2 e2)) 
               (iff (executed e) 
                    (and (executed e1)(executed e2) 
                         (exists (t)(and (t:inside t t1) 
                                         (t:inside t t2))))))) 
 



Conditionals are defined as follows: 
 
   (forall (e e1 e2 e3) 
           (if (if' e e1 e2 e3) 
               (iff (executed e) 
                    (or (and (holds e1)(executed e2)) 
                        (and (not (holds e1))(executed e3)))))) 
 
The expression "[wait:e1 e2]" means that the processor waits until e1 
holds and then executes e2.  It can be defined as follows: 
 
   (forall (e e1 e2 t1 t2) 
           (if (and (wait' e e1 e2)(t:timeSpanOf t1 e1) 
                    (t:timeSpanOf t2 e2)) 
               (iff (executed e) 
                    (and (executed e2)(intBefore t1 t2))))) 
 
 
The expression "[try: e1 e2 e3]" means that the processor tries to do 
e1.  If it succeeds, it goes on to do e2; otherwise, it does e3.  For 
example, e3 may be the task of fixing what went wrong in doing e1. 
This operator cannot be defined with what has been introduced so far, 
because it involves the partial execution of e1, and we have no way of 
talking about partial executions yet.  One approach would be to define 
the notion of "subevent".  (We will want it eventually, in any case.) 
Then we can say that if a subevent of e1 is executed but e1 itself is 
not, then this will count as failure and e3 will be executed.  Under 
this interpretation, the definition of trying is as follows: 
 
   (forall (e e1 e2 e3) 
           (if (try' e e1 e2 e3) 
               (iff (executed e) 
                    (or (and executed e1)(executed e2)) 
                        (exists (e0) 
                                (and (subevent e0 e1)(executed e0) 
                                     (not (executed e1)) 
                                     (executed e3)))))) 
 
The subevent relation can be characterized in terms of the basic and 
 
compound task expressions and a transitivity axiom. 
 
   (forall (e1 e2 e3) 
           (if (and (subevent e1 e2)(subevent e2 e3)) 
               (subevent e1 e3))) 
 
   (forall (e e1) 
           (if (body e1 e)(subevent e1 e))) 
 
   (forall (e1 e2) 
 
           (if (do' e1 e2)(subevent e2 e1))) 
 
   (forall (e e1 e2) 
           (if (seq' e e1 e2) 
               (and (subevent e1 e)(subevent e2 e)))) 
 



   (forall (e e1 e2) 
           (if (parallel' e e1 e2) 
               (and (subevent e1 e)(subevent e2 e)))) 
 
   (forall (e e1 e2) 
           (if (if' e e1 e2) 
               (and (subevent e1 e)(subevent e2 e)))) 
 
However, we may want to say that something is not a subevent unless it 
is actually executed.  There are similar concerns for the next two 
axioms. 
 
   (forall (e e1 e2) 
           (if (wait' e e1 e2)(subevent e2 e))) 
 
   (forall (e e1 e2) 
           (if (if' e e1 e2 e3) 
               (and (subevent e1 e)(subevent e2 e)(subevent e3 e)))) 
 

Iteration 
 
To characterize an iteration we need a specification of the 
eventuality type that is being repeated and the set or sequence whose 
members are being iterated over.  We need to be able to represent not 
only that on each iteration an instance of that eventuality type is 
occurring, but that that instance is obtained by "substituting" the 
next member of the set or sequence for the corresponding parameter in 
the eventuality type.  For example, suppose a set of researchers takes 
turns getting up to give a talk.  The eventuality type is "Someone 
gives a talk."  Some of the eventuality tokens that are instances of 
the type might be "Chris gives a talk," "Jerry gives a talk," and 
"Karen gives a talk." 
 
I will use the predication "(subst x e1 y e2)" to mean that parameter 
x plays the same role in eventuality type e1 that entity y plays in 
eventuality token e2.  For example, if "(talk' e1 x)" and "(talk' e2 
Chris)" both hold, then so does "(subst x e1 Chris e2)".  The 
predicate "subst" is defined in Hobbs (1995), ``Monotone Decreasing 
Quantifiers in a Scope-Free Logical Form'', found at 
http://www.isi.edu/~hobbs/monotone-decreasing.pdf, or at 
http://www.isi.edu/~hobbs/disinf-chap2.pdf, pp. 46-49. 
 
In fact, e1 and e2 need not be restricted to eventuality types and 
tokens, respectively.  Thus, if in addition "(talk' e3 Jerry)" holds, 
then so does "(subst Chris e2 Jerry e3)".  However, if e1 is an 
eventuality type and e2 an eventuality token and the "subst" relation 
holds between them, then the "subst" relation is a specialization of 
the "instanceOf" relation.  I won't write this as an axiom since I 
would first have to have a way of saying x is a parameter, and that 
would take us too far afield. 
 
The SPARK compound task expression "[forall: x e1 e2]" translates into 
"(forall' e x e1 e2)".  The semantics of this is given by the 
following axiom: 
 



   (forall (e x e1 e2) 
           (if (forall' e x e1 e2) 
               (iff (executed e) 
                    (forall (y e3) 
                            (if (and (subst x e1 y e3)(holds e3)) 
                                (exists (e4) 
                                        (and (subst x e2 y e4) 
                                             (executed e4)))))))) 
 
The SPARK compound task expression "[while: e1 e2 e3]" means that the 
processor repeats e2 as long as e1 is true and then does e3.  The 
condition e1 and the task e2 must be eventuality types, but we will 
assume that an eventuality type is executed when one of its instances 
is executed, and that an eventuality type holds when one of its 
instances holds.  Then the translated expression "(while' e e1 e2 e3)" 
can be defined recursively as follows: 
 
   (forall (e e1 e2 e3) 
           (if (while' e e1 e2 e3) 
               (iff (executed e) 
                    (or (and (not (holds e1))(executed e3)) 
                        (exists (e4 e5) 
                                (and (holds e1) 
                                     (seq' e4 e2 e5) 
                                     (while' e5 e1 e2 e3) 
                                     (executed e4))))))) 
 
The first disjunct says that e3 is executed if e1 does not hold.  The 
second disjunct says that if e1 does hold, then a sequence is 
executed, consisting of e2 followed by another while loop. 
 

References 
Hobbs, Jerry R., 2005. ``Toward a Useful Notion of Causality for 
Lexical Semantics'', Journal of Semantics, Vol. 22, pp. 181-209.  
(http://www.isi.edu/~hobbs/causality-jos.pdf) 
 
 
Hobbs, Jerry R., 2005.  ``An Ontology of Information Structure", 
Proceedings, 7th International Symposium on Logical Formalizations of 
Commonsense Reasoning, Corfu, Greece, pp. 99-106, May 2005. 
 
 
 


