IKRIS Scenarios Inter-Theory (ISIT)
Jerry Hobbs

with the IKRIS Scenarios Working Group

Contri butions from Danny Bobrow, Chris Deaton, M ke G uninger, Pat
Hayes, Arun Majundar, David Martin, Drew McDernott, Sheila Mllraith,
Karen Myers, David Mrley, John Sowa, Marco Valtorta, and Chris Wlty.

IKRIS Scenarios Fundamentals

Events

Most ontol ogi es dealing with processes or scenarios wll have

sonet hing corresponding to events. PSL uses the term
"activity_occurrence" for events. Cyc uses the term"Event". O her
possi bl e terms have drawbacks. "Action" connotes an event that has an
agent, so it is only a subclass of events. "Process" and "Procedure"
connote conpl ex events that have subevents, and we need a termthat
will cover primtive events as well. One can argue that "activity"
and "activity occurrence" have the same problem For these reasons,
we have chosen the term "Events".

Types and Tokens

We can refer to both event types and event tokens. PSL uses the terns
"activity" and "activity_occurrence" for these two. Cyc uses the
terns "Event Type" and "Event". Another possible pair of termis
"Event d ass" and "Eventlnstance", but this biases one toward
interpretation of types as classes, which may not be desirable (see
bel ow) .

It nay seemdesirable to nake the type-token distinction explicit in
the terns, and thus use "Event Type" and "Event Token". But as Pat
Hayes has pointed out, an event token may be a token of many types of
events. A specific event may be a token of a running event type, an
exerci sing event type, a w nning event type, and nunerous other types.
Essentially, "token" is a relation between specific events and event
types. An event token is sinply an event. Thus, we will use the Cyc
terns "Event Type" and "Event".

Events do not necessarily have to occur in the real world. They can
occur in possible worlds as well. So the type-token distinction
crosscuts the real -hypothetical distinction. |If an Event occurs in
the real world, this is something that can be explicitly stated, with
a predicate |ike "Rexists" (a |la Hobbs, 1985), "Real", or "Cccurs"

One coul d al so have a "occursln" predicate that takes a possible world
or sone other notion of context as an argunent. W can revisit this
i ssue later.

The principal relation between Event Types and Events is that one of
the latter can be an instance of one of the former. The term nol ogy
for this in PSL is "occurrence of"; in Cyc, "isa". Another
possibility is "instanceO'". The problemwth "isa" is that its use
has a |long history of confusion between inplication/subset ("el ephant

i sa mammal ") and predication/ nmenbership ("Cyde isa elephant"). So we
will use "instanceO".

The articulation or bridging axionms for PSL, Cyc, and the inter-theory
are as follows. (Coloned predicates are in the theory indicated by
the label. Uncol oned predicates are in the inter-theory.)

(forall (x)
(if (BventType x)
(exists (y)
(and (psl:activity y)
(forall (e)

(iff (psl:occurrence_of e y)
(instanceO e x)))))))

(forall (y)
(if (psl:activity y)
(exists (x)
(and (Event Type x)
(forall (e)
(iff (psl:occurrence_of e y)
(instanced e x)))))))

(forall (x)
(if (EventType Xx)
(exists (y)
(and (cyc:genls y cyc: Event)
(forall (e)
(iff (cyc:isa e y)
(instanceO e x)))))))

(forall (y)
(if (cyc:genls y cyc: Event)
(exists (x)
(and (Event Type Xx)
(forall (e)
(iff (cyc:isa e y)
(instanceO e x)))))))

These axions are witten in terns of the inter-theory's "x" and the
resource theory's "y" to protect each resource theory from probl ematic
properties it might inherit from another resource theory. For
exanpl e, in Cyc Event Types are cl asses; classes/sets are full-fledged
individuals in Cyc. In PSL activities are full-fledged individuals,
but they are not classes. The inter-theory is neutral on the issue.
Stronger commitnents can be triggered, as follows.

(forall (x)
(if (TypesAred asses)
(iff (cyc:genls x cyc: Event)
(Event Type x))))

(forall (x)
(if (not (TypesAred asses))
(iff (psl:activity x)
(Event Type x))))

The bridging axi ons for event tokens are as follows:

(forall (x)
(iff (cyc:isa x cyc: Event)
(Event x)))

(forall (x)
(iff (psl:activity_occurrence x)
(Event x)))

States and Events

An event is normally something that involves a change of state,

al t hough one might want to argue that waiting is an event and does not
i nvol ve a change of state (except on the clock). By contrast, a state
is sone property or relation or collection of properties and rel ations
that hold generally over an interval of tine; that is, the rel evant
properties and rel ati ons do not change during the course of a state's
holding. A state is honbgeneous, in the sense that if a state holds
over an interval of tine, it holds (or a state of the sanme type hol ds)
over any subinterval. To describe a state is to provide a parti al
description of the world over a period of tinme.

There is another notion of "state" often used in conputer science,
e.g., in denotational semantics. It refers to the total state of the
rel evant world at a given instant; we can call it a "wstate". At the
next instant, we are in a different wstate. This kind of state does
not persist over tinme. Neither PSL nor Cyc has a notion of wstate,
and we will not need it here. This notion of state will consequently
be ignored in the IKRIS Scenarios effort.

The other notion of state is the one in ordinary |language. It is a
property or relation holding, perhaps for sone interval of tinme, or
perhaps only for an instant. It can persist over tine and is only

one aspect of the total world state at any given nonent. An exanple
woul d be the road being slippery. It is areification of a
proposition being true for a while. Oher exanples are "George Bush's
being President", "Jerry's believing that Bush is a bad president",
"Block A's being on top of Block B", and "John's being retired". It
is generally a property of an entity or a relation between entities or
a conbi nati on of such properties and relations of entities. W could

thus call it an "e-state", in contrast to "wstate". But since we
will not need the notion of "wstate", we can just dispense with the
"e-" and call it a "State". Corresponding to "EventType" and "Event",

we will have the terns "StateType" and "State". As with al

pol ysenous words, it is inmportant to keep in mnd the sense in which
the term"State"” is used. It does not correspond to the use of the
word in conmputer science (or in political geography).

The reason one would like to reify states is that they can thensel ves
have various properties and relations, and treating them as

i ndividuals in the domain of discourse |eads to a sinple
representation for this. For exanple, states can be causes and
effects:

The road's being slippery caused the accident.
The freezing rain caused the road to be slippery.

They can be located in tinme and space and can be qualified in various
ways:

The road was extrenely slippery |ast night between New Haven and
Hartford.

They can be the objects of perception and cognition

John saw that the road was slippery.
John sensed the road's slipperiness i mediately.

In | anguage, they can be nomi nalized and referred to prononinally:

The road's slipperiness worried John.
The road was slippery, and John knew it.

Representating these sentences is nore straightforward in a notation
that reifies states.

There have been prom nent approaches in Al that have reified events
but have not reified states. These approaches have generally

devel oped perfectly adequate other neans for doing the work done by
reified states. In this effort, we do not intend to try to convince
anyone to adopt one approach or the other. Rather, our goal is to
bri dge between the two cl asses of approaches.

A State is the sane as Cyc's StaticSituation. So the bridging
axi ons are as follows:

(forall (x)
(iff (cyc:isa x cyc:StaticSituation)
(State x)))

(forall (x)
(iff (cyc:genls x cyc: StaticSituation)
(StateType x)))

There is no entity in PSL that corresponds precisely to States.
Suppose we performa sequence of lifting a block and then lowering it.
In between those two activities or events, the block is up. There is
no individual in the PSL ontol ogy that corresponds to that condition
hol di ng at that nonment. However, the work to be done by States in the
inter-theory and by StaticSituations in Cyc can be done in a sonewhat

different way by fluents in PSL. A fluent is a reified eterna
propostion that can be the first argunment of the predicates

"Hol ds(f,e)" and "Prior(f,e)". "Prior(f,e)" means that the fluent f
is true before the beginning of the activity occurrence e.

"Hol ds(f,e)" means that the fluent f is true after the end of the
activity occurrence e. |In the above situation, the fluent

"(up BlockA)" is true after the lifting and not after the | owering.

A State and a fluent are different in that a State is generally
tenmporal | y bounded, whereas a fluent is eternal. Thus, there was a
state of George Washington's being alive that occurred during the
interval from1732 to 1799. That State does not exist today, in the
same way that the Event of George Washington's crossing the Del aware
does not exist today; it existed in Decenber 1776. By contrast, the
fluent "(alive GN" does exist today; it is eternal; it just happens
not to hold today.

There can be many States corresponding to a single fluent. The fluent
"(SunShi ni ngOn LA)" hol ds on many days and never holds at night (in
LA). Each of these holdings can be viewed as a separate State, e.g.,
the Sun's shining on LA on Septenber 7, 2005, is a State, and the
Sun's shining on LA on Septenber 8, 2005, is a different State. (W
can al so have the State that is the aggregate of the two.)

But the notions of "State" and "fluent" are clearly closely rel ated.

To bridge between these two perspectives, we will say that every State
has a corresponding fluent, that fluent that describes the State, or
hol ds in circunmstances when the State exists. So the fluent we m ght
represent as "full (GLASS1)" is the fluent corresponding to the State
of GLASS1 being full between 10 and 11 amtoday. (Hobbs (1985) uses
the notation, "full' (e, GLASSL, T)" to nean that e is the state of
GLASS1 being full during time interval T.) There is one fluent for
many States. One can think of the State as having a tine argunment and
the fluent as representing the same proposition w thout the tine
argunent, although this is not strictly necessarily true.

We will use the inter-theory predicate "fluentFor" to

express the relation between an State and its correspondi ng
fluent. The neaning of "fluentFor" is constrained by at |east the
fol |l owi ng axi ons:

(forall (e f)
(if (fluentFor f e)
(and (psl:fluent f) (State e))))

(forall (e)
(if (State e)
(exists (f)(fluentFor f €))))

That is, "fluentFor" is a relation between a PSL fluent and an
inter-theory State, and there is a fluent corresponding to every
State.

Before we further constrain "fluentFor", it will be useful to have a
way of saying that a fluent holds at or for a particular tinme instant

or interval. In PSL, "holds" is a relation between a fluent and an
activity occurrence. W will assunme, quite reasonably, that fluents
only change as the result of activity occurrences, or Events. Thus,
for a fluent to hold for a time is for sone Event to make the fl uent
hold before that tine where no other Event between the first Event and
the tinme makes the fluent not hol d.

First, it will be convenient to augnment the tine ontology with one
predicate. A prefix of "t:" before a predicate means that it cones
fromthe OAL-Ti me ontol ogy.

(forall (t1t2)
(iff (t:before/=1t1 t2)
(or (t:before t1t2) (=t11t2))))

The predication "holdsFor(f,t)" says that the fluent holds for the
instant or interval t. t nay or may not be the entire tine during
which it holds. The definition of "holdsFor" is conplicated sonewhat
by the necessity of taking infinite intervals into account, where
infinite intervals are taken to have no begi nning and/ or no end.

(forall (f t t1)
(if (t:begins t1 t)
(i ff (holdsFor f t)
(exists (0l)
(and (psl:activity occurrence ol)
(psl:holds f 01)
(t:before/= (psl:end_of o0l) t1)
(not (exists (02)
(and (psl:activity_occurrence 02)
(psl:falsifies 02 f)
(t:before/= (psl:end_of ol)
(psl:end_of 02))
(forall (t2)
(if (t:ends t2 t)
(t:before (psl:end _of 02) t2)
))))))))))

This says that if t has a beginning t1, then f holds for t if and only
if there is an Event or activity occurrence ol begi nning before or at
the sane time as t which nmakes the fluent f true, and there is no
event or activity occurrence o2 after ol and before the end of t that
makes f false. The latter condition is enmbedded within an inplication
to accommpdate positively infinite intervals.

The foll owi ng axi om handl es the case of negatively infinite intervals.

(forall (f t)
(if (not (exists (t1l) (t:begins tl1 t)))
(iff (holdsFor f t)
(forall (o)
(if (and (psl:activity occurrence o)
(forall (t2)
(if (t:ends t2 t)
(t:before/= (psl:end_of 0) t2))))

(psl:holds f 0))))))

That is, if t has no beginning, then f holds for t if and only if f
hol ds after any event that ends before the end of t, if t has an end.

Now we can state two nore axi onms constraining the interpretation of
the predicate "fluentFor". |If a State e obtains during a tinme t, then
the fluent f for e holds for t.

(forall (e f t)
(if (and (State e) (t:duringt e) (fluentFor f e))
(holdsFor f t)))

If a fluent f holds for atinmne t, then there is a state e whose fl uent
is f and which holds during time t.

(forall (f t)
(if (and (psl:fluent f) (holdsFor f t))
(exists (e)
(and (fluentFor f e) (t:during et)))))

We shoul d decide how states are to be individuated. For exanple, if
there is a state of John's sleeping from8pmto mdnight, is there
anot her state of John's sleeping from8pmto 9pn? If states are
interpreted as Pat Hayes's histories, that is as a chunk of
space-time, then the answer is yes. |In that case, we can strengthen
t he above axi om by saying that there is a state e whose fluent is f
and whose tine span is t.

(forall (f t)
(if (and (psl:fluent f) (holdsFor f t))
(exists (e)
(and (fluentFor f e) (t:timeSpanFor t €)))))

(Recall that "(t:during e t)" only says that the state e obtains al
through time t, whereas "(t:tinmeSpanFor t e)" says that t is the
entire time during which e obtains.)

We can view a fluent as a StateType:
(forall (f) (if (psl:fluent f) (StateType f)))

But the converse does not hold. |If time is continuous and thus cannot
be nodel |l ed as a sequence PSL activity occurrences, then there can be
no tenporal properties as parts of fluents. So there is no fluent
correspondi ng the the StateType of Pat's wearing a hat on a Wednesday.
(This is a StateType that is instantiated whenever Pat wears a hat on
a Wednesday.) Moreover, one can inmagine an ontology that is richer in
states than in events, where there nay be states that are not viewed
as brought about as events. Since all fluents either hold initially
or are brought about by activity occurrences, we could not have a
fluent corresponding to such StateTypes in an ontology like this.

Eventualities

It will be useful to have a termthat covers both States and Events.
As illustrated above, States and Events occur in English sentences in

nostly the sane contexts. As Chris Deaton has pointed out, for
neither States nor Events can you go directly froman English sentence
to a uni que instance; you always go via types; both share the property
of bei ng nonrepeatable. Both have role relationships with the
entities participating in them Both can be located in time, and at

| east in the case of physical States and Events, both can be | ocated

i n space.

There are so far two contenders for a cover term Hobbs (1985 and
subsequently) uses the term"eventuality". It was first used as a
cover termfor states and events by the |inguist Emmon Bach. Cyc uses
the term"Situation". Neither word is ideal. The Anerican Heritage
Dictionary gives the followi ng definitions for the senses closest to

t he desired concept:

"eventuality": Something that may occur; contingency;
possibility.
"situation": A combination of circunstances at a given nonment; a

state of affairs.

"Eventuality" can be used for both states and events, as seen in the
fol |l owi ng exanpl es:

The road night be slippery [state], and in that eventuality I
won't know what to do.

The car might skid [event], and in that eventuality I won't know
what to do.

It covers both real and hypothetical events and conditions, which is
desirable in the termwe are |ooking for. However, it connotes
something in the future, which is not part of the meaning we want.

? The road was slippery, and in that eventuality | didn't know what
to do.

"Situation" does not have the connotation of something in the future,
but it does connote "static", and is thus not a good cover term
for events.

The road was slippery [state], and that situation surprised ne.
? The car suddenly skidded [event], and that situation surprised me.

Moreover, "situation" is a very |loaded termin Al and the phil osophy
of language, neaning nmany different things to different people.
"Eventuality" carries |less of a |oad.

So in this exposition, we will use the term"Eventuality", but we are
open to changing it to sonething better

As nentioned above, an eventuality can be located in tine. W night
al so want to say it can be located in space, and this is certainly
true for physical States and Events. But for nore abstract States, it
is harder to pin down a location in space. 1s the State of America's
bei ng a denbcracy coterm nous with the physical |ocation of Anerica?

It seens strange to say
In Europe, Anmerica is not a denocracy.

except netonymically. 1s John's being retired coterninous with John's
body, so that it is not true in nmy office right now? Were we are
dealing with physical events and can |locate themin space, one

possi ble interpretation of Eventualities is as Pat Hayes's histories,
as seen above, and, also as seen above, this interpretation can often
be useful in deciding thorny issues.

The predicates "EventualityType" and "Eventuality" are defined as
fol |l ows:

(forall (x)
(iff (EventualityType Xx)
(or (EventType x) (StateType x))))

(forall (x)
(iff (Eventuality x) (or (Event x) (State x))))

The bridging axions for Cyc are as follows, although these can be
derived fromthe above two axi onms and previous bridgi ng axi ons:

(forall (x)
(iff (cyc:genls x cyc:SituationType)
(Eventual ityType Xx)))

(forall (e)
(iff (cyc:isa e cyc: SituationType)
(Eventuality e)))

To bridge between Eventualities in the inter-theory and activities and
fluents in PSL would have to be indirect, unpacking Eventualities into
Events and/or States and using the bridging axi ons for those.

We should keep in mind that the boundary between States and Events
(and objects) is not always clear. |Is rain a state, an event, or an
object? W think of fog as a state and a cloud as an object. English
has a way of turning one into the other; "John ran" seens like it
descri bes an event; "John was running" seens like it describes a
state.

Preconditions

Overview

We begin with a note on PSL fluents and activities as eventuality
types. W then posit a predicate "precondition" that will apply to
eventuality types. W define the predicate as it is applied to
fluents and activities in terns of the current PSL | anguage. This
consititutes the interface between the inter-theory and PSL

The inter-theory predicate "precondition" applies to types, whereas
the Cyc precondition predicates apply to tokens. W introduce a
predi cate "preconditi onToken", relate it to "precondition", and
present the axionms that articulate it with the Cyc predicates.

Finally, we present the restrictions on "precondition” that align it
wi th the FLOAS/ SWEO precondi tion predicate.

Eventuality Types, Fluents, and Activities

In the wite-up on Fundanentals, we said that a PSL fluent can be
viewed as a StateType.

(forall (f) (if (psl:fluent f) (StateType f)))

However, we cannot say that that every StateType is a PSL fluent.
There we said, "If time is continuous and thus cannot be nodelled as a
sequence of PSL activity occurrences, then there can be no tenporal
properties as parts of fluents. So there is no fluent corresponding
the the StateType of Pat's wearing a hat on a Wednesday. (This is a
StateType that is instantiated whenever Pat wears a hat on a
Wednesday.) Mdreover, one can inagine an ontology that is richer in
states than in events, where there nay be states that are not viewed
as brought about by events. Since all fluents either hold initially
or are brought about by activity occurrences, we could not have a
fluent corresponding to such StateTypes in an ontology like this."

Esoteric Exanple: Let's take as our nodel one in which eventualities
(states and events) are Pat Hayes's chunks of space-tinme and in which
eventual ity types are | anbda expressions that describe those chunks. A
token is an instance of the type if the | anbda expression correctly
descri bes the chunk. Fluents are a subset of the |anbda expressions,
the ones that include no tenmporal properties.

Warning: This is not THE nodel for eventuality types and tokens,
only a possible nodel that may sonetimes clarify intuitions.

The sane issues arise when trying to relate inter-theory (and Cyc)
event types and PSL activities. They are not the same, because we can
tal k about event types that have tenporal properties, such as Pat's

wi fe cooki ng himdinner on a Sunday, which is instantiated every time
Pat's wife cooks himdinner and it happens to be Sunday that day.

Just as we stipulated that PSL fluents are state types, we can
stipulate that PSL activities are event types.

(forall (a) (if (psl:activity a)(EventType a)))

Ontology Mismatches

There are three m smatches between the way PSL and Cyc handl e

precondi tions.

1. PSL has no explicit treatment of preconditions, but it does
have the notion of "legal" occurrences of activities.

2. The nost straightforward way of defining "precondition" in PSL
makes it a relation between a fluent and an activity, whereas
Cyc allows any eventuality (Situation) to be a precondition to
any other eventuality (Situation).

3. Cyc precondition predicates take tokens rather than types as
their argunents.

W will introduce an inter-theory predicate "precondition” that wll
take eventuality types as its argunents. We will define it in terns
of PSL concepts when its argunents are restricted to fluents and
activities. W will then relate it to the Cyc precondition

pr edi cat es.

Preconditions in PSL

The predicate "precondition" takes eventuality types as its argunents.

(forall (el e2)
(if (precondition el e2)
(and (EventualityType el)(EventualityType e2))))

We can define the predicate "precondition" for fluents and
activities in terns of PSL predicates. But since the class of event
types is larger than the class of activities and since the class of
state types is larger than the class of fluents, the axionms will not
define "precondition" in general. That can't be done in PSL

For exanple, since fluents and activities cannot have tenpora
gqualifiers, we can't state in PSL that Pat's wearing a hat on
Wednesday is a precondition for Pat's wife's fixing himdinner on
Sunday. W can state in PSL that Pat's wearing a hat is a
precondition for Pat's wife's fixing himdinner, but that is not the
sanme, and neither inplies the other, since in PSL the precondition has
to be true imredi ately before the event.

Qur approach will thus be to constrain the interpretation_ of the
inter-theory predicate "precondition" by these axions relating it to
PSL, even though we can't define it. It will acquire further
constraints as we relate it to other existing theories and franeworks.

PSL does not have an explicit predicate expressing a precondition
relati on between fluents and activity occurrences. But the sanme work

is done in PSL by the predicate "legal". An activity occurrence is
legal if it is possible for it to happen in a given state of the
world. That is, it is legal if all its preconditions obtain. W can

turn this around and say that if a fluent holds prior to al
occurrences of sone activity and there are no occurrences of that
activity when the fluent doesn't hold prior to it, then the fluent is

a precondition for that activity. The reason for our choice of
vari abl e nanes will energe bel ow.

(forall (f1 a2)
(if (and (psl:fluent f1)(psl:activity a2))
(iff (precondition f1 a2)
(forall (02)
(if (and (psl:occurrence_of 02 a2)
(psl:legal 02))

(psl:prior f1 02))))))

This takes care of the case where the first argunent is a fluent and
the second an activity. Now we need to handl e the other possibilities.
A good way to visualize the cases is by imagining an occurrence of an
activity al resulting in a fluent f1, which is a precondition for an
activity a2, which results in a fluent f2. The four cases we need to
consider are then illustrated as foll ows:

1. (precondition f1 a2): fl1--> a2

2. (precondition al a2): al -->f1 --> a2

3. (precondition f1 f2): fl-->a2 -->12
4. (precondition al f2): al -->f1

In Case 2 the activity al is the only possible cause of the fluent f1,
which is a precondition for a2. The definition in this case is thus
as foll ows.

(forall (al a2)

(if (and (psl:activity al)(psl:activity a2))

(iff (precondition al a2)

(exists (f1)
(and (precondition f1 a2)

(forall (ol)

(if (psl:achieved f1 o0l)
(psl:occurrence_of ol al))))))))

Note that "(precondition f1 a2)" is defined because it was covered
in Case 1.

In Case 3 the fluent f1 is a precondition for every activity
occurrence that results in fluent f2.

(forall (f1 f2)
(if (and (psl:fluent f1)(psl:fluent f2))
(iff (precondition f1 f2)
(forall (a2 02)
(if (and (psl:occurrence_of 02 a2)

(psl:achieved f2 02))
(precondition f1 a2))))))

In Case 4 the only way to make fluent f1 hold is by an occurrence of
activity al.

(forall (a1l f1)
(if (and (psl:activity al)(psl:fluent f1))
(iff (precondition al f1)
(forall (0)
(if (psl:achieved f1 0)
(psl:occurrence_of o0 al))))))

The extension of "precondition" to Cases 2-4 is not necessitated by
the nature of PSL, but by the treatnent of preconditions in Cyc.

Articulation with Cyc Predicates

The first problemwi th linking the predicate "precondition" with Cyc
predicates is that the inter-theory "precondition" takes eventuality
types as arguments, whereas the Cyc precondition predicates take
eventuality (Situation) tokens. So we first introduce a predicate
"precondi ti onToken" that applies to eventuality tokens in an obvious
and hopefully correct way. The variable c1 and c2 will be used for
types, el and e2 for tokens.

If there is a precondition relation between eventuality types, there
is a correspondi ng preconditionToken rel ati on between eventuality
t okens.

(forall (cl c2)
(if (precondition cl c2)
(exists (el e2)
(and (instanceOf el cl)(instancetf e2 c2)
(precondi ti onToken el €2)))))

We can't meke this axioman if-and-only-if rule, because the
"instanceOF" relations always have to be in the consequent. But we
can say that a precondition relation between tokens inplies a
precondition relation between _sonme_ pair of types.

(forall (el e2)
(if (preconditionToken el e2)
(exists (cl c2)
(and (instanceO el cl)(instancef e2 c2)
(precondition cl c2)))))

The constraints on the argunents of "preconditionToken" are as
fol | ows:

(forall (el e2) (if (preconditionToken el e2)
(and (Eventuality el)(Eventuality e2))))

We can then relate the Cyc precondition predicates to the inter-theory
predi cate "preconditionToken".

The Cyc predicate "preconditionFor-Events"” is defined in terms of the
inter-theory as follows. As before, Cyc predicates are prefixed with
"cyc:"; inter-theory predicates have no prefixes.

(forall (?COND ?EVENT)
(iff (cyc:preconditionFor-Events ?COND ?EVENT)
(and (Event ?COND) (Event ?EVENT)
(precondi ti onToken ?COND ?EVENT))))

Now t hat we have made this |link, we can use Cyc axions to tell us, for
exanpl e, that EVENT is not a precondition for COND and that EVENT
starts after the begi nning of COND. However, see the note bel ow on
one of the Cyc axiomns.

Cyc has a predicate "situationlsSuchThat" which relates an
eventuality/situation to its correspondi ng proposition. For exanple,
the event of John's running would be |linked to the proposition
"run(John)", and the state of John's sitting would be linked to the
proposition "sit(John)". In a sense, the predicate does the sane kind
of linking work for us between eventualities/situations and
propositions that "fluentFor" does between states and fluents. Rather
than invent an inter-theory predicate to do the sane thing, we wll
simply use the Cyc predicate

The Cyc predicate "preconditionFor-SitProp" is a relation between an
eventuality/situation and a proposition. It says that the
eventuality's occurrence is a precondition for the proposition's being
true. W coerce the proposition into the correspondi ng situation.

(forall (?PROP ?SIT2)
(iff (Cyc:preconditionFor-SitProp ?SIT1 ?PROP)
(exists (?SIT2)
(and (Cyc:situationlsSuchThat ?SI T2 ?PROP)
(preconditionToken ?SIT1 ?SIT2)))))

The Cyc predicate "preconditionFor-PropSit" is a relation between a
proposition and an eventuality/situation. It says that proposition's
being true is a precondition for the eventuality.

(forall (?PROP ?SIT2)
(iff (Cyc:preconditionFor-PropSit ?PROP ?SI T2)
(exists (?SIT1)
(and (Cyc:situationlsSuchThat ?SIT1 ?PROP)
(preconditionToken ?SIT1 ?SIT2)))))

Not e on the Subevent Axiomfor "preconditionFor-Events": The axi om

(if (and (Cyc:preconditionFor-Events ?COND ?EVENT)
(Cyc: subEvents ?EVENT ?SUB))
(Cyc: precondi ti onFor-Events ?COND ?SUB))

is probably not correct, given the nost likely interpretations of the
predi cates. Consider a conposite event StandUp-SitDown, which is
conprised of a StandUp followed by a SitDown. Both the StandUp and
the SitDown woul d be subevents of the conposite event. A precondition
for the conposite event would be that one has to be sitting down. But
this is not a precondition for the subevent SitDown; quite the
contrary.

Articulation with FLOWS/SWSO

In FLOANS/ SWEO, preconditions are characterized as fol |l ows:

"A precondition of an atomic process is a formula that states that
the atom c process cannot be executed until this formulae [sic]
hol ds. "

The specification of preconditions is restricted to atom c processes
because of the difficulty in maintaining consistency anong the
preconditions of a conposite process and those of the atom c processes
of which it is conprised (cf. the Cyc subevent axionj.

First we need to spell out in the inter-theory what an atonic process
is. It is at least a process or event which does not have subevents.
A consequence of this, that should foll ow once we have devel oped a
treatment of failures and interruptions, is that an atom c process
cannot fail or be interrupted. W enploy the predicate "subevent" that
will be explicated in subsequent |KRI'S Scenarios notes; "(subevent el
e2)" nmeans that el is a subevent of e2.

(forall (e)
(iff (atomc e)
(and (Event e)
(forall (el) (not (subevent el e))))))

One nay al so want to say that atom c events are instantaneous. This
seens to be controversial, so we will place a trigger condition on
it.

(forall (e)
(if (and (Atoniclnstantaneous)(atonic e))
(exists (t)
(and (t:instant t)(t:timeSpantf t €)))))

The FLOAS precondition predicate is between a formula, i.e., a
proposition, and a process, i.e., an event. To coerce fromthe
proposition to the corresponding state, we will use the Cyc predicate
"situationlsSuchThat".

(forall (e p)
(iff (flows:precond e p)
(exists (el cl)
(and (atomc e)
(cyc:situationlsSuchThat el p)
(i nstanceOF el cl)
(precondition cl €e)))))

That is, to do the nappi ng between the FLOAS predicate "precondition"
and the inter-theory predicate "precondition", we have to restrict the
process argument to atom c processes and coerce the FLOAS proposition
into an inter-theory eventuality type. Both the type cl and the token
el are introduced because the Cyc predicate situationlsSuchThat maps
propositions into eventuality tokens_ and it seens safer to relate

t he FLOWNS/ SW50 precondition predicate to the basic inter-theory

predi cate "precondition".

Effects

Overview

In this section we introduce the predicate "effect” which is a relation
between two eventuality types. |In a manner anal ogous to our treatnent
of preconditions, we link it with PSL by extending it from an

"achi eved" relation between an activity occurrence and a fluent to a

rel ati on between eventuality types in general. Cyc has predicates
corresponding to both type-type effect or causality and token-token
causality. They are weakly related in Cyc. 1In this note we

strengthen that relation somewhat, in the interests of constraining
the interpretations of our predicates as much as possible. Finally,
we present the restrictions on the FLOANS/ SW50 "effect" predicate and
define it in terms of PSL predicates.

W will use the predicate "effect”, which takes eventuality types as
its argunents.

(forall (el e2)
(if (effect e2 el)
(and (EventualityType el)(EventualityType e2))))

The expression "(effect e2 el)" says that eventualities of type el
have effects of type e2, i.e., that an e2-type state or event is an
effect of an el-type state or event.

Note that the order of argunments follow the order in the English
sentence "e2 is an effect of el" rather than in the causal/tenpora
order "el then e2".

Effects in PSL

Recal | that the class of state types properly includes the class of
fluents. So when the "effect” predicate is used in PSL for state
types, it will be restricted to fluents.

In PSL, the predicate "achi eved" between a fluent and an activity
occurrence neans that the fluent did not hold before the occurrence
and did hold after it. This is the key property of effects.

(forall (f a)
(if (and (psl:fluent f)(psl:activity a))
(iff (effect f a)
(forall (o)
(if (psl:occurrence_of o a)
(psl:achieved f 0))))))

That is, a fluent is an effect of an activity if and only if any
occurrence of the activity achieves the fluent. An exanple of this is
when an activity of a coffee cup falling to the floor has the effect
that the coffee cup is on the fl oor

This takes care of the case where the first argunent is a fluent and
the second an activity. Now we need to handl e the other
possibilities.

We often tal k about activities or events being the effect of a fluent.
For exanple, an effect of the slipperiness of the floor is John's
falling. For an activity to be the effect of a fluent, it nust be the
i nevitable outcome of that fluent. That is, activity a is an effect
of fluent f provided whenever f holds, the only legal activity
occurrences are those that have a as a subactivity. (This allows

ot her things to happen concurrently.)

(forall (a f)
(if (and (psl:activity a)(psl:fluent f))
(iff (effect a f)
(forall (o al)
(if (and (psl:prior f o)(psl:legal o)
(psl:occurrence_of o al))
(psl:subactivity a al)

That is, the only things that can happen after f are occurrences of
activities that include a.

An activity can be an effect of an activity. M swi nging ny arm can
have the effect of my coffee cup falling to the floor. This can be
captured by hypothesizing an internediate fluent that causes the
second activity.

(forall (al a2)
(if (and (psl:activity al)(psl:activity a2))
(iff (effect a2 al)
(exists (f)
(and (psl:fluent f)(effect f al)
(effect a2 f))))))

That is, fluent f is an effect of activity al and activity a2 is an
effect of f.

Finally, a fluent can have a fluent as an effect. The slipperiness of
the ice can have John's |leg being broken as an effect. This generally
hol ds because there is an intervening activity.

(forall (f1l f2)
(if (and (psl:fluent f1)(psl:fluent f2))
(iff (effect f2 f1)
(exists (a)
(and (psl:activity a)(effect a f1)
(effect f2 a))))))

Activity a is an effect of f1 and f2 is an effect of a.

Articulation with Cyc

Cyc has a predicate that directly corresponds to "effect" --
"causesSit TypeSit Type". So we can interdefine the two predicates:

(forall (el e2)
(iff (effect e2 el)
(cyc: causes-Sit TypeSit Type el e2)))

Cyc also has a predicate that applies to eventuality tokens --
"causes-SitSit". It is not _defined_ (iff) in terns of

"causesSit TypeSit Type", but its meaning is _constrained_ (inplies) by
the Cyc axi om

(forAl'l ?X
(forAl'l TYPELl
(forAl'l TYPE2
(inplies (and (cyc: causes-SitTypeSit Type ?TYPEL ?TYPE2)
(cyc:isa ?X ?TYPEL))
(therekxi sts ?Y
(and (cyc:isa ?Y ?TYPE2)
(cyc:causes-SitSit ?2X ?Y)))))))

O interns of the inter-theory predicate "effect” we have the axi om

(forall (cl c2 el)
(if (and (effect c2 cl)(instanceO el cl))
(exists (e2)
(and (instanced e2 c2)
(cyc:causes-SitSit el e€2)))))

As with preconditions, we can't state an if-and-only-if relation

bet ween "effect"/"causesSit TypeSit Type" and "causes-SitSit". But we
we would like to say that for any case of causality between
particulars, there is a correspondi ng causal regularity between types
that it instantiates.

However, we cannot state this in the way that m ght occur to us
initially, saying that corresponding to a token-token causal relation,
there is a type-type causal relation between types of those tokens.

For exanple, we may say that soneone's running with scissors had the
effect that his face was cut. But it is not the case that every token
of a running-wth-scissors event type causes a token of a face-cutting
event type

We can get a clearer picture of what we want by examining it in ternms
of the framework in Hobbs (2005). Briefly, there is a distinction

bet ween t he nonotoni ¢ notion of a causal conplex, and the nonnonotonic
notion of "cause". The causal conpl ex consists of everything that
nmust hol d or happen in order for the effect to happen, and the effect
al ways occurs if the whole causal conplex occurs. (The causal conpl ex
al so contains only eventualities relevant to the effect, in a way that
can be defined.) CQut of all the states and events in the causa

conpl ex, we often pick one or several that count as "causes", for a
variety of reasons, e.g., they don't normally occur, or they require
sone action on our part to nake them occur. The trouble with causa

conpl exes is that we al nbost never know them conpletely. So for
conmonsense reasoning we nake do with nere causes. In Al, the
preconditions plus the body of a planning operator constitute an
attenpt to capture the notion of a causal conplex, and the body woul d
normal ly correspond to the cause.

When pl anni ng what actions to take in a given situation, we make use
of causal relations between types of causal conpl exes and types of

effects. We want to instantiate the causal conplex in order to get an
i nstance of the effect. But npbst of our causal know edge is not about
causal conpl exes but about "causes”. So we instantiate the event type
that is the "cause" and expect to get an instance of the effect. But
sometines things nmisfire because the rest of the causal conplex is not
in place.

When seeking to explain states or events that have actually occurred,
we could in principle discover the entire causal complex that had the
state or event as its effect. If we did, then we woul d have a causa
conpl ex-effect relation anbng types that was instantiated in tokens
that actually occurred. But again, we normally won't be able to
identify the entire causal conplex, so we just identify the "cause".
And here there won't necessarily be a type relation between the cause
and effect.

In the scissors exanple, the causal conplex contains not just the
running with scissors event but also the state of the scissors being
poi nted toward the person's face just before contact. W can see the
i ncident as a token of a causal relation between types, but one of
those types is the whol e causal conplex, not just the state or event
we picked out as the "cause".

Thus, the proper inplication fromtoken causality to type causality is

(forall (el e2)
(if (cyc:causes-SitSit el e2)
(exists (cl c2 s)
(and (instanced el cl)(instancetf e2 c2)
(menmber cl1 s)(effect c2 s)))))

That is, the type cl of the "cause" el is a nenber of a causal conpl ex
type s that has the type c2 as its effect, where the effect token is
an instance of c2. This would accombdate the scissors exanple, but
still would not allow causation strictly between particulars, with no
support from a causal regularity.

Articulation with FLOWS/SWSO

In FLONS/ SW50, effects, |ike preconditions, only apply to atomc
processes. W defined "atomic" there. Effects can be conditional.
The condition is a fluent that holds before the atom c process is
executed and the effect occurs only if the condition holds. For
exanpl e, the effect nay be that your credit card bal ance is debited,
and the condition is that your credit card has not expired. The
FLONS/ SW50 predicate "effect" can be defined naturally in terns of PSL

pr edi cat es.

(forall (a f1 f2)
(if (and (atomic a)(psl:fluent f1)(psl:fluent f2))
(iff (flows:effect a f1 f2)
(forall (0)
(if (and (psl:occurrence_of o a)
(psl:prior f1 0))
(psl:achieves o0 f2))))))

Inputs and Outputs as Preconditions and Effects

The purpose of this section is to reduce the | OPE problemto the PE
probl em

If we can define inputs and outputs in terns of preconditions and
effects, then we can work on interoperability for only the latter

concepts. In this note, until the final paragraph we are only talking
about informational inputs and outputs, not consunabl e physica
resources, e.g., in a manufacturing process.

In the wite-up on preconditions, we introduced a "precondition”
predi cate that takes eventuality types as its argunents.

(precondition el e2)
Suppose we al so have a simlar "effect" predicate:
(effect el e2)

There is a distinction between an action and the agent of the action.
Agents persist through tine, whereas actions are PSL's activity
occurences or Cyc's events (event tokens). The relation between the
agent and the action is

(agentOX a p)

i.e., agent a is the agent of action p. W will assune there is a
popul ati on of agents, but we relegate the details of what counts as an
agent to another ontol ogy.

I nputs and outputs can then be grounded in an account of nessages
anong agents. W will assunme we have an ontol ogy of nmessages (prefix
"m") which provides a primtive notion of "nmessage". The

expr essi on

(mmessage ma b x y)

says that mis a nessaging act in which a comunicates to b the
information y via the physical object or signal x. That is, x is the
nessage or information-bearing object that is sent and y is its
content. The separate ontol ogy of nmessages needs to be devel oped.
Cyc has one; Hobbs (2005) presents another one. But that is out of

scope. Here we will say nothing about the nature of y; it may be a
proposition or some nonpropositional concept.

We will assume that the underlying ontol ogy of nmessages explicates two
properties of messagi ng events:

(msent s n)
(mreceived r m

The first says that s is the state type of the originator of the
nessagi ng act m having done its part in sending the nessage. The
second says that r is the state type of the nessagi ng act being
conplete in that the content of the nessage has been received. W
define these in terms of state types because that's what the
"precondi tion" predicate requires.

In order to be an agent capabl e of sending and receiving nessages, the
agent has to have the capability of using the information in some
fashion. W will say that when an agent is in some sense in
possessi on of the content of the nmessage, then that content is
"avail abl eTo" the agent.

(mavailableTo y a t)

This concept is related to "sent" and
axi omns:

received" by the follow ng

(forall (mabxy st)
(if (and (mnmessage ma b x y)
(msent s n
(i nstanceO e s)
(t:atTine e t))
(mavailableTo y a t)))

That is, if an instance e of a state s of a nessage bei ng sent holds
or obtains at tinme t, where the nmessage is sent by a and has content
y, then y is available to a at tinme t.

(forall (mabxyr t)
(if (and (mnessage ma b x y)
(mreceived r m
(instanceOr e r)
(t:atTine e t))
(mavailableTo y b t)))

That is, if an instance e of a state r of a nessage being received
hol ds or obtains at time t, where the nessage is received by b and has
content y, theny is available to b at tine t.

If the agent has sonme sort of "cognitive state" and can be said to
"know' things, then we can say if the agent knows sone infornmation,
the information is available to the agent.

(forall (ay t)
(if (knowayt)
(availableTo y a t)))

Thi s axi om nakes sense of the inpulse to treat inputs and outputs as
know edge preconditions and effects. But using the broader concept of
avail ability overcomes qual ms about referring to know edge when
tal ki ng about very sinple processes.

I nputs and outputs can be defined in terns of nessages sent and
recei ved as preconditions and effects. They will both be relations
bet ween sone kind of content and an eventuality type.

(forall (y p)
(if (input y p)(Eventuality p)))

(forall (y p)
(if (output y p)(Eventuality p)))

We have onmitted constraints on y because explicating a theory of
possi bl e contents of messages would take us too far afield.

The definition of "input" is as foll ows:

(forall (b py)
(if (agentO b p)
(iff (input y p)
(exists (ma x r)
(and (mnessage ma b x vy)
(mreceived r m
(precondition r p))))))

That is, content y is input to process or eventuality p if and only if
there is a message event mfromsone a to the agent b of p in which
the nmessage is x and its content is y, there is the state type r of

t hat nmessage havi ng been received, and r is a precondition for p.

The definition of "output"” is as foll ows:

(forall (a pvy)
(if (agentOr a p)
(iff (output y p)
(exists (mb x s)
(and (mnmessage ma b x vy)
(msent s n

(effect s p))))))

That is, content y is output to process or eventuality p if

and only if there is a nessage event mfromthe agent a of p to sone b
in

which the nessage is x and its content is y, there is the state type s
of that message having been sent, and s is an effect of p.

Defining inputs and outputs in ternms of nessages rather than in terns
of availability or know edge takes care of the case where the agent

al ready knows the supposed "input" or does not reveal the supposed
"output". It's not input unless soneone puts it in, and it's not

out put unl ess the agent puts it out.

Consi der an exanple that is as sinple as McCarthy's thernostat. The
agent is a calculator (or abacus even) capable of conputing suns;

that's the action. The nessage is the user typing in the nunbers (or
novi ng the right nunber of beads). The output is the display.

"Avail ability" for the calculator is sinmply having the received the

i nput nunmbers and cal cul ated the out put nunber. For the abacus,
availability is having a representation of a nunmber on its display.

Most exanples will be nore interesting.

Optional inputs can be accomopdated by extending the domai n over which
the y argunment ranges, to include a synbol whose nmeaning is "null".

When the input y is not null, the option is exercised. Wen it is
null, the optionis not. The transm ssion of a null nessage is a
definite event, and not the sane as the absence of a nmessage. To say
that an input is optional is to say that "null" is one possible val ue

of y. To say that it is obligatory is to say that y cannot be "null".
So suppose process p has two integer inputs, an optional y and an
obligatory z. Then the precondition is

(and (input y p)(input z p)
(or (integer y)(=vy null))
(i nteger z))

Inputs and outputs can interact with other preconditions and effects.
Suppose a process requires a credit card nunber y as input and then
has to check that it is unexpired (at tine t). The precondition is

(and (input y p)(unexpired y))

We have defined inputs and outputs here in ternms of nessages. In any
gi ven systemor framework, it is perfectly possible to treat "input"
and "output" as primtive concepts. Gounding the concepts in
nmessages in the inter-theory will enable such a systemto interoperate
with systems or frameworks that use a simlar grounding or that have
no notion of inputs and outputs, only preconditions and effects.

A question arises as to what relation there is between these

i nfornmati onal inputs and outputs and material inputs and outputs in
manuf acturi ng processes. For exanple, one might call steel one of the
"inputs" to a vehicl e-manufacturing process and SUVs as one ki nd of
"output". This is a different notion than what we have explicated
here. However, a theory of physical inputs and outputs wll be

anal ogous to our account here, with a predication |like

(move mx a b)
repl aci ng
(message ma b x vy)

The former expression says that mis a noving act in which x is nmoved
froma to b. Corresponding to the infornmational notion of
availability is the physical notion of "locationAt". In fact, our way
of concei ving know edge and conmuni cati on anbng agents is generally
via a spatial nmetaphor resting on the identification of "availability"
or "knowi ng" with "locationAt". It is not surprising that the two
theories will be anal ogous. O course, one distinction between the
two theories is that physical inputs are consunmed by physica

processes whereas informational inputs are not consuned by their
processes.

SPARK as a Declarative Representation

The aimof this section is to show that the ostensibly procedura

| anguage SPARK can be viewed declaratively, and thus as sonething that
doesn't just execute, but also is a neans of encoding informtion
about the structure of processes. This will enable us in subsequent
work to relate SPARK with PSL, ResearchCyc and ot her event
representation franmeworks by neans of the sane sort of IKL
articul ati on axi ons we have been constructing so far. This will be
particularly valuable since SPARK is relatively rich in contro
structures, or possibilities for the internal structure of events.

Consi der a sinple SPARK procedure:

{def procedure report Spam (1)
cue: [do: (forwardMessage $nessage)]
precondition: (IsSpam $nessage)
body: [do: (sendTo SpanCol |l ecti on $nessage)]}

W would like to turn this into the follow ng declarative
representation in |IKL:

(and (procname e report Span (2)
(cue el e) (forwardMessage' el $nessage)
(precondition e2 e) (lsSpani e2 $nessage)
(body e3 e) (sendTo' e3 SpantCol | ecti on $nessage))

This relies on the reification of states and events, where if

(see Pat Kim
nmeans that Pat sees Kim then

(see' e Pat Kim
neans that e is the event of Pat seeing Kim
So the above | KL statenent says that e has the procedure nane
"reportSpanmt, el is a cue for e where el is the action of forwarding
$nmessage, e2 is a precondition for e where e2 is the state of $nmessage
being spam and e3 is the body of e where e3 is the action of sending
$nessage to SpantCol | ection
We could also reify the states of sonething being a cue, precondition,

or body of a procedure as well: (cue' e0 el e) says that e0 is the
state or property of el being a cue for e.

Translation Rules

The foll owi ng context-dependent translation rules effect this
translation. Here TR<...> is the translation function, acting
recursively on SPARK expressions. The asterisk * is used to indicate
zero or nore instances of the string it follows, and the expressions

on the right and left side of the rule are kept in sequence. |'ve
used / and \ as netal anguage brackets, just because | ran out of other
brackets. The vertical bar | is a way of keeping things in place

until they have been translated. After translation is conplete, they
are renmoved by the follow ng rule:

(p x| (a y)*) ==> (and (p x) (g y)*) (3)
where x and y stand for any sequence of argunments. "tag" stands for
anything that can precede a colon in SPARK, such as "cue",
"precondition", "body", and "do". Variables of the form"e" or "en"

for sone nunber n, appearing on the right side of a rule and not on the
| eft are new vari abl es.

1. TR<{def procedure nanme defn}> ==> (procnane e| TR<defn> nane)

2. e|TR</tag: expr*> ==> e| (tag TR<expr> e)*

3. TR[tag: expr*]> ==> el|(tag' el TR<expr>*)

4. TR(p x*)> ==> e|(p' e TRx>*)

5. TR<const ant > ==> const ant

6. TR<vari abl e> ==> vari abl e

7. TR<[vari abl e] > ==> variabl e

Here's a detailed exanple that illustrates this translation. You can

skip to the senantics section if you believe the rules already.
Applying Rule 1 to procedure definition (1)

TR<{ def procedure report Spam
cue: [do: (forwardMessage $nessage)]
precondition: (IsSpam $nessage)
body: [do: (sendTo SpantCol | ecti on $nessage)]}>

yi el ds

(procnane e| TR<cue: [do: (forwardMessage $nessage)]
precondition: (IsSpam $nessage)
body: [do: (sendTo SpantCol |l ecti on $nessage)]>
report Spam

Applying Rule 2 to this yields
(procnane e| (cue TR<[do: (forwardMessage $message)]> e)

(precondition TR<(IsSpam $nessage) > e)
(body TR<[do: (sendTo SpantCol |l ecti on $message)]> e)

report Spam
Applying Rule 3 to this yields

(procnane e| (cue el| (do' el TR<(forwardMessage $nessage)>) e)
(precondition TR<(|sSpam $nessage) > e)
(body e2| (do' e2 TR<(sendTo SpantCol | ecti on $message) >)
e)
report Spam

Applying Rule 4 to this yields

(procnane e| (cue el| (do' el e3|(forwardMessage' e3 TR<$message>)) e)
(precondition e4|(IsSpami e4 TR<$nessage>) e)
(body e2]| (do' e2 e5|(sendTo' e5 TR<Spantol | ecti on>
TR<$nmessage>)) e)
report Spam

Applying Rules 5 and 6 to this yields

(procnane e|(cue el]|(do' el e3|(forwardMessage' e3 $nessage)) e)
(precondition e4| (lIsSpam e4 $nessage) e)
(body e2?]| (do' e2 e5|(sendTo’ e5 Spantol | ection
$nmessage)) e)
report Spam

Now we' ve translated all the way down to the bottom and we can use
(3) to unwind this successively into a conjoined expression.

(procnane e| (cue el| (and (do' el e3)(forwardMessage' e3 $nmessage))
e)
(and (precondition e4 e)(lsSpam e4 $nessage))
(body e2| (and (do' e2 e5)(sendTo' e5 SpanCol | ection
$nmessage)) e)
report Spam

(procnane e| (and (cue el e)(and (do' el e3)
(forwardvessage' e3 $nessage)))
(and (precondition e4 e)(lsSpam e4 $nmessage))
(and (body e2 e)(and (do' e2 eb)
(sendTo' e5 Spantol | ection
$nessage)))
report Spam

(and (procname e report Span
(and (cue el e)(and (do' el e3)(forwardMessage' e3 $nessage)))
(and (precondition e4 e)(lsSpam e4 $nessage))
(and (body e2 e)(and (do' e2 eb)
(sendTo' e5 Spantol | ection $nessage))))

Then flattening out the and's gives us

(and (procname e report Span
(cue el e)(do' el e3)(forwardMessage' e3 $nessage)
(precondition e4 e)(lsSpam e4 $nessage)
(body e2 e)(do' e2 eb5)(sendTo' e5 SpantCollecti on $message))

whi ch except for the do's is the sane as expression (2). More about
"do" bel ow.

Call this form SPARK Expressed Decl arative, or SPARKED.

The Semantics of SPARKED

W introduce two predicates that describe the world and the action of
t he SPARK processor on the world.

hol ds(State): true iff the State holds
executed(Task): true iff the Task is executed by the processor

Then we can constrain the meanings of the top-level tags by the
fol |l owi ng axi ons:

(forall (el e)
(if (and (cue el e)(executed e))

(executed el)))
That is, if el is a cue for e and e is executed, then el is executed.

(forall (e2 e3 e)
(if (and (precondition e2 e)(body e3 e)(holds e2)
(executed e3))
(executed e)))

That is, if the precondition for a procedure holds and its body is
executed, the procedure is executed.

The above translation rules translate |ogical operators into primed
predi cates. The semantics of the prinmed predicates can be defined as
fol | ows:

(forall (e el e2)
(if (and'" e el e2)
(iff (holds e)
(and (hol ds el)(holds e2))))

(forall (e el e2)
(if (or' e el e2)
(iff (holds e)
(or (holds el)(holds €2)))))

(forall (e el)
(if (not' e el)
(iff (holds e)
(not (holds el)))))

Basic Task Components

Simlar rules can be defined for the basic task conponents, such as
do:, achieve:, and so on

(forall (el e2)
(if (do' el e2)
(iff (executed el)(executed €2))))

For exanple, in the SPARK expression "[do: (paint $house red)]", the
doing is executed if and only if the painting is executed.

(forall (el e2)
(if (achieve' el e2)
(iff (executed el)(holds e2))))

That is, an achieve is executed if and only if its operand hol ds.

(forall (el)
(if (noop' el)
(executed el)))

A noop is always executed.

The "fail:" task conponent requires a little nore to be explicit than
we have so far. | will assune for now that when we encounter "fail'"
in declarative form it has an argunment for the fail event el, an
argunment e2 for a condition under which the failure occurs, and the
procedure e in which it is enbedded, wi thout sayi ng how we woul d get
the last of these in the translation process (e.g., a globa
vari abl e).

(forall (el e2 e)
(if (fail' el e2 e)
(iff (executed el)
(and (hol ds e2)
(not (executed e))))))

That is, the fail is executed exactly when the condition e2 holds and
t he enmbeddi ng procedure e i s not executed.

The operators "conclude:" and "retract:" presuppose a know edge base.

I will use the predicate "known'" to represent the presence of sone
fact p in the know edge base. Thus, "(known' e p)" says that e is the
state of p being in the know edge base. 1'll say nothing about the
nature of p. | will assume that if we conclude sonmething that is
already in the know edge base, no change occurs, and simlarly with
retraction.

(forall (el p t1)
(if (conclude' el p)
(if (and (executed el)(t:tinmeSpanOF t1 el))
(exists (e2 t2) (and (known' e2 p)
(t:timeSpantf t2 e2)
(or (t:intMeets tl1 t2)
(t:intbhuring t1t2)))))))

That is, if el is a concluding of p, then inmmediately after the
concl uding, p is known.

The axiom for retracting is sinilar.

(forall (el ptl)
(if (retract' el p)
(if (and (executed el)(t:timeSpanOF t1 el)
(t:ends t0 t1))
(forall (e2 t2)
(if (and (known' e2 p)
(t:timeSpantF t2 e2))
(not (or (t:starts t0 t2)
(t:inside t0 t2))))))))

Here, the endpoint t0 of the execution of the retraction cannot start
or be inside any interval during which p is known.

Control Structures

The control structures or compound task expressions can al so be
defined or constrained in ternms of what counts as their being
execut ed

(forall (e el e2 t1 t2)
(if (and (seq'" e el e2)(t:tinmeSpanO>F t1 e2)
(t:timeSpanOF t2 e2))
(iff (executed e)
(and (executed el) (executed e2)
(t:intBefore t1t2)))))

It's not clear to ne that "parallel:" means anything. For exanple,
suppose Chris gives a task to ne and a task to Karen to execute in
paral lel. Karen does her task right away. | put nine off ti
tonorrow. Have we done the tasks in parallel or not? Does there have
to be an overlap in the time span of the two executions? A weak
notion of "parallel” is given by this axiom

(forall (e el e2)
(if (parallel' e el e2)
(iff (executed e)
(and (executed el)(executed e2)))))

The stronger notion of "parallel" requires sone overlap in the
executions.

(forall (e el e2 t1 t2)
(if (and (parallel' e el e2)(t:timeSpanO> t1 e2)
(t:timeSpantf t2 e2))
(iff (executed e)
(and (executed el)(executed e2)
(exists (t)(and (t:inside t t1)
(t:inside t t2)))))))

Conditionals are defined as foll ows:

(forall (e el e2 e3)
(if (if' e el e2 el3)
(iff (executed e)
(or (and (holds el)(executed e2))
(and (not (holds el))(executed e3))))))

The expression "[wait:el e2]" neans that the processor waits until el
hol ds and then executes e2. |t can be defined as foll ows:

(forall (e el e2 t1 t2)
(if (and (wait' e el e2)(t:timeSpantF t1 el)
(t:timeSpantF t2 e2))
(iff (executed e)
(and (executed e2)(intBefore tl t2)))))

The expression "[try: el e2 e3]" means that the processor tries to do
el. If it succeeds, it goes on to do e2; otherwi se, it does e3. For
exanpl e, e3 nay be the task of fixing what went wong in doing el.
Thi s operator cannot be defined with what has been introduced so far,
because it involves the partial execution of el, and we have no way of
tal ki ng about partial executions yet. One approach would be to define

the notion of "subevent". (W will want it eventually, in any case.)
Then we can say that if a subevent of el is executed but el itself is
not, then this will count as failure and e3 will be executed. Under

this interpretation, the definition of trying is as follows:

(forall (e el e2 e3)
(if (try' e el e2 e3)
(iff (executed e)
(or (and executed el)(executed e2))
(exists (e0)
(and (subevent e0 el)(executed e0)
(not (executed el))
(executed €3))))))

The subevent relation can be characterized in ternms of the basic and
conpound task expressions and a transitivity axi om
(forall (el e2 e3)
(if (and (subevent el e2)(subevent e2 e3))

(subevent el e3)))

(forall (e el)
(if (body el e)(subevent el e)))

(forall (el e2)
(if (do' el e2)(subevent e2 el)))
(forall (e el e2)

(if (seq" e el e2)
(and (subevent el e)(subevent e2 e))))

(forall (e el e2)
(if (parallel' e el e2)
(and (subevent el e)(subevent e2 e))))

(forall (e el e2)
(if (if' e el e2)
(and (subevent el e)(subevent e2 e))))

However, we may want to say that something is not a subevent unless it
is actually executed. There are similar concerns for the next two
axi oms.

(forall (e el e2)
(if (wait' e el e2)(subevent e2 e)))

(forall (e el e2)
(if (if' e el e2 el3)
(and (subevent el e)(subevent e2 e)(subevent e3 e))))

Iteration

To characterize an iteration we need a specification of the
eventuality type that is being repeated and the set or sequence whose
nenbers are being iterated over. W need to be able to represent not
only that on each iteration an instance of that eventuality type is
occurring, but that that instance is obtained by "substituting"” the
next nenber of the set or sequence for the correspondi ng parameter in
the eventuality type. For exanple, suppose a set of researchers takes
turns getting up to give a talk. The eventuality type is "Soneone
gives a talk." Some of the eventuality tokens that are instances of
the type nmight be "Chris gives a talk," "Jerry gives a talk," and
"Karen gives a talk."

I will use the predication "(subst x el y e2)" to nean that paraneter
X plays the sane role in eventuality type el that entity y plays in
eventual ity token e2. For exanple, if "(talk' el x)" and "(talk' e2
Chris)" both hold, then so does "(subst x el Chris e2)". The
predicate "subst" is defined in Hobbs (1995), " Mnotone Decreasing
Quantifiers in a Scope-Free Logical Form ', found at

http://ww. i si.edu/ ~hobbs/ nonot one- decr easi ng. pdf, or at

http://wwv. i si.edu/ ~hobbs/ di si nf-chap2. pdf, pp. 46-49.

In fact, el and e2 need not be restricted to eventuality types and

t okens, respectively. Thus, if in addition "(talk' e3 Jerry)" holds,
then so does "(subst Chris e2 Jerry e3)". However, if el is an
eventuality type and e2 an eventuality token and the "subst" relation
hol ds between them then the "subst” relation is a specialization of
the "instanceO" relation. | won't wite this as an axi om since |
woul d first have to have a way of saying x is a paraneter, and that
woul d take us too far afield.

The SPARK compound task expression "[forall: x el e2]" translates into
"(forall' e x el e2)". The semantics of this is given by the
foll owi ng axi om

(forall (e x el e2)
(if (forall' e x el e2)
(iff (executed e)

(forall (y e3)

(if (and (subst x el y e3)(holds e3))
(exists (e4d)
(and (subst x e2 y ed)

(executed e4))))))))

The SPARK compound task expression "[while: el e2 e3]" neans that the
processor repeats e2 as long as el is true and then does e3. The
condition el and the task e2 nust be eventuality types, but we wll
assune that an eventuality type is executed when one of its instances
is executed, and that an eventuality type holds when one of its

i nstances holds. Then the translated expression "(while' e el e2 e3)"
can be defined recursively as foll ows:

(forall (e el e2 e3)
(if (while' e el e2 e3)
(iff (executed e)
(or (and (not (holds el))(executed e3))
(exists (e4 eb)
(and (hol ds el)

(seq' e4 e2 eb)
(while' e5 el e2 e3)
(executed e4)))))))

The first disjunct says that e3 is executed if el does not hold. The
second di sjunct says that if el does hold, then a sequence is
executed, consisting of e2 followed by another while |oop.

References
Hobbs, Jerry R, 2005. "~ Toward a Useful Notion of Causality for
Lexi cal Semantics'', Journal of Senmantics, Vol. 22, pp. 181-209.

(http://ww.isi.edu/ ~hobbs/ causality-j os. pdf)

Hobbs, Jerry R, 2005. "~“An Ontology of Information Structure",
Proceedi ngs, 7th International Synposium on Logical Fornalizations of
Conmmonsense Reasoning, Corfu, G eece, pp. 99-106, May 2005

