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Abstract

Information extraction is the process of scanning text for informa-
tion relevant to some interest, including extracting entities, relations,
and events. It requires deeper analysis than key word searches, but
its aims fall short of the very hard and long-term problem of full text
understanding. Information extraction represents a midpoint on this
spectrum, where the aim is to capture structured information without
sacrificing feasibility.

One of the key ideas in this technology is to separate process-
ing into several stages, in cascaded finite-state transducers. The ear-

lier stages recognize smaller linguistic objects and work in a largely



domain-independent fashion. The later stages take these linguistic
objects as input and find domain-dependent patterns among them.
There are now initial efforts to apply this technology to biomedical
text, In other domains, the technology plateaued at about 60% recall
and precision. Even if applications to biomedical text do no better
than this, they could still prove to be of immense help to curatorial

activities.

1 Introduction

Information extraction is the process of scanning text for information relevant
to some interest, including extracting entities, relations, and, most challeng-
ing, events—or who did what to whom. It requires deeper analysis than key
word searches, but its aims fall short of the very hard and long-term problem
of text understanding, where we seek to capture all the information in a text,
along with the speakers’ or writer’s intention. Information extraction repre-
sents a midpoint on this spectrum, where the aim is to capture structured
information without sacrificing feasibility.

Information extraction technology arose in response to the need for ef-
ficient processing of texts in specialized domains. Full-sentence parsers ex-
pended a lot of effort in trying to arrive at parses of long sentences that were
not relevant to the domain, or which contained much irrelevant material,
thereby increasing the chances for error. Information extraction technology,

by contrast, focuses in on only the relevant parts of the text and ignores the



rest.

In the last ten years, the technology of information extraction has ad-
vanced significantly. It has been applied primarily to domains of economic
and military interest. There are now initial efforts to apply it to biomedical
text (e.g., Humphreys et al., 2000; Thomas et al., 2000), and the time is ripe

for further research.

2 Cascaded Finite-State Transducers

One of the key ideas in this technology is to separate processing into several
stages, in “cascaded finite-state transducers”. A finite-state automaton reads
one element at a time of a sequence of elements; each element transitions the
automaton into a new state, based on the type of element it is, e.g., the
part of speech of a word. Some states are designated as final, and a final
state is reached when the sequence of elements matches a valid pattern. In a
finite-state transducer, an output entity is constructed when final states are
reached, e.g., a representation of the information in a phrase. In a cascaded
finite-state transducer, there are different finite-state transducers at different
stages. Earlier stages will package a string of elements into something the
the next stage will view as a single element.

In the approach implemented in SRI International’s system called FAS-
TUS (a slightly altered acronym of Finite-State Automaton Text Under-

standing System)(Hobbs et al., 1997), the earlier stages recognize smaller



linguistic objects and work in a largely domain-independent fashion. They
use purely linguistic knowledge to recognize that portion of the syntactic
structure of the sentence that linguistic methods can determine reliably, re-
quiring relatively little modification or augmentation as the system is moved
from domain to domain. The later stages take these linguistic objects as
input and find domain-dependent patterns among them.

Typically there are five levels of processing:

1. Complex Words: This includes the recognition of multiwords and proper
names. In biomedicine this would include names of chemical com-

pounds.

2. Basic Phrases: Sentences are segmented into noun groups, verb groups,

and particles.

3. Complex Phrases: Complex noun groups and complex verb groups are

identified.

4. Domain Patterns: The sequence of phrases produced at Level 3 is
scanned for patterns of interest to the application, and when they are
found, semantic structures are built that encode the information about

entities and events contained in the pattern.

5. Merging Structures: Semantic structures from different parts of the
text are merged if they provide information about the same entity or

event.



As we progress through the five levels, larger segments of text are analyzed
and structured. In each of stages 2 through 4, the input to the finite-state
transducer is the sequence of chunks constructed in the previous stage.

This decomposition of the natural-language problem into levels is essential
to the approach. Many systems have been built to do pattern matching on
strings of words. The advances in information extraction have depended
crucially on dividing that process into separate levels for recognizing phrases
and recognizing patterns among the phrases. Phrases can be recognized
reliably with purely syntactic information, and they provide precisely the
elements that are required for stating the patterns of interest.

I will illustrate the levels of processing by describing what is done on the

following sentences, from a biomedical abstract.

gamma-Glutamyl kinase, the first enzyme of the proline biosyn-
thetic pathway, was purified to a homogeneity from an Escherichia
coli strain resistant to the proline analog 3,4-dehydroproline. The
enzyme had a native molecular weight of 236,000 and was appar-

ently comprised of six identical 40,000-dalton subunits.

In this example, we will assume we are mapping the information into a
complex database of pathways, reactions, and chemical compounds, such as
the EcoCyc database developed by Karp and his colleagues at SRI Interna-
tional (Karp et al., 1977). In this database there are Reaction objects with

the attributes ID, Pathway, and Enzyme, among others, and Enzyme objects



with the attributes ID, Name, Molecular-Weight, Subunit-Component, and
Subunit-Number.

The five phases are as follows:

1. Complex Words: This level of processing identifies multiwords such
as “gamma-Glutamyl proline”, Escherichia coli”, “3,4-dehydroproline”, and
“molecular weight”.

Languages in general are very productive in the construction of short,
multiword fixed phrases and proper names employing specialized microgram-
mars. This is the level at which they are recognized. The biomedical lan-
guage is especially rich in this regard; this in fact may be the biggest barrier
to information extraction research in biological domains. On the other hand,
medical informatics has been at the forefront of human language technol-
ogy in building up terminological resources, and there is much good recent
work in automating the building of the lexicons and in the techniques for
recognizing biomedical terms (e.g., Ananiadou et al., 2002).

2. Basic Phrases: At Level 2 the first example sentence is segmented

into the following phrases:



Enzyme Name: gamma-Glutamyl kinase

Noun Group: the first enzyme
Preposition: of

Noun Group: the proline biosynthetic pathway
Verb Group: was purified

Preposition: to

Noun Group: homogeneity
Preposition: from

Noun Group: an Escherichia coli strain
Adjective Group: resistant

Preposition: to

Noun Group: the proline analog

Noun Group: 3,4-dehydroproline

Noun groups are noun phrases up through the head noun but not includ-
ing the right modifiers like prepositional phrases and relative clauses. Verb
groups are head verbs with their auxilliaries. Adjective phrases are predicate
adjectives together with their copulas, if present.

The noun group and verb group grammars that were implemented in FAS-
TUS were essentially those given in the grammar of Sager (1981), converted
into regular expressions.

This breakdown of phrases into nominals, verbals, and particles is a lin-
guistic universal. Whereas the precise parts of speech that occur in any lan-

guage can vary widely, every language has elements that are fundamentally



nominal in character, elements that are fundamentally verbal or predicative,
and particles or inflectional affixes that encode relations among the other
elements.

3. Complex Phrases: At Level 3, complex noun groups and verb groups
that can be recognized reliably on the basis of domain-independent, syntactic
information are recognized. This includes the attachment of appositives to

their head noun group,
the proline analog 3,4-dehydroproline

and the attachment of “of” prepositional phrases to their head noun groups,
the first enzyme of the proline biosynthetic pathway.

In the course of recognizing basic and complex phrases, entities and
events of domain interest are often recognized, and the structures for these
are constructed. In the sample text, an Enzyme structure is constructed
for gamma-Glutamyl kinase. Corresponding to the complex noun group
“gamma-Glutamyl kinase, the first enzyme of the proline biosynthetic path-

way,” the following structure are built:



Reaction:

ID: R1

Pathway: proline

Enzyme: E1l

Enzyme:

ID: E1

Name: gamma-Glutamyl kinase

Molecular-Weight: -
Subunit-Component: -

Subunit-Number: —

In many languages some adjuncts are more tightly bound to their head
nouns than others. “Of” prepositional phrases are in this category, as are
phrases headed by prepositions that the head noun subcategorizes for. The
basic noun group together with these adjuncts constitutes the complex noun
group. Complex verb groups are also motivated by considerations of lin-
guistic universality. Many languages have quite elaborate mechanisms for
constructing complex verbs. One example in English is the use of control
verbs; “to conduct an experiment” means the same as “to experiment”. An-
other example is the verb-particle constructions such as “set up”.

4. Clause-Level Domain Patterns: In the sample text, the domain

patterns

<Compound> have <Measure> of <values>



<Compound> comprised of<Compound>

are instantiated in the second sentence. These patterns result in the following

Enzyme structures being built:

Enzyme:

ID: E2
Name: -
Molecular-Weight: 236,000

Subunit-Component: —

Subunit-Number: —

Enzyme:
ID: E3
Name: -

Molecular-Weight: -

Subunit-Component: E4
Subunit-Number: 6
Enzyme:

ID: E4
Name: -
Molecular-Weight: 40,000

Subunit-Component: -

Subunit-Number: —
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This level corresponds to the basic clause level that characterizes all lan-
guages, the level at which in English Subject-Verb-Object (S-V-O) triples
occur, and thus again corresponds to a linguistic universal. This is the level
at which predicate-argument relations between verbal and nominal elements
are expressed in their most basic form.

5. Merging Structures: The first four levels of processing all operate
within the bounds of single sentences. The final level of processing operates
over the whole discourse. Its task is to see that all the information collected
about a single entity or relationship is combined into a unified whole. This
is where the problem of coreference is dealt with in this approach.

The three criteria that are taken into account in determining whether
two structures can be merged are the internal structure of the noun groups,
nearness along some metric, and the consistency, or more generally, the com-
patibility of the two structures.

In the analysis of the sample text, we have produced four enzyme struc-

tures. Three of them are consistent with each other. Hence, they are merged,

yielding
Enzyme:
ID: E1
Name: gamma-Glutamyl kinase
Molecular-Weight: 236,000
Subunit-Component: E4
Subunit-Number: 6
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The fourth is inconsistent because of the differing molecular weights and
the subunit relation, and hence is not merged with the others.

The finite-state technology has sometimes been characterized as ad hoc
and as mere pattern-matching. However, the approach of using a cascade
of finite-state machines, where each level corresponds to a linguistic natu-
ral kind, reflects important universals about language. It was inspired by
the remarkable fact that very diverse languages all show the same nominal
element - verbal element - particle distinction and the basic phrase - com-
plex phrase distinction. Organizing a system in this way leads to greater
portability among domains and to the possibility of easier acquisition of new

patterns.

3 Compile-Time Transformations

Natural language admits a great deal of variation. This means that patterns
must be stated for not only the basic active form of clauses, but also passives,
relative clauses, nominalizations, and so on. But these are for the most part
predictable variations. Hence, we have implemented “compile-time transfor-
mations” that take basic Subject-Verb-Object patterns and transform them

into linguistic variants. Thus, by specifying a pattern for
<Protein> inhibits <Reaction>

we automatically add patterns as well for
<Reaction> is inhibited by <Protein>

12



<Protein> which inhibits <Reaction>

<Protein> is inhibitor of <Reaction>

and so on.
When this was first implemented, it reduced the time required for speci-

fying the patterns for a domain from weeks to less than a day.

4 Types of Specialized Domains

In our experience in non-biomedical domains there seem to be two types of
applications. In the first, one can use what may be called a “noun-driven”
approach. The type of an entity is highly predictive of its role in the event.
In this case, it is not so necessary to get the Subject-Verb-Object relations
correct. Looser patterns can be written. For example, if the only patterns

we are looking for are

<Protein> inhibits <Reaction>

<Protein> promotes <Reaction>

Then the protein always fills the role of the effector and the reaction always
fills the role of the effected.

In other domains, the roles of entities in events cannot be predicted from
their type, but only from their syntactic place in sentences. These applica-
tions require what may be called a “verb-driven” approach. Tighter patterns
must be written, and Subject-Verb-Object relations must be discovered. For

example, in

13



<Protein> binds to <Protein>

we cannot tell from the fact that something is a protein which of the two
roles it plays in the binding event.

The vast specialized and highly organized terminology of biomedicine
suggests that perhaps a noun-driven approach would be adequate. The roles
of entities may be very tightly constrained. On the other hand, as Friedman
et al. (2001) have shown, there can be deeply nested relations in complex
events, and it can be crucial to get the Subject-Verb-Object relations right,

in which case a verb-driven approach is required.

5 The Limits of Information Extraction Tech-
nology

Information extraction is evaluated by two measures—recall and precision.
Recall is a measure of completeness, precision of correctness. When you
promise to tell the whole truth, you are promising 100% recall. When you
promise to tell nothing but the truth, you are promising 100% precision.

In Message Understanding Conference (MUC) evaluations in the 1990s,
systems doing name recognition achieved about 95% recall and precision,
which is nearly human-level performance, and very much faster. In event
recognition the performance plateaued at about 60% recall and precision.

There are several possible reasons for this. Our analysis of our results

showed that the process of merging was implicated in a majority of our
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errors; we need better ways of doing event and relationship coreference. It
could be that 60% is how much information texts “wear on their sleeves”.
Current technology can only extract what is explicit in texts . To get the
rest of the information requires inference. A third possibility is that the
distribution of linguistic phenomena simply has a very long tail. Handling
the most common phenomena gets you to 60% relatively quickly. Getting to
100% then requires handling increasingly rare phenomena. A month’s work
gets you to 60%. Another year’s work gets you to 65%. A fourth possibility
is that errors multiply. If you can recognize an entity with 90% accuracy and
to recognize a clause-level pattern requires recognizing four entities, then the
accuracy should be (.9)* or about 60%.

This raises the interesting question of what utility there is in a 60% tech-
nology. Obviously you would not be happy with a bank statement that is
60% accurate. On the other hand, 60% accuracy in web search would be a
distinct improvement. It is best to split this question into two parts—recall
and precision.

If you have 60% recall, you are missing 40% of the mentions of relevant
information. But there are half a million biomedical articles a year, and
keeping up with them requires massive curatorial effort. 60% recall is an
improvement if you would otherwise have access to much less. Moreover,
recall is measured not on facts but on mentions of facts. If there are multiple
mentions of some fact, we have multiple opportunities to capture it.

With 60% precision in a fully automatic system, then 40% of the infor-
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mation in your database will be wrong. You need a human in the loop. This
is not necessarily a disaster. A person extracting sparse information from a
massive corpus will have a much easier time discarding 40% of the entries
than locating and entering 60%. Good tools would help in this as well. In
addition, it may be that the usage of language in biomedical text is tightly
enough constrained that precision will be higher than in the domains that

have so far been the focus of efforts in informaiton extraction.
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