
Toward an Ontology of Time for the Semantic Web

Jerry R. Hobbs

Artificial Intelligence Center
SRI International

Menlo Park, California 94025
USA

hobbs@ai.sri.com

Abstract
In connection with the DAML project for bringing about the Semantic Web, an ontology of time is being developed for describing the
temporal content of Web pages and the temporal properties of Web services. The bulk of information on the Web is in natural language,
and this information will be easier to encode for the Semantic Web insofar as community-wide annotation and automatic tagging schemes
and the DAML time ontology are compatible with each other.

1. Introduction
The DARPA Agent Markup Language (DAML) project

is an effort aimed at bringing into reality the Semantic Web,
in which Web users and automatic agents will be able to ac-
cess information on the Web via descriptions of the content
and capabilities of Web resources rather than via key words.
An important part of this effort is the development of repre-
sentative ontologies of the most commonly used domains.
We are beginning to develop such an ontology of tempo-
ral concepts, for describing the temporal content of Web
pages and the temporal properties of Web services. This
effort is being informed by temporal ontologies developed
at a number of sites and is intended to capture the essential
features of all of them and make them easily available to a
large group of Web developers and users.

The bulk of information on the Web is in natural lan-
guage, and this information will be easier to encode for the
Semantic Web insofar as community-wide annotation and
automatic tagging schemes and the DAML time ontology
are compatible with each other.

In this paper I outline the temporal ontology as it has
been developed so far, in order to initiate a dialog between
the two communities. Five categories of temporal concepts
are considered, and for each the principal predicates and
their associated properties are described.

A note on notation: Conjunction (̂) takes precedence
over implication(� ) and equivalence (� ). Formulas are
assumed to be universally quantified on the variables ap-
pearing in the antecedent of the highest-level implication.
Thus,

p1(x) ^ p2(y) � q1(x; y) ^ q2(y)

is to be interpreted as

(8x; y)[[p1(x) ^ p2(y)] � [q1(x; y) ^ q2(y)]]

2. Topological Temporal Relations
2.1. Instants and Intervals

There are two subclasses of temporal-entity:instant

andinterval.

instant(t) � temporal-entity(t)
interval(T ) � temporal-entity(T )

(In what follows, lower caset is used for instants, upper
caseT for intervals and for temporal-entities unspecified as
to subtype. This is strictly for the reader’s convenience, and
has no formal significance.)

start-of andend-of are functions from temporal enti-
ties to instants.

temporal-entity(T ) � instant(start-of(T ))
temporal-entity(T ) � instant(end-of(T ))

For convenience, we can say that the start and end of an
instant is itself.

instant(t) � start-of(t) = t

instant(t) � end-of(t) = t

inside is a relation between an instant and an interval.

inside(t; T ) � instant(t) ^ interval(T )

This concept ofinside is not intended to include starts and
ends of intervals, as will be seen below.

Infinite and half-infinite intervals can be handled by
positing time instants at positive and negative infinity, and
using them as start and end points.

It will be useful in characterizing clock and calendar
terms to have a relation between instants and intervals that
says that the instant is inside or the start of the interval.

in-interval(t; T )
� [start-of(T ) = t _ inside(t; T )]

interval-between is a relation among a temporal entity
and two instants.

interval-between(T; t1; t2)
� temporal-entity(T ) ^ instant(t1)
^ instant(t2)

The two instants are the start and end points of the temporal
entity.

interval-between(T; t1; t2)
� start-of(T ) = t1 ^ end-of(T ) = t2

The ontology is silent about whether the interval fromt to
t, if it exists, is identical to the instantt.



The ontology is silent about whether intervalsconsist of
instants.

The ontology is silent about whether intervals are
uniquely determined by their starts and ends.

We can define a proper interval as one whose start and
end are not identical.

proper-interval(t) �
interval(t) ^ start-of(t) 6= end-of(t)

The ontology is silent about whether there are any intervals
that are not proper-intervals.

2.2. Before
There is abefore relation on temporal entities, which

gives directionality to time. If temporal entityT1 is before
temporal entityT2, then the end ofT1 is before the start of
T2. Thus, before can be considered to be basic to instants
and derived for intervals.

before(T1; T2)
� before(end-of(T1); start-of(T2))

The end of an interval is not before the start of the interval.

interval(T )
� before(end-of(T ); start-of(T ))

The start of a proper interval is before the end of the inter-
val.

proper-interval(T )
� before(start-of(T ); end-of(T ))

If one instant is before another, there is an interval between
them.

instant(t1) ^ instant(t2) ^ before(t1; t2)
� (9T )interval-between(T; t1; t2)

The ontology is silent about whether there is an interval
from t to t.

If an instant is inside a proper interval, then the start of
the interval is before the instant, which is before the end of
the interval. The converse is true as well.

instant(t) ^ proper-interval(T )
� [inside(t; T )
� before(start-of(T ); t)
^ before(t; end-of(T ))]

Intervals are contiguous with respect to thebefore relation,
in that an instant between two other instants inside an inter-
val is inside the interval.

before(t1; t2) ^ before(t2; t3)
^ inside(t1; T ) ^ inside(t3; T )

� inside(t2; T )

Thebefore relation is anti-symmetric and transitive.

before(T1; T2) � :before(T2; T1)
before(T1; T2) ^ before(T2; T3)
� before(T1; T3)

The relationafter is defined in terms ofbefore.

after(T1; T2) � before(T2; T1)

The ontology is silent about whether time is linearly or-
dered.

2.3. Interval Relations

The relations between intervals defined in Allen’s tem-
poral interval calculus (Allen and Kautz, 1985) can be de-
fined in a straightforward fashion in terms ofbefore and
identity on the start and end points.

interval(T1) ^ interval(T2)
� [int-equals(T1; T2)
� start-of(T1) = start-of(T2)
^ end-of(T1) = end-of(T2)]

interval(T1) ^ interval(T2)
� [int-before(T1; T2) � before(T1; T2)

interval(T1) ^ interval(T2)
� [int-after(T1; T2) � after(T1; T2)

interval(T1) ^ interval(T2)
� [int-meets(T1; T2)
� end-of(T1) = start-of(T2)

interval(T1) ^ interval(T2)
� [int-met-by(T1; T2)
� int-meets(T2; T1)]

interval(T1) ^ interval(T2)
� [int-overlaps(T1; T2)
� before(start-of(T1); start-of(T2))
^ before(start-of(T2); end-of(T1))
^ before(end-of(T1); end-of(T2))]

interval(T1) ^ interval(T2)
� [int-overlapped-by(T1; T2)
� int-overlaps(T2; T1)]

interval(T1) ^ interval(T2)
� [int-starts(T1; T2)
� start-of(T1) = start-of(T2)
^ before(end-of(T1); end-of(T2)]

interval(T1) ^ interval(T2)
� [int-started-by(T1; T2)
� int-starts(T2; T1)]

interval(T1) ^ interval(T2)
� [int-during(T1; T2)
� (before(start-of(T2); start-of(T1))
^ before(end-of(T1); end-of(T2))]

interval(T1) ^ interval(T2)
� [int-contains(T1; T2)
� int-during(T2; T1)]

interval(T1) ^ interval(T2)
� [int-finishes(T1; T2)
� before(start-of(T2); start-of(T1))
^ end-of(T1) = end-of(T2)]

interval(T1) ^ interval(T2)
� [int-finished-by(T1; T2)
� int-finishes(T2; T1)]

In addition, it will be useful below to have a single predicate
for “starts or is during”. This is calledint-in.

int-in(T1; T2)
� [int-starts(T1; T2)_ int-during(T1; T2)]

It will also be useful to have a single predicate for intervals
intersecting in at most an instant.



int-disjoint(T1; T2)
� [int-before(T1; T2) _ int-after(T1; T2)
_ int-meets(T1; T2)
_ int-met-by(T1; T2)]

So far, the concepts and axioms in the ontology of time
would be appropriate for scalar phenomena in general.

2.4. Linking Time and Events

The time ontology links to other things in the world
through four predicates—at-time, during, holds, and
time-span-of . We assume that another ontology provides
for the description of events—either a general ontology of
event structure abstractly conceived, or specific, domain-
dependent ontologies for specific domains.

The term “eventuality” will be used to cover events,
states, processes, propositions, states of affairs, and any-
thing else that can be located with respect to time. The
possible natures of eventualities would be spelled out in the
event ontologies.

The predicateat-time relates an eventuality to an in-
stant, and is intended to say that the eventuality holds, ob-
tains, or is taking place at that time.

at-time(e; t) � eventuality(e) ^ instant(t)

The predicateduring relates an eventuality to an interval,
and is intended to say that the eventuality holds, obtains, or
is taking place during that interval.

during(e; T ) � eventuality(e)^ interval(T )

If an eventuality obtains during an interval, it obtains at ev-
ery instant inside the interval.

during(e; T ) ^ inside(t; T ) � at-time(e; t)

Whether a particular process is viewed as instantaneous or
as occuring over an interval is a granularity decision that
may vary according to the context of use, and is assumed to
be provided by the event ontology.

Often the eventualities in the event ontology are best
thought of as propositions, and the relation between these
and times is most naturally calledholds. holds can be de-
fined in terms ofat-time andduring:

holds(e; t) ^ instant(t) � at-time(e; t)
holds(e; T ) ^ interval(T ) � during(e; T )

The event ontology may provide other ways of linking
events with times, for example, by including a time param-
eter in predications.

p(x; t)

This time ontology provides ways of reasoning about the
t’s; their use as arguments of predicates from another do-
main would be a feature of the ontology of the other do-
main.

The predicatetime-span-of relates eventualities to in-
stants or intervals. For contiguous states and processes, it
tells the entire instant or interval for which the state or pro-
cess obtains or takes place.

time-span-of(T; e)
� temporal�entity(T ) ^ eventuality(e)

time-span-of(T; e) ^ interval(T )
� during(e; T )

time-span-of(t; e) ^ instant(t)
� at-time(e; t)

time-span-of(T; e) ^ interval(T )
^:inside(t1; T ) ^ :start-of(t1; T )
^:end-of(t1; T )

� :at-time(e; t1)
time-span-of(t; e) ^ instant(t) ^ t1 6= t

� :at-time(e; t1)

time-span-of is a predicate rather than a function because
until the time ontology is extended to aggregates of tem-
poral entities, the function would not be defined for non-
contiguous eventualities. Whether the eventuality obtains
at the start and end points of its time span is a matter for
the event ontology to specify. The silence here on this is-
sue is the reasontime-span-of is not defined in terms of
necessary and sufficient conditions.

The event ontology could extend temporal functions
and predicates to apply to events in the obvious way, e.g.,

ev-start-of(e) = t

� time-span-of(T; e) ^ start-of(T ) = t

This would not be part of the time ontology, but would be
consistent with it.

Different communities have different ways of represent-
ing the times and durations of states and events (processes).
In one approach, states and events can both have durations,
and at least events can be instantaneous. In another ap-
proach, events can only be instantaneous and only states
can have durations. In the latter approach, events that one
might consider as having duration (e.g., heating water) are
modeled as a state of the system that is initiated and ter-
minated by instantaneous events. That is, there is the in-
stantaneous event of the start of the heating at the start of
an interval, that transitions the system into a state in which
the water is heating. The state continues until another in-
stantaneous event occurs—the stopping of the heating at
the end of the interval. These two perspectives on events
are straightforwardly interdefinable in terms of the ontol-
ogy we have provided. This is a matter for the event ontol-
ogy to specify. This time ontology is neutral with respect
to the choice.

3. Measuring Durations
3.1. Temporal Units

This development assumes ordinary arithmetic is avail-
able.

There are at least two approaches that can be taken to-
ward measuring intervals. The first is to consider units of
time as functions from Intervals to Reals, e.g.,

minutes: Intervals! Reals
minutes([5 : 14; 5 : 17]) = 3

The other approach is to consider temporal units to con-
stitute a set of entities—call it TemporalUnits—and have a



single functiondurationmapping Intervals� TemporalU-
nits into the Reals.

duration([5 : 14; 5 : 17]; �Minute�) = 3

The two approaches are interdefinable:

seconds(T ) = duration(T; �Second�)
minutes(T ) = duration(T; �Minute�)
hours(T ) = duration(T; �Hour�)
days(T ) = duration(T; �Day�)
weeks(T ) = duration(T; �Week�)
months(T ) = duration(T; �Month�)
years(T ) = duration(T; �Y ear�)

Ordinarily, the first is more convenient for stating specific
facts about particular units. The second is more convenient
for stating general facts about all units.

The aritmetic relations among the various units are as
follows:

seconds(T ) = 60 �minutes(T )
minutes(T ) = 60 � hours(T )
hours(T ) = 24 � days(T )
days(T ) = 7 � weeks(T )
months(T ) = 12 � years(T )

The relation between days and months (and, to a lesser ex-
tent, years) will be specified as part of the ontology of clock
and calendar below. On their own, however, month and
year are legitimate temporal units.

In this development durations are treated as functions
on intervals and units, and not as first class entities on their
own, as in some approaches. In the latter approach, dura-
tions are essentially equivalence classes of intervals of the
same length, and the length of the duration is the length of
the members of the class. The relation between an approach
of this sort (indicated by prefixD-) and the one presented
here is straightforward.

(8T; u; n)[duration(T; u) = n

� (9 d)[D-duration-of(T ) = d

^D-duration(d; u) = n]]

At the present level of development of the temporal ontol-
ogy, this extra layer of representation seems superfluous. It
may be more compelling, however, when the ontology is
extended to deal with the combined durations of noncon-
tiguous aggregates of intervals.

3.2. Hath

The multiplicative relations above don’t tell the whole
story of the relations among temporal units. Temporal units
arecomposed ofsmaller temporal units. The basic predi-
cate used here for expressing the composition of larger in-
tervals out of smaller clock and calendar intervals isHath,
from statements like “30 days hath September” and “60
minutes hath an hour.” Its structure is

Hath(S;N; u; x)

meaning “A setS of N calendar intervals of typeu hath
the calendar intervalx.” That is, ifHath(S;N; u; x) holds,
thenx is composed of the disjoint union ofN intervals of

typeu; S is the set of those intervals. For example, ifx is
some month of September andS is the set of the succes-
sive days of that September, thenHath(S; 30; �Day�; x)
would be true.

The principal properties ofHath are as follows:
The type constraints on its arguments:S is a set,N is

an integer,u is a temporal unit, andx is an interval:

Hath(S;N; u; x)
� set(S) ^ integer(N)
^ temporal-unit(u) ^ interval(x)

The elements ofS are intervals of durationu:

Hath(S;N; u; x)
� (8 y)[member(y; S)
� interval(y) ^ duration(y; u) = 1]

S hasN elements:

Hath(S;N; u; x) � card(S) = N

The elements ofS are disjoint:

Hath(S;N; u; x)
� (8 y1; y2)[member(y1; S)

^member(y2; S) ^ y1 6= y2
� int-disjoint(y1; y2)]

There are elements inS that start and finishx:

Hath(S;N; u; x)
� (9 y1)[member(y1; S)
^ int-starts(y1; x)]

Hath(S;N; u; x)
� (9 y2)[member(y2; S)
^ int-finishes(y2; x)]

Except for the first and last elements ofS, every element of
S has an element that precedes and follows it:

Hath(S;N; u; x)
� (8 y1)[member(y1; S)
� [int-finishes(y1; x)
_ (9 y2)[member(y2; x)
^ int-meets(y1; y2)]]]

Hath(S;N; u; x)
� (8 y2)[member(y2; S)
� [int-starts(y2; x)
_ (9 y1)[member(y1; x)
^ int-meets(y1; y2)]]]

If time is linearly ordered, the existential quantifier9 in the
last four axioms can be replaced by9 !.

Finally, we would like to say that the setS coversx. A
simple way to say this is as follows:

Hath(S;N; u; x)
� (8 t)[inside(t; x)
� (9 y)[member(y; S)
^ in-interval(t; y)]]



That is, if an instantt is insidex, there is a smaller unity
thatt is inside or the start of.

However, this is a good place to introduce notions of
granularity. In describing the temporal properties of some
class of events, it may make sense to specify their time
with respect to some temporal unit but not with respect to a
smaller temporal unit. For example, one might want to talk
about an election as a point-like event being at some instant,
and specifying the day that instant is in, but not specifying
the hour or minute.

To accomodate this, the above axiom can be loosened
by applying it only when the instant t is located insome
interval of sizeu. The axiom above would be modified as
follows:

Hath(S;N; u; x)
� (8 t; y1)[inside(t; x) ^ inside(t; y1)

^ duration(y1; u)
� (9 y)[member(y; S)
^ in-interval(t; y)]]

Essentially, the conjunctsinside(t; y1) ^ duration(y1; u)
specify thatt can be viewed at a granularity ofu.

This treatment ofHath could be extended to measur-
able quantities in general.

3.3. The Structure of Temporal Units

We now define predicates true of intervals that are one
temporal unit long. For example,week is a predicate true
of intervals whose duration is one week.

second(T ) � seconds(T ) = 1
minute(T ) � minutes(T ) = 1
hour(T ) � hours(T ) = 1
day(T ) � days(T ) = 1
week(T ) � weeks(T ) = 1
month(T ) � months(T ) = 1
year(T ) � years(T ) = 1

We are now in a position to state the relations between suc-
cessive temporal units.

minute(T ) � (9S)Hath(S; 60; �Second�; T )
hour(T ) � (9S)Hath(S; 60; �Minute�; T )
day(T ) � (9S)Hath(S; 24; �Hour�; T )
week(T ) � (9S)Hath(S; 7; �Day�; T )
year(T ) � (9S)Hath(S; 12; �Month�; T )

The relations between months and days are dealt with in
Section 4.4.

4. Clock and Calendar
4.1. Time Zones

What hour of the day an instant is in is relative to the
time zone. This is also true of minutes, since there are re-
gions in the world, e.g., central Australia, where the hours
are not aligned with GMT hours, but are, e.g., offset half an
hour. Probably seconds are not relative to the time zone.

Days, weeks, months and years are also relative to the
time zone, since, e.g., 2002 began in the Eastern Standard
time zone three hours before it began in the Pacific Standard

time zone. Thus, predications about all clock and calendar
intervals except seconds are relative to a time zone.

This can be carried to what seems like a ridiculous ex-
treme, but turns out to yield a very concise treatment. The
Common Era (C.E. or A.D.) is also relative to a time zone,
since 2002 years ago, it began three hours earlier in what
is now the Eastern Standard time zone than in what is now
the Pacific Standard time zone. What we think of as the
Common Era is in fact 24 (or more) slightly displaced half-
infinite intervals. (We leave B.C.E. to specialized ontolo-
gies.)

The principal functions and predicates will specify a
clock or calendar unit interval to be thenth such unit in
a larger interval. The time zone need not be specified in
this predication if it is already built into the nature of the
larger interval. That means that the time zone only needs
to be specified in the largest interval, that is, the Common
Era; that time zone will be inherited by all smaller inter-
vals. Thus, the Common Era can be considered as a func-
tion from time zones to intervals.

CE(z) = T

Fortunately, this counterintuitive conceptualization will
usually be invisible and, for example, will not be evident
in the most useful expressions for time, in Section 4.5 be-
low. In fact, theCE predication functions as a good place
to hide considerations of time zone when they are not rele-
vant.

Time zones should not be thought of as geographical
regions. Most places change their time zone twice a year,
and a state or county might decide to change its time zone,
e.g., from Central Standard to Eastern Standard. Rather it
is better to have a separate ontology articulate the relation
between geographical regions X times and time zones. For
example, it would state that on a certain day and time a par-
ticular region changes its time zone from Eastern Standard
to Eastern Daylight.

Moreover, time zones that seem equivalent, like Eastern
Standard and Central Daylight, should be thought of as sep-
arate entities. Whereas they function the same in the time
ontology, they do not function the same in the ontology that
articulates time and geography. For example, parts of Indi-
ana are always on Eastern Standard Time, and it would be
false to say that they shift in April from that to Central Day-
light time.

In this treatment it will be assumed there is a set of en-
tities called time zones. Some relations among time zones
are discussed in Section 4.5.

4.2. Clock and Calendar Units

The aim of this section is to explicate the various stan-
dard clock and calendar intervals. A day as a calender in-
terval begins at and includes midnight and goes until but
does not include the next midnight. By contrast, a day as a
duration is any interval that is 24 hours in length. The day
as a duration was dealt with in Section 3. This section deals
with the day as a calendar interval.

It is useful to have three ways of saying the same thing:
the clock or calendar intervaly is thenth clock or calendar



interval of typeu in a larger intervalx in time zonez. This
can be expressed as follows for minutes:

min(y; n; x)

Becausey is uniquely determined byn andx, it can also be
expressed as follows:

minFn(n; x) = y

For stating general properties about clock intervals, it is
useful also to have the following way to express the same
thing:

clock-int(y; n; u; x)

This expression says thaty is the nth clock interval of
typeu in x. For example, the propositionclock-int(10 :
03; 3; �Minute�; [10 : 00; 11 : 00]) holds.

Hereu is a member of the set of clock units, that is, one
of *Second*, *Minute*, or *Hour*.

In addition, there is a calendar unit function with similar
structure:

cal-int(y; n; u; x)

This says that y is the nth calendar interval of
type u in x. For example, the propositioncal-
int(12Mar2002; 12; �Day�;Mar2002) holds. Hereu is
one of the calendar units *Day*, *Week*, *Month*, and
*Year*.

The unit *DayOfWeek* will be introduced below in
Section 4.3.

The relations among these modes of expression are as
follows:

sec(y; n; x) � secFn(n; x) = y

� clock-int(y; n; �sec�; x)
min(y; n; x) � minFn(n; x) = y

� clock-int(y; n; �min�; x)
hr(y; n; x) � hrFn(n; x) = y

� clock-int(y; n; �hr�; x)
da(y; n; x) � daFn(n; x) = y

� cal-int(y; n; �da�; x)
mon(y; n; x) � monFn(n; x) = y

� cal-int(y; n; �mon�; x)
yr(y; n; x) � yrFn(n; x) = y

� cal-int(y; n; �yr�; x)

Weeks and months are dealt with separately below.
The am/pm designation of hours is represented by the

functionhr12.

hr12(y; n; �am�; x) � hr(y; n; x)
hr12(y; n; �pm�; x) � hr(y; n+ 12; x)

Each of the calendar intervals is that unit long; a calendar
year is a year long.

sec(y; n; x) � second(y)
min(y; n; x) � minute(y)
hr(y; n; x) � hour(y)
da(y; n; x) � day(y)
mon(y; n; x) � month(y)
yr(y; n; x) � year(y)

A distinction is made above between clocks and calendars
because they differ in how they number their unit intervals.
The first minute of an hour is labelled with 0; for example,
the first minute of the hour [10:00,11:00] is 10:00. The first
day of a month is labelled with 1; the first day of March
is March 1. We number minutes for the number just com-
pleted; we number days for the day we are working on.
Thus, if the larger unit hasN smaller units, the argument
n in clock�int runs from 0 toN � 1, whereas incal-int
n runs from 1 toN . To state properties true of both clock
and calendar intervals, we can use the predicatecal-int and
relate the two notions with the axiom

cal-int(y; n; u; x) � clock-int(y; n� 1; u; x)

The type constraints on the arguments ofcal-int are as fol-
lows:

cal-int(y; n; u; x)
� interval(y) ^ integer(n)
^ temporal-unit(u) ^ interval(x)

There are properties relating to the labelling of clock and
calendar intervals. IfN u’s hathx andy is thenth u in x,
thenn is between 1 andN .

cal-int(y; n; u; x) ^ Hath(S;N; u; x)
^member(y; S)

� 0 < n <= N

There is a 1st small interval, and it starts the large interval.

Hath(S;N; u; x)
� (9 y)[member(y; S) ^ cal-int(y; 1; u; x)]

Hath(S;N; u; x) ^ cal-int(y; 1; u; x)
� int-starts(y; x)

There is annth small interval, and it finishes the large in-
terval.

Hath(S;N; u; x)
� (9 y)[member(y; S)
^ cal-int(y;N; u; x)]

Hath(S;N; u; x) ^ cal-int(y;N; u; x)
� int-finishes(y; x)

All but the last small interval have a small interval that suc-
ceeds and is met by it.

cal-int(y1; n; u; x) ^ Hath(S;N; u; x)
^member(y1; S) ^ n < N

� (9 y2)[cal-int(y2; n+ 1; u; x)
^ int-meets(y1; y2)]

All but the first small interval have a small interval that pre-
cedes and meets it.

cal-int(y2; n; u; x ^ Hath(S;N; u; x)
^member(y2; S) ^ 1 < n

� (9 y1)[cal-int(y1; n� 1; u; x)
^ int-meets(y1; y2)]

If time is linearly ordered, the existential quantifier9 can
be replaced by9 ! in the above axioms.



4.3. Weeks

A calendar week starts at midnight, Saturday night, and
goes to the next midnight, Saturday night. It is independent
of months and years. However, we can still talk about the
nth week in some larger period of time, e.g., the third week
of the month or the fifth week of the semester. So the same
three modes of representation are appropriate for weeks as
well.

wk(y; n; x) � wkFn(n; x) = y

� cal-int(y; n; �Week�; x)

As it happens, then andx arguments will often be irrele-
vant.

A calendar week is one week long.

wk(y; n; x) � week(y)

The day of the week is a temporal unit (*DayOfWeek*) in
a larger interval, so the three modes of representation are
appropriate here as well.

dayofweek(y; n; x)
� dayofweekFn(n; x) = y

� cal-int(y; n; �DayOfWeek�; x)

Whereas it makes sense to talk about thenth day in a year
or thenth minute in a day or thenth day in a week, it does
not really make sense to talk about thenth day-of-the-week
in anything other than a week. Thus we can restrict thex

argument to be a calendar week.

dayofweek(y; n; x) � (9n1; x1)wk(x; n1; x1)

The days of the week have special names in English.

dayofweek(y; 1; x) � Sunday(y; x)
dayofweek(y; 2; x) � Monday(y; x)
dayofweek(y; 3; x) � Tuesday(y; x)
dayofweek(y; 4; x) � Wednesday(y; x)
dayofweek(y; 5; x) � Thursday(y; x)
dayofweek(y; 6; x) � Friday(y; x)
dayofweek(y; 7; x) � Saturday(y; x)

For example,Sunday(y; x) says thaty is the Sunday of
weekx.

A day of the week is also a day of the month (and vice
versa), and thus a day long.

(8 y)[[(9n; x)dayofweek(y; n; x)]
� [(9n1; x1)da(y; n1; x1)]]

One correspondance will anchor the cycle of weeks to the
rest of the calendar, for example, saying that January 1,
2002 was the Tuesday of some week x.

(8 z)(9x)Tuesday(dayFn(1;monFn(1;
yrFn(2002; CE(z)))); x)

We can define weekdays and weekend days as follows:

weekday(y; x)
� [Monday(y; x) _ Tuesday(y; x)
_Wednesday(y; x) _ Thursday(y; x)
_Friday(y; x)]

weekendday(y; x)
� [Saturday(y; x) _ Sunday(y; x)]

4.4. Months and Years

The months have special names in English.

mon(y; 1; x) � January(y; x)
mon(y; 2; x) � February(y; x)
mon(y; 3; x) � March(y; x)
mon(y; 4; x) � April(y; x)
mon(y; 5; x) � May(y; x)
mon(y; 6; x) � June(y; x)
mon(y; 7; x) � July(y; x)
mon(y; 8; x) � August(y; x)
mon(y; 9; x) � September(y; x)
mon(y; 10; x) � October(y; x)
mon(y; 11; x) � November(y; x)
mon(y; 12; x) � December(y; x)

The number of days in a month have to be spelled out for
individual months.

January(m; y)
� (9S)Hath(S; 31; �Day�;m)

March(m; y) � (9S)Hath(S; 31; �Day�;m)
April(m; y) � (9S)Hath(S; 30; �Day�;m)
May(m; y) � (9S)Hath(S; 31; �Day�;m)
June(m; y) � (9S)Hath(S; 30; �Day�;m)
July(m; y) � (9S)Hath(S; 31; �Day�;m)
August(m; y)
� (9S)Hath(S; 31; �Day�;m)

September(m; y)
� (9S)Hath(S; 30; �Day�;m)

October(m; y)
� (9S)Hath(S; 31; �Day�;m)

November(m; y)
� (9S)Hath(S; 30; �Day�;m)

December(m; y)
� (9S)Hath(S; 31; �Day�;m)

The definition of a leap year is as follows:

(8 z)[leap-year(y)
� (9n; x)[year(y; n; (CE(z))
^ [divides(400; n)
_ [divides(4; n) ^ :divides(100; n)]]]

We leave leap seconds to specialized ontologies.
Now the number of days in February can be specified.

February(m; y) ^ leap-year(y)
� (9S)Hath(S; 29; �Day�;m)

February(m; y) ^ :leap-year(y)
� (9S)Hath(S; 28; �Day�;m)

A reasonable approach to defining month as a unit of tem-
poral measure would be to specify that the start and end
points have to be on the same days of successive months.

month(T )
� (9 d1; d2; n; x;m)
[in-interval(start-of(T ); d1)
^ in-interval(end-of(T ); d2)
^ da(d1; n;monFn(m;x))
^ da(d2; n;monFn(mod+(m; 1; 12); x))]



Heremod+ is modulo addition to take care of months span-
ing December and January. So the month as a measure of
duration would be related to days as a measure of duration
only indirectly, mediated by the calendar.

To say that July 4 is a holiday in the United States one
could write

(8 d;m; y)[da(d; 4;m) ^ July(m; y)
� holiday(d; USA)]

4.5. Time Stamps

Standard notation for times list the year, month, day,
hour, minute, and second. It is useful to define a predication
for this.

time-of(t; y;m; d; h; n; s; z)
� in-interval(t; secFn(s;minFn(n; hrFn(h;

daFn(d;monFn(m; yrFn(y; CE(z))))))))

For example, an instantt has the time

5:14:35pm PST, Wednesday, February 6, 2002

if the following properties hold fort:

time-of(t; 2002; 2; 6; 17; 14; 35; �PST�)
(9w; x)[in-interval(t; w)
^Wednesday(w; x)]

The second line says thatt is in the Wednesdayw of some
weekx.

The relations among time zones can be expressed in
terms of the time�of predicate. Two examples are as fol-
lows:

h < 8 � [time-of(t; y;m; d; h; n; s; �GMT�)
� time-of(t; y;m; d�1; h+16; n; s; �PST�)]
h � 8
� [time-of(t; y;m; d; h; n; s; �GMT�)
� time-of(t; y;m; d; h�8; n; s; �PST�)]

time-of(t; y;m; d; h; n; s; �EST�)
� time-of(t; y;m; d; h; n; s; �CDT�)

5. Deictic Time
Deictic temporal concepts, such as “now”, “today”, “to-

morrow night”, and “last year”, are more common in natu-
ral language texts than they will be in descriptions of Web
resources, and for that reason we are postponing a develop-
ment of this domain until the first three are in place. But
since most of the content on the Web is in natural language,
ultimately it will be necessary for this ontology to be de-
veloped. It should, as well, mesh well with the annotation
standards used in automatic tagging of text.

We expect that the key concept in this area will be a
relationnow between an instant and an utterance or docu-
ment.

now(t; d)

The concept of “today” would also be relative to a docu-
ment, and would be defined as follows:

today(T; d)
� (9 t; n; x)[now(t; d) ^ in-interval(t; T )
^ da(T; n; x)]

That is,T is today with respect to documentd if and only if
there is an instantt in T that is now with respect to the doc-
ument andT is a calendar day (and thus thenth calendar
day in some intervalx).

Present, past and future can be defined in the obvious
way in terms of now and before.

Another feature of a treatment of deictic time would
be an axiomatization of the concepts of “last”, “this”, and
“next” on anchored sequences of temporal entities.

6. Aggregates of Temporal Entities
A number of common expressions and commonly used

properties are properties of sequences of temporal entities.
These properties may be properties of all the elements in the
sequence, as in “every Wednesday”, or they may be proper-
ties of parts of the sequence, as in “three times a week” or
“an average of once a year”. We are also postponing devel-
opment of this domain until the first three domains are well
in hand.

This may be the proper locus of a duration arithmetic,
since we may want to know the total time an intermittant
process is in operation.

7. Vague Temporal Concepts
In natural language a very important class of temporal

expressions are inherently vague. Included in this category
are such terms as “soon”, “recently”, “late”, and “a little
while”. These require an underlying theory of vagueness,
and in any case are probably not immediately critical for
the Semantic Web. This area will be postponed for a little
while.

Acknowledgments
I have profited from discussions with James Allen,

George Ferguson, Pat Hayes, Adam Pease, and Stephen
Reed, among others, none of whom however would neces-
sarily agree entirely with the way I have characterized the
effort. The research was funded by the Defense Advanced
Research Projects Agency under Air Force Research Lab-
oratory contract F30602-00-C-0168 and by the Advanced
Research and Development Agency.

8. References
Allen, James F. and Henry A. Kautz. 1985. “A model of

naive temporal reasoning.”Formal Theories of the Com-
monsense World, ed. by Jerry R. Hobbs and Robert C.
Moore, Ablex Publishing Corp., pp. 251-268.


