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Chapter 2

The Logical Notation:
Ontological Promiscuity

2.1 Logic as the Language of Thought

A very large body of work in Al begins with the assumptions that infor-
mation and knowledge should be represented in first-order logic and that
reasoning is theorem-proving. On the face of it, this seems implausible as a
model for people. It certainly doesn’t seem as if we are using logic when we
are thinking, and if we are, why are so many of our thoughts and actions so
illogical? In fact, there are psychological experiments that purport to show
that people do not use logic in thinking about a problem (e.g., Wason and
Johnson-Laird 1972).

I believe that the claim that logic is the language of thought comes to less
than one might think, however, and that thus it is more controversial than
it ought to be. It is the claim that a broad range of cognitive processes are
amenable to a high-level description in which six key features are present.
The first three of these features characterize propositional logic and the next
two first-order logic. The last carries us beyond standard logic. I will express
these features in terms of “concepts”, but one can just as easily substitute
propositions, neural elements, or a number of other terms. The first five
features are as follows:

1. Conjunction: There is an additive effect (P A @) of two distinct con-
cepts (P and @) being activated at the same time.

2. Modus Ponens: The activation of one concept (P) triggers the activa-
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tion of another concept () because of the existence of some structural
relation between them (P D Q).

3. Recognition of Obvious Contradictions: The recognition of contradic-
tions in general is undecidable, but we have no trouble with the easy
ones, for example, that cats aren’t dogs.

4. Predicate-Argument Relations: Concepts can be related to other con-
cepts in several different ways. For example, we can distinguish be-
tween a dog biting a man (bite(D, M)) and a man biting a dog (bite(M, D)).

5. Universal Instantiation (or Variable Binding): We can keep separate
our knowledge of general (universal) principles (“All men are mor-
tal”) and our knowledge of their instatiations for particular individuals
(“Socrates is a man” and “Socrates is mortal”).

Any plausible proposal for a language of thought must have at least these
features, and once you have these features you have first-order logic.

Note that in this list there are no complex rules for double negations
or for contrapositives (if P implies @) then not @ implies not P). In fact,
most of the psychological experiments purporting to show that people don’t
use logic really show that they don’t use the contrapositive rule or that
they don’t handle double negations well. If the tasks in those experiments
were recast into problems involving the use of modus ponens, no one would
think to do the experiments because it is obvious that people would have
no trouble with the task.

But is first-order logic adequate, or do we need higher-order logic, which
many researchers in linguistics and knowledge representation employ? In
this chapter I demonstrate that first-order logic is adequate for handling
representation issues in natural language. Through various kinds of reifi-
cation, higher-order logics can be recast into first-order logic, and in view
of the resulting simplification in characterizing the reasoning process, there
are very good reasons to do so.

The sixth property we need of the logic if we are to use it for repre-
senting and reasoning about commonsense world knowledge—defeasibility
or nonmonotonicity, and that is dealt with in Chapter 3.

The form of logic we employ in this book is a very simple version of
textbook logic. There are constants and variables, which are terms. A
function can be applied to the appropriate number of terms as arguments
and the result is a term, but this is used only occasionally and only for
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expository purposes. There are predicates (or predicate constants), and
they can be applied to the appropriate number of terms as arguments to
form expressions. Expressions can be combined with the logical operators
of conjunction (A), disjunction (V ), negation (—), implication (D), and
equivalence (=). Expressions can be quantified over by universal (V) and
existential (3) quantifiers. In practice, all quantified variables will occur in
the expressions they quantify over, and there will be no variables that are
not bound by a quantifier.

2.2 Desiderata for a Logical Notation

The role of a logical notation in a theory of discourse interpretation is for
representing the explicit information in English texts, for expressing the
knowledge required for understanding texts (which in ordinary life we ex-
press in English), and for manipulation by the interpretation process. These
uses lead to two principal criteria for a logical notation.

Criterion I: The notation should be as close to English as possible. This
makes it easier to specify the rules for translation between English and the
formal language, and also makes it easier to encode in logical notation facts
we normally think of in English. The ideal choice by this criterion is English
itself, but it fails monumentally on the second criterion.

Criterion II: The notation should be syntactically simple. Since infer-
ence is defined in terms of manipulations performed on expressions in the
logical notation, the simpler that notation, the easier it will be to define the
inference process.

A logical notation is proposed here which is first-order and nonintensional
and for which semantic translation can be naively compositional. The key
move is to expand what kinds of entities one allows in one’s ontology, rather
than complicating the logical notation, the logical form of sentences, or the
semantic translation process.

In particular, certain decisions are embodied in the notation.

1. In the interests of simple syntax, the notation is a variety of first-order
predicate calculus. Much of the complexity of English syntax, e.g. the di-
vision of predicates into nouns, adjectives, verbs, adverbs, and prepositions,
reflects a conceptual scheme that is better captured in the axioms than in
the syntax of our formal language. There has been an attempt to make
the notation as “flat” as possible. Modal operators are avoided, and there
are no functionals, and there is no quantification over predicates. Func-
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tions are sometimes used for expository purposes, but play no role in the
proper logical notation. Standard logical quantifiers are used sparingly for
specific notational purposes; they are not used to represent natural language
quantifiers, however. All of this can be summarized in the motto:

All morphemes are created equal.

Morphemes introduce predications, and that’s all.

2. In the interests of uniformity in the syntax of the logical notation,
all semantic content is in the predicates and none is in the constants. All
knowledge is knowledge of predications. Constants are only handles. Intu-
itively, the reason for this is that in natural language we cannot communicate
entities directly. We can only communicate properties and hope that the
listener can determine the entity we are attempting to refer to. Formally,
this decision means that predicates and constants play quite distinct roles
in the inferential process. This approach is sometimes carried to extremes
for the purpose of shedding light on several thorny issues. For example,
proper names and sequences of numbers, when they are the focus of con-
cern, are treated as predicates, and de re belief is also treated via predicates.
Constants are occasionally given suggestive names—J for John—but this is
strictly for the convenience of the reader.

3. In the interests of closeness to English, for most of the predicates in
the formal language we simply use the corresponding morphemes in English.
An extreme example of this is seen in the representation of the propositional
content of the pronoun “he”: rather than raising the register to express it
as human(X) A masculine(X), the predication is simply he(X). Since
predicate names are arbitrary, we may as well use the ones English already
supplies. We need, in addition, some predicates beyond just the morphemes
of English. For example, where several senses of a word need to be distin-
guished, the morphemes are subscripted, e.g. bank;, banks.

4. In the interests of closeness to English, the initial logical form con-
sists of about one predication and one constant for every morpheme in the
sentence, as well as predications corresponding to certain structural com-
binations, such as compound nominals and adverbial measure phrases. No
obligatory lexical decompositions are done in semantic translation, although
such decompositions may in effect be performed as inferences during subse-
quent processing.

The development of such a logical notation is usually taken to be a
very hard problem. I believe this is because researchers have imposed upon
themselves several additional constraints—to adhere to stringent ontological
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scruples, to explain a number of mysterious syntactic facts as a by-product of
the notation, and to encode efficient deduction techniques in the notation.
Most representational difficulties go away if one rejects these constraints,
and there are good reasons in this enterprise for rejecting each of these
constraints.

Ontological Scruples: Researchers in philosophy and linguistics have
typically restricted themselves to very few (although a strange assortment
of) kinds of entities — physical objects, numbers, sets, times, possible worlds,
propositions, events, and situations — and all of these but the first have been
controversial. Quine has been the greatest exponent of ontological chastity.
His argument is that in any scientific theory, “we adopt, at least insofar as
we are reasonable, the simplest conceptual scheme into which the disordered
fragments of our experience can be fitted and arranged.” (Quine, 1953, p.
16.) But he goes on to say that “simplicity ... is not a clear and unambiguous
idea; and it is quite capable of presenting a double or multiple standard.”
(Ibid., p. 17.) Minimizing kinds of entities is not the only way to achieve
simplicity in a theory. The aim in this enterprise is to achieve simplicity by
minimizing the complexity of the inference process. It turns out this can be
achieved by multiplying kinds of entities, by allowing as an entity everything
that can be referred to by a noun phrase.

Syntactic Explanation: The argument here is easy. It would be pleas-
ant if an explanation of, say, the syntactic behavior of count nouns and mass
nouns fell out of our underlying ontological structure at no extra cost, but
if the extra cost is great complication in the definition of the inference pro-
cess, it would be quite unpleasant. In constructing a theory of discourse
interpretation, it doesn’t make sense for us to tie our hands by requiring
syntactic explanations as well. The problem of discourse is at least an order
of magnitude harder than the problem of syntax, and syntax shouldn’t be
in the driver’s seat.

Efficient Deduction: There is a long tradition in artificial intelligence
of building control information into the notation, and indeed much early
work in knowledge representation wass driven by this consideration. Seman-
tic networks, description logics, and other notational systems built around
hierarchies (Quillian, 1968; Simmons, 1973; Hendrix, 1975; 77, 1977)) im-
plicitly assign a low cost to certain types of syllogistic reasoning. The KL-
ONE representation language (Schmolze and Brachman, 1982) has a variety
of notational devices, each with an associated efficient deduction procedure.
Hayes (1979) argued that frame representations (Minsky, 1975, Bobrow and
Winograd, 1977) should be viewed as sets of predicate calculus axioms to-



DRAFT 6

gether with a control component for drawing certain kinds of inferences
quickly. In quite a different vein, Moore (1980) used a possible worlds
notation to model knowledge and action in part to avoid inefficiencies in
theorem-proving.

By contrast, I have not attempted to build efficiencies into the notation,
and the inference process as well is specified without regard to data struc-
tures or efficiency considerations. From a psychological point of view, this
allows us to abstract away from the details of implementation on a partic-
ular computational device, increasing the generality of the theory. From a
technological point of view, it reflects a decision to first determine empir-
ically the most common and/or problematic classes of inferences required
for discourse interpretation and only then to seek algorithms for optimizing
them.

This book employs a flat logical notation with an ontologically promis-
cuous semantics.

One’s first naive guess as to how to represent a simple sentence like

A boy builds a boat.
is as follows:
(3, y)build(x, y) A boy(z) A boat(y)

This simple approach seems to break down when we encounter the more
difficult phenomena of natural language, like tense, intensional contexts,
and adverbials, as in the sentence

Maybe the boy wanted to build a boat quickly.

These phenomena have led students of language to introduce significant
complications in their logical notations for representing sentences (Schubert
& Chung, 1977). For example, combining a number of proposed notations,
we might represent the content of this sentence as follows:

(tx : BOY)[oPASTIWANT (z, A\z[(3y : BOAT)Quick(build)(z,y)]]]

The definite article is encoded in the iota operator ¢. Possibility is rep-
resented as the modal operator ¢. The past tense is represented with a
temporal operator PAST on expressions. The facts that x is a boy and y is
a boat are encoded in type constraints associated with quantifiers. Wanting
is an operator W ANT that takes an individual and a lambda expression as
its arguments. The adverb “quickly” is represented as a operator mapping
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predicates into predicates. The verb “build” is represented as an ordinary
predicate taking individuals as its arguments.

But consider the following set of possible next sentences that refer anaphor-
ically to material in this sentence. The piece of the complicated logical form
that is being referred to is indicated in parentheses after the example.

He is impatient. (z)

It should be seaworthy. (y)

But it always takes a long time. (build)

This desire is impractical. (WANT)

The possibility distresses me. (o)

Maybe he wanted to then, but he no longer does. (PAST)

Now imagine a theory of discourse interpretation that must say how coref-
erence of anaphoric expressions is resolved. There would have to be special
cases for each of these examples, and for every other example that exhibited
a phenomenon that had given rise to a specialized notation.

Specialized notations are very useful for specialized inquiries. When we
are studying only time, it may be useful to have a specialized temporal logic.
But it becomes a hinderance when we expand our scope to all of the content
of discourse.

The approach used here will be to maintain the syntactic simplicity of the
logical notation and expand the theory of the world implicit in the semantics
to accommodate this simplicity. The representation of the above sentence,’
as is justified below, is

(Feq,eq,e3,e4,x,y)Rexist(eg) A Past'(eg,e1) N possible’(eq,e2)
ANwant'(ea, z,e3) N quick!(es,eq) N build (eq,z,y) N boy(z)
Nboat(y)

That is, the eventuality eg really exists, where ey is e1’s occurrence in the
past, where e is the possibility of es’s holding, where es is z’s wanting es,
which is the quickness of e4, which is z’s building of y, where x is a boy and
y is a boat. (The treatment of the determiners is discussed in Chapter 4.)
Then the referents of the italicized anaphoric expressions above are x, y, ey,
e2, €1, and eg, respectively, all individual constants.

In brief, the logical form of natural language sentences will be a conjunc-
tion of atomic predications in which all variables are existentially quantified

1Or at least an approximation to it.
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with the widest possible scope. Predicates will be identical or nearly identi-
cal to natural language morphemes. There will be no functions, functionals,
nested quantifiers, disjunctions, negations, or modal or intensional operators
in logical forms.

This notation can also be seen as one solution to a problem that has
driven much research in natural language semantics in recent years: How
do quantifiers scope across sentences? Kohlhase (1977) has identified three
possible approaches, each spawning a program of research:

1. Replace existential quantifiers by something else: Discourse represen-
tation theory (Kamp, 1977).

2. Extend the scope of quantifiers dynamically: Dynamic predicate logic
(Groendijk & Stendhal, 1977).

3. Composition of sentences by conjunction inside the scope of existential
quantifiers: Ontological promiscuity.

This chapter is an exposition of the third approach.

2.3 Ontological Promiscuity

2.3.1 Motivation

Davidson (1967) proposed a treatment of action sentences in which events
are treated as individuals. This facilitated the representation of sentences
with time and place adverbials. Thus we can view the sentences

John ran on Monday.
John ran in San Francisco.
as asserting the existence of a running event by John and asserting a relation

between the event and Monday or San Francisco. We can similarly view the
sentence

John ran slowly.

as expressing an attribute about a running event. Treating events as indi-
viduals is also useful because they can be arguments of statements
about causes:
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Because John ran, he arrived sooner than anyone else.

Because he wanted to get there first, John ran.
They can be the objects of propositional attitudes:
Bill was surprised that John ran.

Finally, this approach accomodates the facts that events can be nominalized
and can be referred to pronominally:

John’s running tired him out.

John ran, and Bill saw it.

But virtually every predication that can be made in natural language
can be specified as to time and place, be modified adverbially, function as a
cause or effect of something else, be the object of a propositional attitude,
be nominalized, and be referred to by a pronoun. It is therefore convenient
to extend Davidson’s approach to all predications. That is, corresponding
to any predication that can be made in natural language, we will say there is
an event, or state, or condition, or situation, or “eventuality”, or whatever,
in the world that it refers to. This approach might be called “ontological
promiscuity”. One abandons all ontological scruples.

Thus we would like to have in our logical notation the possibility of
an extra argument in each predication referring to the “condition” that
exists when that predication is true. However, especially for expository
convenience, we would like to retain the option of not specifying that extra
argument when it is not needed and would only get in our way. Hence, the
logical notation will provide two sets of predicates that are systematically
related, by introducing what might be called a “nominalization” operator ’.
Corresponding to every n-ary predicate p there will be an n+ 1-ary predicate
p’ whose first argument can be thought of as the condition that holds when p
is true of the subsequent arguments. Thus, if run(J) means that John runs,
run/(E,J) means that F is a running event by John, or John’s running. If
slippery(F) means that floor F is slippery, then slippery’(E, F') means that
FE is the condition of F’s being slippery, or F’s slipperiness. The effect of
this notational maneuver is to provide handles by which various predications
can be grasped by higher predications. A similar approach has been used in
many Al systems.

It should be pointed out that, although I refer to the prime as a “nom-
inalization operator”, I do so only informally. This is not an extension to
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first-order logic. Rather it is parallel set of ordinary predicates, with similar
names for mnemonic purposes.

In discourse one not only makes predications about such ephemera as
events, states and conditions. One also refers to entities that do not actually
exist. Our notation must thus have a way of referring to such entities. We
therefore take our model to be a Platonic universe which contains everything
that can be spoken of—objects, events, states, conditions—whether they
exist in the real world or not. It then may or may not be a property of such
entities that they exist in the real world. In the sentence

(2.1)  John worships Zeus.

the worshipping event and John, but not Zeus, exist in the real world, but
all three exist in the (overpopulated) Platonic universe. Similarly, in

John wants to fly.

John’s flying exists in the Platonic universe but not in the real world.?3:4

2.3.2 Notation

The logical notation is just first-order predicate calculus. Among the nota-
tional conventions used throughout the book are that constants are upper-
case letters or words in upper-case letters, possibly subscripted; variables
are lower-case letters, often subscripted; predicates closely related to En-
glish morphemes are in lower-case letters, and other predicates have their
first letter capitalized. To reduce the use of parentheses and brackets, we
assume — has the highest precedence, A and V have higher precedence

2T have my tongue in my cheek, of course, when I refer to a “Platonic universe”. I do
not (I think) advocate Platonism. The Platonic universe should be viewed as a socially
constituted, or conventional, construction, which is nevertheless highly constrained by the
way the (not directly accessible) material world is. The degree of constraint is variable.
We are more constrained by the material world to believe in trees and chairs, less so to
believe in patriotism or ghosts.

3The reader might choose to think of the Platonic universe as the universe of possible
individuals, although I do not want to exclude logically impossible individuals, such as the
condition John believes to exist when he believes 6 + 7 = 15.

4Rappaport has urged that I call this a “Meinongian” universe rather than a “Platonic”
universe since it contains nonexistent individuals (Rappaport, 197?, Meinong, 18?77). In
any case, neither term plays a serious terminological role in this treatment.
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than D and =, and all of these operators have precedence over quantifiers.
Instead of writing

(Vo)[[p(z) A [2q(@)]] D By)lr(z,y) v s(z,y)]]

we may write

(Vz)p(x) A —~q(z) D By)r(z,y) V s(z,y)

Quantification in this notation is always over entities in the Platonic uni-
verse. Existence in the real world is expressed by a separate predication,
with the predicate Rexist described below. Further abbreviations are in-
troduced in Section 2.6.1. Particularly complex logical expressions may be
written out fully bracketed for clarity under inspection.

The translation of a large and representative subset of English into the
logical notation is specified precisely in Chapter 4. For now, the following
examples should give the reader an intuitive feel for the relation between
the notation and English sentences.

kiss(JOHN,MARY): John kisses Mary.

kiss'(E1, JOHN,MARY): E; is the (existent or nonexistent)
event of John’s kissing Mary.

’Ln(BALLl,BOXl) BALLl is in BOX1

in'(Ey, BALL1, BOX;): Es is the condition of BALL;’s being
in BOX1

believe(BILL, E5): Bill believes condition Fj to exist, i.e., that
BALL, is in BOX;.

almost(Es): Condition Fy almost exists, i.e., the ball is almost

in the box.
not(Es): Condition Ey does not exist, i.e., the ball is not in the
box.

not'(Es, E3): E3 is the condition of Ey’s not existing.
man'(Ey, JOHN): Ejy is the condition of John’s being a man.

white' (Es, BLOCK): Ej is the condition of BLOCK;’s being
white.

slow'(E7, Eg) A run/(Eg, JOHN): E7 is the condition that the
event Fg of John’s running happens in a slow manner.
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and(Eg, Eg) A OTL/(ES, BLOCK;, TABLE) A OTL/(Eg, BLOCK,,
BLOCK;)): Conditions Eg and Eg both exist, where FEg is
the condition of BLOCK;’s being on TABLE and Fy is the
condition of BLOCK>’s being on BLOC'K7; more naturally,
BLOCK; ison TABLFE and BLOCK, is on BLOCKj.

and' (Eyg, Es, E9): FEjg is the condition of both Eg and Fy exist-
ing.

cause(JOH N, E13) A change' (Eys, E11, E12) A alive’ (Eyy, BILL)
Anot'(E12, E11): John causes a change event Eq3 from a con-
dition E1; of Bill’s being alive to a condition E15 of condition
F1 not existing; that is, John causes Bill to be not alive.

Existence and truth in the actual universe are treated as predications
about individuals in the Platonic universe. For this purpose, we use a pred-
icate Rexist. The formula Rexist(JOHN) says that the individual in the
Platonic universe denoted by JOHN exists in the actual universe.® The
formula

(2.2)  Rexist(E6) A run’/(E6,JOHN)

says that the condition Fg of John’s running exists in the actual universe, or
more simply that “John runs” is true, or still more simply, that John runs.
A shorter way to write it is run(JOHN).

Although for a simple sentence like “John runs”, a logical form like (2.2)
seems a bit overblown, when we come to real sentences in English discourse
with their variety of tenses, modalities and adverbial modifiers, the more
elaborated logical form is necessary. In fact, when we deal with time in
Section 2.4.3, we find we must think carefully about just what the expression
run(JOHN) means, and whether we would ever want it to be the logical
form of a sentence.

Adopting the notation of (2.2) has the effect of splitting a sentence into
its propositional content—run'(E6, JOHN)—and its assertional claim—
Rexist(FE6). This frequently turns out to be useful, as the latter is often in
doubt until substantial inferential work has been done. An entire sentence
may be embedded within an indirect proof or other extended counterfactual.

®McCarthy (1977) employs a similar technique.
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2.3.3 Eventualities

We are now in a position to state formally the systematic relation between
the unprimed and primed predicates as an axiom schema. For every n-ary
predicate p,

(Vai,...,z0)p(x1,...,xy) D (Fe)Rexist(e) A p'le,x1,...,2n,)

That is, if p is true of z1, ..., x,, then there is a condition e of p’s being true
of x1,...,x,, and e really exists. Conversely,

(Ve,x1,...,x,)Rexist(e) A p'(e,z1,...,20) D p(x1,...,20)

That is, if e is the condition of p’s being true of x1,...,x,, and e really
exists, then p is true of x1,...,x,. For future reference, we compress these
axiom schemas into one formula:

(A1) (Vai,...,zp)p(z1,...,2,) = (Fe)Rexist(e) A p'(e,x1,...,25)

This may be seen as a weak sort of comprehension axiom. A comprehen-
sion axiom is one that relates descriptions to existing entities. Thus, there
would be a functional F' such that, given a description of a situation p(z),
it would produce the corresponding really existing eventuality F'(p(x)) such
that p'(F(p(z)),z) holds. The above axiom is weaker in that the existence
of the eventuality is guaranteed, but there is not necessarily any constructive
way of getting from a predication to a unique eventuality.

Axiom schema guarantees the existence in the Platonic universe of any
eventuality that also exists in the real world. It will also be useful to have
an eventuality in the Platonic universe, though not necessarily in the real
world, for any possible predication. The following axiom schema does this:

(A2) (Va1,...,zn)3e)p (e, 21,...,2p)

That is, given a predicate p, for any set of entities x1,...,x,, there is an
eventuality e that is the eventuality of p being true of those entities. There
is no guarantee that e exists in the real world. In fact, very very few of such
eventualities will exist in the real world. In the Platonic universe we will
be able to form eventualities referring to all sorts of nonsense, such as ideas
being green and sets being members of themselves, but these eventualities
will not exist in the real world.
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Essentially, the Platonic universe is the place for all the things we can talk
about. Whether these things exist in the real world requires an independent
predication. Separating out things that can be talked about and things that
really exist allows us to model language in its full complexity without getting
tangled up in physics.

It may also be desirable to have an extensionality axiom schema, spec-
ifying the conditions under which two eventualities are identical. A good
candidate would be

e1 =ey = (Va)[p'(e1,z) Ap'(e2,x)] A[Rexist(e1) = Rexist(es)]

That is, two eventualities e; and ey are identical if and only if they are the
first arguments of the same primed predication and one really exists if and
only if the other does too. However, this axiom schema will play no further
role in this book, and I will not commit myself to it one way or the other.

I have used words like “condition” and “event” in glossing primed pred-
ications, and the reader will find references to states, objects, entities, and
so on, but these words, here and throughout the book, have no theoretical
status. They are strictly for the convenience of the reader. It sounds less
bizarre to talk of John’s running as an event than as an individual. But in
the semantics of the notation no such distinctions are made. There are only
individuals. Conditions, events, situations, objects, entities, and so on, are
simply individuals in the Platonic universe and possibly in the real world.

It is convenient, however, to have a term for individuals that occur as
the first argument of a primed predication. These are referred to as “even-
tualities”, following Bach’s (1981) use of the term “eventuality” for possible
states, conditions and events. The constants representing eventualities gen-
erally start with the letter F/, and the variables with e.

It is sometimes convenient to know of an entity that it is an eventuality;
hence, we have the axiom schema

Ve, z1,...)p (e, 21,...) D eventuality(e)

It will be convenient to refer in a consistent way to the arguments of primed
and unprimed predications. In both p(z,y) and p/(e, z,y), 2 will be referred
to as the “first argument” and y as the “second argument”. Rather than refer
to e as the “zeroth argument”, it will be referred to as the “self argument”.

One’s intuitions about the nature of eventualities can be strengthened
in three steps.

1. First think of eventualities as partial mappings from bits of space-
time to the bits of material that occupy that bit of space-time. For example,
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if I wave my arm, the domain of the partial mapping would be bits of the
trajectory that my arm follows through space-time. The range would be
bits of my arm. Lots of mappings could be defined. Only some of them will
correctly describe the way the world is. Those are the ones that Rexist.

This is good in some instances as a model for eventualities, but it is not a
completely adequate conception for linguistic purposes, because of adverbial
modification. My running from SRI to Stanford might be fast, whereas my
going from SRI to Stanford might be slow, and they correspond to the same
partial mapping from space-time to material. The running and the going
must be distinguished as eventualities. In this interpretation eventualities
are not individuated finely enough.

2. Assign denotations in the real world to non-eventuality variable sym-
bols. Then take the denotation of an eventuality variable symbol e where
p'(e,x,...) to be an n-tuple whose first element is the intension of the pred-
icate p, i.e., the mapping from possible worlds into the extension of the
predicate p in that world, and whose subsequent elements are the denota-
tions of the arguments x, ..., in the real world. Now my running and my
going are different because “run” and “go” have different intensions.

This is also not quite right, because I would like to be able to talk
about impossible eventualities, such as the eventuality of Clyde’s being a
unicorn and the eventuality of Clyde’s being a phoenix. These would not be
distinguished under this interpretation, since the extensions of both unicorn
and phoenix are empty in all possible worlds (let’s say), so they have the
same intension.

3. Essentially, an eventuality is anything that can be nominalized—i.e.,
anything. John’s running, John’s being tall, John’s not being tall, John’s
being John, Clyde’s being a unicorn, the square root of 2’s being 1, and so
on.

If you accept the reality of such complex entities as the United States,
then it is hard to see what ontological scruples you could have against this
conception of eventualities.

2.3.4 Transparency and Opacity

A sentence in English typically asserts the existence of one or more even-
tualities in the real world, and this may or may not imply the existence of
other individuals. The logical form of sentence (2.1) is

Rexist(Ey) N worship' (Ey,JOHN,ZEUS)
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This implies Rexist(JOHN) but not Rexist(ZEUS). Similarly, the logical
form of “John wants to fly” is

Rexist(Es) N want'(E2, JOHN, E3) A fly'(Es, JOHN)

This implies Rexist(JOHN) but not Rexist(E3). When the existence of
the eventuality corresponding to some predication implies the existence of
one of the arguments of the predication, we will say that the predicate is
transparent in that argument, and opaque otherwise. Thus, worship and
want are transparent in their first arguments and opaque in their second
arguments.® In general, if a predicate p is transparent in its nth argument
x, this can be encoded by the axiom

Ve,...,x,...)p'(e,...,2z,...) N Rexist(e) D Rexist(x)

That is, if e is p’s being true of z and e really exists, then x really exists.
Equivalently,

(V...,z,...)p(...,x,...) D Rexist(x)

In the absence of such axioms, predicates are assumed to be opaque. In
practice, in this book, such axioms will not be stated. Where necessary, it
will simply be stated that p is transparent or opaque in its nth argument. In
a natural language processing system such axioms, as well as axiom schema
(A1), would no doubt be implemented by a special-purpose mechanism,
rather than being stated explicitly.

The following sentence illustrates the extent to which we must have a
way of representing existent and nonexistent states and events in ordinary
discourse.”

(2.3)  The government has repeatedly refused to deny that Prime Minis-
ter Margaret Thatcher vetoed the Channel Tunnel at her summit
meeting with President Mitterand on 18 May, as New Scientist re-
vealed last week.

In addition to the ordinary individuals Margaret Thatcher and President
Mitterand and the corporate entity New Scientist, there are the intervals

SPrimed predicates are trivially transparent in their self argument.
"This sentence is taken from the New Scientist, June 3, 1982 (p- 632). I am indebted
to Paul Martin for calling it to my attention.
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of time 18 May and “last week”, the (at that time) nonexistent entity, the
Channel Tunnel, an individual revealing event and the complex event of the
summit meeting, which actually occurred, a set of real refusals distributed
across time in a particular way, a denial event which did not occur, and a
vetoing event which may or may not have occurred.

Let us take Past(Fg) to mean that Fg existed in the past and Per fect(E)
to mean what the perfect aspect means, roughly, that F; existed in the past
and may not yet be completed. The representation of just the verb, nomi-
nalizations, adverbials and tenses of sentence (2.3) is as follows:

Perfect(Ey) N repeated(E1) N refuse’ (E1, GOVT, Es)
Adeny' (B9, GOVT, Es) Avetd (Es, MT,CT) A at'(Ey4, E3, E5)
Ameet' (Es, MT, PM) A on(E5,18M AY) A Past(Eg)
Areveal (Eg, NS, E3) A last-week(Eg)®

Of the various entities referred to, the sentence, via unprimed predicates,
asserts the existence of a typical refusal F; in a set of refusals and the
revelation Fg. The existence of the refusal implies the existence of the
government. It does not imply the existence of the denial; quite the opposite.
It may suggest the existence of the veto, but certainly does not imply it.
The revelation Eg, however,

implies the existence of both the New Scientist NS and the at relation
FE4, which in turn implies the existence of the veto and the meeting. These
then imply the existence of Margaret Thatcher MT and

President Mitterand PM, but not the Channel Tunnel CT. Of course,
we know about the existence of some of these entities, such as Margaret
Thatcher and President Mitterand, for reasons other than the transparency
of predicates.

Sentence (2.3) shows that virtually anything can be embedded in a higher
predication. This is the reason, in the logical notation, for flattening every-
thing into predications about individuals.

It may be objected? that this notation does not distinguish between the
assertion, as in

John ran.

and the nominalization, as in

8Actually, in the notation explained in Section 2.6.1, we should have
deny’ (B2, GOVT, Es&E4) and reveal'(Eg, NS, E3& E4).
9Leonard Schubert, personal communication



DRAFT 18

I doubt that John ran.
or
That John ran surprised me.

In fact, in all of these sentences there is the eventuality E of John’s running.
In the first the real existence of the eventuality is asserted. In the second
and third it is the content of a propositional attitude. The assertion and the
nominalization both describe the eventuality; the assertion is distinguished
by the fact that it also makes a claim about its real existence.

2.3.5 Sorts

One might think it desirable to distinguish individuals by sort in the notation
itself and to restrict predicates as to the sorts to which they can apply. We
could, for example, have the sorts OBJECT and SUBSTANCE and the
restriction on the predicate white that it can only apply to individuals of
these two sorts. This would avoid nonsensical

expressions like white(E) A run/(E, JOHN), or “John runs whitely.”

I am not inclined to complicate the notation in this way. For one thing,
the sorts that occur to one most naturally—“object”, “substance”, “state”,
“event”, “action”—do not have clear boundaries. For example, is fog an ob-
ject, substance, state, or event? Similar difficulties are likely in any scheme
of types one might devise.

For another thing, it is not possible to classify things in the universe
finely enough to prevent the construction of all nonsensical expressions. For
example, we would not want to rule out man(JOHN) A dog(JOHN) on
the basis of a sort violation. So

why rule out anything on this basis? It may be that the sentences “John
is a man and a dog” and “John runs whitely” fail to make sense for distinct
reasons, but it is not clear that this distinction should

be reflected in the increased complexity of the syntax of the formalism.

Finally, any information that could be encoded by sorts in the notation
can just as easily be encoded in the axioms. For example, if

we want running to be an event, we can state this as an axiom,

(Ve,z)run'(e,z) D event(e)

If e is z’s running, then e is an event. If we want the classes of physical
objects and events to be disjoint, we can state this as an axiom.
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(Y e)physical-object(e) N event(e) D F

It is contradictory for e to be both a physical object and an event.

2.3.6 Views of Semantics

The reader may detect, in what has gone before and in what follows, an
idiosyncratic view of semantics. Let me make my views explicit. There are
three roles semantics may play in an enterprise like this one. First, it can
really be semantics. It can be the attempted specification of the relation
between language and the world. However, this requires a theory of the
world. There is a spectrum of choices one can make in this regard. At one
end of the spectrum — let’s say the right end — one can adopt the “correct”
theory of the world, the theory given by quantum mechanics and the other
sciences. If one does this, semantics becomes impossible because it is no less
than all of science, a fact that led Fodor (1980) to express some despair.
There’s too much of a mismatch between the way we view the world and
the way the world really is. At the left end, one can assume a theory of
the world that is isomorphic to the way we talk about it. This chapter,
in fact, is an effort to work out the details in such a theory. In this case,
semantics becomes very nearly trivial, as I show in Chapter 4. Most activity
in semantics is just to the right of the extreme left end of this spectrum. One
makes certain assumptions about the nature of the world that closely reflect
language, and doesn’t make certain other assumptions. Where one has failed
to make the necessary assumptions, puzzles appear, and semantics becomes
an effort to solve those puzzles. Nevertheless, it fails to move far enough
away from language to represent significant progress toward the right end of
the spectrum. The position adopted in this book is that there is no reason
to make our task more difficult. We will have puzzles enough to solve when
we get to encoding commonsense knowledge and interpreting discourse.
The second role for semantics is in conceptual guidance, and in this re-
spect, ontological promiscuity is not very useful. It does not help us in
axiomatizing domains in a consistent fashion, in a way that avoids unsus-
pected contradictions. In fact, I find that when I am axiomatizing a domain,
I introduce sorts, functions, functionals, and higher operators all over the
place when first working out the details, and then later flatten it into the
notation presented here. The flat notation is intended for broad coverage
of the content of discourse, and not as a conceptual tool for axiomatizing
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particular domains.!©

Finally, semantics has a heuristic role. Standard model-theoretic seman-
tics can be used as a conceptual tool to show the mutual consistency of a
set of axioms. Here one’s models are not at all the intended models, but
set-theoretic or arithmetic constructions which are well-understood and con-
venient to work with. There are several examples of this in the rest of this
chapter.

There is a range of attitudes the reader can take toward ontological
promiscuity. At one extreme, he or she can view it as a way of cutting,
in one swift stroke, through the Gordian knot presented by classical repre-
sentational difficulties. At the other, more prudent extreme, the Platonic
universe may be viewed as a notational halfway house on the road from
language to meaning in the real world. Ontological promiscuity can be seen
purely as a heuristic, not for solving the difficulties, but for bypassing them,
in a way that will let us get on to the real problems of interest, and, hope-
fully, in a way that will survive future representational adjustments by the
more ontologically scrupulous.

In summary, the logical notation is ontologically promiscuous in that it
assumes a Platonic universe that has such disreputable entities as events,
states, conditions, nonevents, nonexistent objects, and as we will see later,
typical elements of sets. This maneuver allows us to keep our logical notation
flat and simple, uncluttered by higher operators, and consequently easier for
the inference process to manipulate.

2.4 Some Classical Notational Difficulties

In this section a number of classic problems in the representation of knowl-
edge are considered. For each of them, notational devices and corresponding
ontological assumptions are proposed that will allow us to slip past the diffi-
culties. For the most part, they are devices that push the problem from the
notation into the axiomatization. Of all these, the key problems to be solved
if the approach is to succeed are the problems of sets and quantification (Sec-
tions 2.5.5 and 2.5.6), negation and other opaque operators (Sections 2.6.1
and 2.6.3), and belief and other intensional contexts (Section 2.7).

100ntological promiscuity, on the other hand, is essential in axiomatizing any interesting
domain; events need to be reified.
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2.4.1 Case Relations

First let us consider case relations, or the relations between predicates and
their arguments. Generally, a sentence like

John builds the boat.

is represented as (ignoring tense and the definite article):
build(J, B)

or, from Section 2.3,
Rexist(E) A build (E, J, B)

The facts that John is the agent of the building event and the boat the object
or “theme” are implicit in the order of the arguments. It is sometimes
convenient, however, to be able to express these case relations explicitly.
We can do so by means of the predicates Agent and Object related to the
predicate build by the following axioms:'!

(2.4) (Ve z,y)build (e,xz,y) D Agent(xz,e) N Object(y,e)
(2.5) (Ve z,y, z)build (e, z,y) N Agent(z,e) D x ==z
(2.6) (Ye,z,y,z)build (e,z,y) N Object(z,e) D y=z

That is, if e is a building event by z of y, then x is the agent of e and y
the object, and conversely, if z is the agent of a building event e by = of y,
then z is x, and similarly for objects. We will not actually encode axioms
like (2.4)—(2.6) for each predicate, but we will appeal to them when we need
them.!'?

It is often debated whether some type of phrase should appear as an
argument or as an adverbial, where obligatory elements should be arguments
and adverbials should be optional. In this framework, the issue evaporates.
We could decide to represent the sentence

HThe reader might well begin to see this approach as not only ontologically promiscuous,
but also axiomatically promiscuous.

12This treatment of case labels means that we must be careful in individuating even-
tualities. The agent of a buying event is not the same as the agent of a selling event.
See Castaneda (1967). The problem of individuating eventualities occurs in a more severe
form in the treatment of adverbials.
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(2.7)  John breaks the window with a hammer.

either as
Rexist(E) A break’(E,J,W,H)

or as
(2.8)  Rexist(E) A break/(E,J,W) A Instrument(H, E)

In the former case, if we don’t know the instrument, we can simply fill the
argument position with an existentially quantified variable:

(Fz)Rexist(E) A break’(E,J, W, x)

In the latter case if we want the instrument to be obligatory, we can posit
the axiom

(Ve,z,y)break’ (e, z,y) D (3 z)Instrument(z,e)

Which way one decides the issue is of no real consequence. In this book
sentences like (2.7) will generally be represented with fewer entities as argu-
ments, as in (2.8). This is because there is virtually no limit to the things
one might want to consider arguments of the predicate. Events may have
instruments, times, locations, various manners, rates, sources, goals, paths,
benefactors, and so on. Only a few of these will be relevant in any given con-
text, and when we simply want to refer to John’s leaving, it seems perverse
to enforce a notation like

(Ft1, 1, 2,23, 24, . . . )leave(J, t1, x1, T2, T3, Tyg, . . .)

One reason, and perhaps the only reason, for incorporating case relations
into one’s semantic theory is to capture semantic generalizations. There
may be things that are true of all agents or instruments, irrespective of
what actions they are agents or instruments of. In our framework such
generalizations would be captured by axioms of the form

(Ve,z)Agent(z,e) D p(z,e,...)
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Very little use is made of such case labels in this book; my feeling is that
the standard cases are very hard to apply in general—for example, what are
the cases of the arguments for “outnumber”? But very many verbs follow
the pattern described in Chapter 5 as the “ontological ascent”, and for those
verbs many of the standard case roles are simply labels for the role they play
in that pattern.

Nevertheless, it is extremely useful to be able to talk about an entity be-
ing the nth argument of a predication (or more precisely, the corresponding
“participant” in an eventuality), regardless of what case the argument is. It
is thus convenient to have this axiom schema for every predicate p and its
nth (non-self) argument z:

(A3) (Ve,...,x,...0)p(e,...,2z,...) D Argn(z,n,e)

In line with the convention in Section 2.3.3, the self argument e is the zeroth
argument of itself:

(A4) (Ve,..)p'(e,...) D Argn(e,0,¢)

Often it is sufficient to say simply that that an entity is an argument of a
predication. The predicate Arg encodes this.

(Va,n,e)Argn(z,n,e) D Arg(z,e)

If = is the nth argument of e, then z is an argument of e.

It will also be useful to have a more general notion of argument, for
things that are arguments, or arguments of arguments, or ... For this we
will use the predicate arg+, defined recursively as follows:

(Vx,e)|arg+(z,e) = [arg(z,e)V (Ter)arg(er,e) Narg+(z,e1)]]]
Thus, in
John believes Bill is tall.

Bill is in an arg+ relation with John’s belief. Think of the relation as
“involved somehow in”.

In general, in this book, the order of arguments in a predication will
follow the order in the corresponding active English sentence, nonditransitive
when there is a choice. Thus, A lifts B is represented lift(A, B), A gives
B to C is represented give(A, B,C), A is strong is strong(A), and A is the
father of B is father(A, B). The first argument is often referred to as the
logical subject (Lsubj) and the second as the logical object (Lobj). Thus,
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(Vx,e)Argn(x,1,e) = Lsubj(x,e)
(Vz,e)Argn(x,2,e) = Lobj(x,e)

These labels will be used in Chapter 4.

2.4.2 Context Parameters

Before launching into other specific semantic phenomena, it will be useful
to introduce a device of broad applicability.

In thinking about a problematic phenomenon, we very often begin with
simple, clear, and elegant intuitions. We then encounter problems and make
various moves to get around them. By the time we have dealt with them, we
have a formal treatment that is quite complex. It is my aim in this work to
frontload this complexity, so that the representations and axiomatizations
that result at the end preserve the original simplicity of the intuitions.

A common instance of this is the realization that some predicate needs
more arguments than we originally thought, or that seem to be used in
the corresponding natural language expression. For example, as we will see
below, tall at first blush seems to be a property of an individual. A little
analysis, however, suggests that we also need a parameter for the comparison
set—tall in comparison with what group? Indexicals like “I” and “you” are
treated as properties of individuals, but they also have to be parameterized
on a speech situation—*“I” refers to the speaker in a given speech situation.
We can talk about one eventuality e; enabling another eventuality e, but
as is argued in Chapter 5, we really require a specification of the particular
way of achieving ey. That is, e; enables es relative to a particular “causal
complex” s.

However, we would like to retain, as much as possible, the simplicity of
having fewer arguments, and of having predicates whose arguments corre-
spond to things that are most often explicit in discourse. We can do this
by positing two predicates for such concepts—p and pg. The predicate pg
will have the extra context parameter; the predicate p will not. The relation
between them can be expressed by axioms of the form

(Va)[p(z) = Be)po(z,c)]

That is, p is true of x just in case there is a context parameter ¢ such that
po is true of z and c.

There is a problem with this formulation however. If we know p(x) and
p(y), then we can infer py(x,ci) and po(y,c2), but the axiom gives us no
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way to establish the equality of ¢; and co. If I say that John is tall and
Bill is tall, there is no guarantee that they are tall with respect to the same
comparison group.

Nevertheless, in a single discourse it generally is true that the context
variables are the same, and that we can safely use the lower-arity predicate.
The method of interpretation by abduction presented in Chapter 3 aims for
minimality in interpretations, where one contributor to minimality is assum-
ing the identity of differently presented variables. Thus, the most common
state in discourse interpretation will be one in which the corresponding con-
text parameters are taken to be identical.

In this chapter, where such a context parameter is relevant, an axiom
of the above form will be posited, and both predicates will be used—py
where the context parameter must be explicitly reasoned with and p where
it needn’t be.

Sometimes the assumption of identity is wrong. In these situations in-
terpretations are often consciously problematic—“Oh, you meant short for
a basketball player!” When this occurs, the axiom in the above form must
be invoked so explicit reasoning about the context parameter can take place.

Following the style of the previous section, we could as easily have ex-
pressed the dependence on the context variable as a separate predication,
using in place of pg(z, c) the expression

p'(e,x) A in-context(e,c) N Rexists(e)

That is, e is the eventuality of p’s being true of x, e really exists, and e is
true with respect to the context parameter c.

2.4.3 Time, Tense, and Aspect

In many proposals for a logical notation for events, the time of the event is
built into the predication itself as an argument. The sentence

John left at 2 p.m.
would be represented
leave(J,2PM)
or

leave(J,t) A 2pm(t)
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In favor of this notation is the fact that most states and events that we think
of have a point or interval of time at or during which they occur.

For spatial information, we already need to be able to make an indepen-
dent predication saying that an object is at a location.

John is at the store = at(J, 5)
We might as well represent the location of events in the same way.
John works at the store. = work/(E,J) A at(E,S)

The location of an event is simply one of its properties.
Similarly, the time of an event or state may be treated simply as one of
its properties. Hence,

John left at 2 p.m.
may be represented
leave' (E,J) A at-time(E, 2pm)

This parallels the treatment of “minor” arguments like instruments in Sec-
tion 2.4.1. This approach allows us to regularize the large variety of ways
temporal information is carried in English sentences. They all become pred-
ications about a state or event.

For tense and aspect, we assume there are predicates Past, Future,
Perfect and Progressive. (Concerning the present tense, see below.) Then

(2.9)  John left.

is represented
(2.10)  Past(E) A leave' (E, J)

That is, F is a leaving by John, and E occurred in the past. The sentence
John has been leaving.

is represented

Perfect(Ey) N Progressive (E1, E2) A leave' (Ea, J)
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That is, Es is a leaving event by John, F; is the eventuality that the property
conveyed by the progressive aspect is true of Es, and the property conveyed
by the perfect aspect is true of Ej.

The semantic properties of the tenses and aspects are encoded in the
knowledge base in axioms involving these predicates. Thus, Past(FE) implies
that there is a time ¢ that is before the time of utterance (now) and that
E occurred at that time. Progressive(FE) implies that E is (being viewed
as) an event with some duration. Perfect(E) implies that E occurred be-
fore some reference point. How these predications are associated with their
syntactic and morphological realizations is explicated in Chapter 4. How
they are meshed with theories of time and event structure is explicated in
Chapter 5.

Temporal adverbs like “yesterday” and temporal subordinate conjunc-
tions like “before” are represented similarly. Hence, the following notations:

(2.11)  John left yesterday. = Past(E) A leave/ (E,J) A yesterday(E)

(2.12)  John left before Mary arrived. =
Past(E) A leave' (E,J) N Past'(E1, E2) A arrive’ (Ey, M)
A before(E, Eq)

In the case of indexicals like “yesterday” and the tenses, the predications
will be related to the situation of utterance in the proper way by axioms (see
Section 2.4.9). Note that the representation of (2.11) contains the redundant
yesterday(E) A Past(E). This is because the sentence redundantly contains
the past tense and the word “yesterday”.

It is worth pointing out in (2.12) that before is not transparent in its
second argument. In

John caught the glass before it broke.

we cannot assume the existence of the breaking event from the existence of
the before relation, but we can assume the existence of the catching event.
For this reason, although example (2.12) conveys the possible eventuality F4
of the pastness of the arriving Eo—Past'(E1, E3)—FE; does not necessarily
really exist, and we cannot write Past(E2).

As soon as we introduce time, we must ask what we really mean by an
expression like
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man(J)
or equivalently,
Rexist(E) A man'(E,J)

Do we mean that John is a man at the present time; or that there is some
condition sometime in the past, present or future when John was, is or will
be a man; or that John is a man at all times past, present and future. This
is not a question of fact, but of what we are going to take our notation to
mean.

We will take Rexist to mean existence at the present time and thus
man(J) to mean that John is a man at the present time.'> When applied
to the main predication of a sentence, it is equivalent to the present tense.
For completeness, we introduce a predicate Present that is conveyed by the
present tense and is equivalent to Rexist:

(Ve)Rexist(e) = Present(e)

The simple notation man(J) will be used primarily for simplifying logical
forms when complicating them would serve no purpose. For sentence (2.9),
instead of writing expression (2.10), we could have written

Rexist(Ey) N Past'(Ey, E) A leave' (E, J)

That is, the past-ness of John’s leaving exists in the present, implying that
John left in the past. For this sentence, this is more elaborate than necessary,
because no use is made of the eventuality 7 other than asserting its real
existence. The tense of the highest predication in a sentence will generally
use the unprimed predicate.

However, for serious analysis of complex discourse, the elaborated no-
tation will be employed, and the reader, when spotting a possible flaw in
representation or argumentation, should see whether it survives translation
into to the more elaborated notation.

2.4.4 Events and Actions

In many approaches to semantics, a distinction is made between events and
actions. In terms of logical form, in these approaches, an event is more

3Thus, Rexist may not encode some people’s intuitive notion of existence, which would
include past existence as well, and perhaps future.



DRAFT 29

like a fully saturated predication, whereas an action is more like a lambda
expression waiting to take an agent as its argument. That is, we might
represent the event of John’s hitting the ball as hit(J, B), whereas the action
of hitting the ball would be represented as Az[hit(z, B)].

Being ontologically promiscuous, I have no objection in principle to al-
lowing actions into the ontology. But it seems to me perfectly adequate to
have actions as a subclass of events, namely those events that have agents.

Schubert (1994) raises several illegitimate objections to this conflation.

Actions can be deliberate, devious, purposeful, unintentional, or
hasty, while events cannot. Actions can be performed or carried
out or done, while events cannot. For actions we can ask “Who
(or what) did it?” while for events we cannot. In short, actions
have agents, while events don’t. (Clearly they are connected in
that the PERFORMANCE of an action constitutes an event).

Note that all of the adjectives he lists are predicates of two arguments,
an event/action and an agent. There is no problem with restricting their
applicability to events with agents.

deliberate(e,a) D Agent(a,e)

That is, if event e is deliberate on the part of a, then a is the agent of e.
The sense of “do” in “Who did it?” similarly selects for events with agents.
Schubert continues:

Of course, if conflating these intuitively distinct notions could
be shown to have no adverse consequences in computational se-
mantics, then it may be justified (on grounds of simplicity). But
the evidence seems to me to run in the other direction. In par-
ticular, treating manner adverbials as event predicates poten-
tially leads to error. For instance, it seems reasonable to say
that “John wrestled with Bill’and “Bill wrestled with John”
can both characterize the SAME wrestling event (from slightly
different perspectives). Now suppose it’s true in addition that
“John wrestled skillfully with Bill”, while “Bill wrestled clumsily
with John”. On a Davidsonian analysis, we end up saying of one
and the same event that it is skillful and that it is clumsy, a con-
tradiction (and also a very odd way to talk about EVENTS). In
a sense, the problem comes from obliterating (in the semantics)
the SYNTACTIC fact that manner adverbs modify verb phrases,
and the verb phrases are distinct in the two cases.
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This argument is illegitimate, because skillful and clumsy are predicates of
two arguments. John can be skillful in the wrestling match between John
and Bill, while Bill can be clumsy in the same match. Even if they are the
same event, represented as

wrestle'(E, J,B) N wrestle’(E, B, J)

(same E), the skillful and clumsy predications have different first argu-
ments:

skillful(J, E) A clumsy(B, E)

John is skillful in the match and Bill is clumsy in it. We do not end up
saying the match is both skillful and clumsy.

We will return to the issue of actions in Section ?7. The recovery of the
correct arguments for manner adverbials in syntactic analysis is discussed
in Chapter 4.

2.4.5 Manner and Other Transparent Adverbials

The treatment of transparent manner adverbials is now straightforward.
Like temporal predications and “minor” case arguments, they are properties
of the eventuality. Hence,

John runs slowly. = Rexist(E1) A run/(E1,J) A slow(Ey)

John greets Mary with reluctance. = Rewist(E2) A greet’(Esy, J, M)
Awith(E2, R) N\ reluctance(R, J, Es)

John greets Mary reluctantly. = Rexist(FEs) A greet’ (Es, J, M)
Areluctant(J, Es)

R is the reluctance of John to do Ey. The predication reluctant(J, E3) says
that John is reluctant to do Es. The reader will not be surprised that the
relation between “with reluctance” and “reluctantly” is something which
must be extracted inferentially from the knowledge base.

It is important to note, as we saw in the previous section, that some
manner adverbials take one argument (the event) while others take two
arguments (the event and a participant in it). Thus, slow is a predicate
with one argument, and reluctant is an argument with two.

Some linguists (77, 1977) have noticed that the interpretations of sen-
tences can sometimes be influenced by the placement of adverbials, and have
used this to argue for two different logical forms. In
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John spoke to the queen rudely.

the sense is that it was appropriate for John to speak to the queen, but the
manner in which he did it was rude. In

Rudely, John spoke to the queen.

the sense is that it was inappropriate for John to speak to the queen at all,
no matter how polite his manner of speaking was. A common analysis of
these two examples has the adverb attaching to the verb phrase, and thus
the action, in the fist sentence, and to the clause as a whole, and hence to
the event, in the second.

My view is that in both cases it is the event that is given the at-
tribute. In both cases, the relevant fragment of logical form is rude(J, E) A
speak’(E, J,Q). In the first case, the interpretation requires us to unpack
the event (but certainly not by removing the agent to produce an action), to
examine at a finer granularity its internal structure, and to note properties
of parts of the utterance such as lexical choices and intonation. In the sec-
ond case, we view the speaking event as an undecomposed whole and look
only at its relation to the surrounding environment, such as the context in
which the utterance occurs. It is not clear to me that this distinction is well
captured by the distinction between actions and events. The two readings
are just different views on an event.

This issue is briefly discussed again in Section 4.9.3.

2.4.6 Comparatives

In line with our decision to treat each morpheme as a predicate, it should
come as no surprise that we will view comparatives as resulting from ap-
plying the predicate more to several arguments. The arguments will be the
two entities being compared and the scale or partial ordering they are being
compared with respect to.

John is taller than Bill. —-
(2.13) more(J, B, E) A tall'(E, X, S)

The predicate more takes as its third argument an abstract condition which
defines a scale, and takes as its first two arguments two entities that are
being compared with respect to that scale.
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More generally, whenever a comparative is used there is a scale corre-
sponding to the property.

more(x,y,e) D scale-for(s,e) Nat(x,a,s)Aat(y,b,s) Aexceed(a,b,s)

Superlatives are represented similarly:

John is the tallest in the class. =
(2.14) most(J,C,E) A tall'(E, X, S)

The predicate most is like the predicate more except that its second argu-
ment is the set the first argument is being compared with.

One problem with comparatives is to find the appropriate associated
scale, that is, a scale s such that we can infer from (2.13) that

at(z,a,s) N at(y,b,s) D exceed(a,b,s)

that is, if z is at @ on s and y is at b on s then a exceeds b on s. For the
most common scalar adjectives we can assume there to be in the knowledge
base axioms of the form

tall’(e,z) D (3 s)Height-scale(s) A at(z,y) Nin(y, s1) A Hi(s1,s)

That is, if e is the tallness of x then there is a height scale s and e is the
property of x being at y on s, and y is in the “high” region s; of s. From
such axioms, the scale can be determined. In general, however, finding the
intended scale can involve quite intricate inferential processing, as in the
sentence

Faulkner is a better writer than Hemingway.

A theory of scales is developed in Chapter 5.

Hans Kamp (1975) suggests that the comparative involves an implicit
quantification over reference sets. That is, if John is taller than Bill, then
for all reference sets r if tall(B,r) then tall(J,r). This can be viewed as just
one possible way to induce a scale. A counterexample would be where the
reference sets are different, as in

John is better in English than Bill is in math.

Here the comparison set is good students in each subject, but they might
be quite different.
To deal with “how” questions and nominalizations, like
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How tall is John?
(2.15) I know how tall John is.

we introduce the predicate measure. The expression
measure(X,D,S)

means “X measures D on scale S” or “D is the measure of X on scale S5”.
The word “how” is treated as we treat “what” and “who” in Section 2.7, as
a context-dependent essential predicate, to be further specified by inference.
Then the logical form for (2.15) is

know(I,H) N how'(H,D) N measure(J,D,T) A tall' (T, X, S)

That is, I know H where H is the essential property, or the “how-ness”, of
D where John measures D on the tallness scale.

The predicate measure is related to more and most by axioms like the
following:

(Vx,y,s,dy,dy)more(z,y, s) Nmeasure(zx,dy, s) N measure(y, ds, s)
D dy > ds

(Vx,c,y,s,di,do)most(z, c, s) Nmeasure(z,dy, s) A element(y, c)
Ameasure(y,da,s) D di > do

If = is more than y on scale s and x and y measure d; and do, respectively,
on s, then d; exceeds do on s. If x is the highest of set ¢ on scale s, x
measures d; on s, y is an element of ¢, and y measures do on s, then d; is
greater than or equal to dy on s.

Measures are not necessarily numerical. The second argument of measure
is not necessarily a number. Its essential property may be a loose sort of de-
scription. Thus, the above notations are adequate for adjectives like happy:

John is happier than Mary.
How happy is John?

2.4.7 Attributives

It has often been pointed out that in the two phrases “the big mosquito”
and “the big elephant” the word “big” must be interpreted as referring to
different ranges of size. There are three problems this observation raises.
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First, should attributives like “big” have an explicit argument for the
reference set, the set with respect to which the entity is big? This was
answered in Section 2.4.2. We can introduce a predicate bigg that has two
arguments, on for the entity described and one for the comparison set. The
predicate big has only the first of these arguments. They are related by the
axiom

(Vz)big(z) = (3 s)bigo(z, s)

That is, = is big if and only if it is “bigy’
set s.

Where several comparisons are being made with respect to the same
comparison set, we will rely on the preference for minimality in abduction
to identify these. Where comparisons are made with respect to different
comparison sets, we will expect specific features of the text and context to
force this distinction. In analyzing a phrase like “big for a mosquito”, we
will expect the interpretation of “for” to induce the inference to bigy and
the comparison set.

The second issue is what role the rest of the noun phrase— “mosquito” or
“elephant” —plays in determining that reference set. One might think that
this is the job of compositional semantics. The comparison set is determined
by the description in the rest of the noun phrase. The comparison set for
“a big mosquito” is the set of all things satisfying the property “mosquito”.
But in

” with respect to some comparison

That mosquito is big.
compositional semantics will have a harder time doing the job. In
That nearby Alaskan mosquito is big.

how do we know that the comparison set should include all Alaskan mosquitoes
and not just the ones that are nearby. Finally, I might point to a mosquito
and say

That thing is big.

I don’t intend the comparison set to be the set of all things.

In fact the determination of the comparison set is essentially a refer-
ence problem—resolve the reference of s—and hence part of the process of
determining the best interpretation for the discourse as a whole. This is
addressed further in Chapter 6.
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The third problem is—to what range of values within the reference set
is the attributive properly applied? What sizes count as big? This issue
is discussed further in Section 5. A number of factors can come into play,
including the place of the entity within the comparison set, the distribution
of members of the comparison set across the scale, and functional relations
between the measure of a quality or quantity and the achievement of certain
goals.

2.4.8 Proper Names

In many of the examples in this book, purely as a notational convenience
to avoid clutter, proper names in English sentences are translated into con-
stants with suggestive names, like JOHN or J. If we were to take this
as more than a convenience, the constants would designate specific possi-
ble individuals in the Platonic universe, which possessed a particular set
of properties. They would thus convey semantic information, in violation
of one of the decisions of Section 2.2. Therefore, when a proper name is
a serious part of what we want to examine in a sentence, it is treated as
a predicate applied to a constant or variable which itself has no semantic
content. The representation of “John” will not simply be the semantically
loaded constant JOHN but a semantically neutral constant (or existentially
quantified variable), let’s say X, together with the property John(X). It is
a property that is true of everyone named “John”. It tells us no more than
proper names in discourse tell us, namely, that someone is named “John”.
Sometimes the property is the main assertion of the sentence, as in intro-
ductions and identifications—

This is John.
My boss is John.

—in which case the namee is the referent of the subject of the sentence.
Usually the property is grammatically subordinated, and the namee is the
referent of the proper name itself. In these cases, the entity it identifies
must be determined contextually, as with any other definite reference, on
the basis of the information given — here, the

property John(X).

Where the reference has been resolved and we wish the name to des-
ignate a unique individual unambiguously, we can index the predicate —
Johni(X). The indexed predicate would be true of only that individual,
and properties that are known about that individual would be encoded in
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axioms involving the indexed predicate. This treatment is exactly like other
cases of lexical ambiguity.

Issues that are problems for philosophers of language may or may not be
problems for one interested in defining a logical notation. In the next section
we will see two issues that are. However, there are two questions about
proper names that have played a large role in the philosophy of language
and that are not relevant to our concerns. First is an issue raised by Kripke
(1972). Kripke has argued that proper names are rigid designators, denoting
the same individual in all possible worlds. There are a few situations in which
names take priority over the entities to which they refer. For example, after
the sudden death of Pope John Paul I, it was fairly clear that the next pope
would choose the name “John Paul II”. Thus, we can say

If one cardinal had voted otherwise, Pope John Paul II would
have been Italian.

Similarly, a couple may decide to have a baby and before it is conceived
decide to call it Kim. Then one may say to the other

I hope Kim is a girl.

But for the most part proper names are intended to function in a more stable
manner. They are intended to fix reference, Kripke argues, in a way that is
constant among possible worlds or situations. This might seem to indicate
that predications like John(X) are different in kind from other predications
conveyed by sentences. It is just as reasonable, however, to say that, from
our perspective, Kripke’s argument amounts to no more than the point that
the existential quantifier implicit in proper names (“There is an X such that
X is John and ...”) usually outscopes modal contexts. This is a fact about
language use, and not a fact that in any way should shape or constrain our
logical notation.

Another classical problem in the philosophy of language has been the
question of whether a proper name is equivalent to a conjunction of prop-
erties (Frege, 1893; Searle, 1969, pp. 162-174). Is it possible to specify
necessary and sufficient conditions for some entity to be Aristotle? It is the
contention in this book, particularly in Chapter 5, that it is almost always
impossible to give necessary and sufficient conditions for any concept, those
encoded by proper names included. Thus, we can expect to have a large
number of necessary conditions, expressed by axioms of the form

(Vz)Aristotle(x) D p(z)
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and a large number of sufficient conditions, expressed by axioms of the form
(Vz)g(x) D Aristotle(x)

but no axioms of the form
(Vz)Aristotle(x) = r(x)

It is taken for granted that replacement of proper names is impossible in
general, and, since we are introducing predicates like Aristotle, neither nec-
essary nor desirable.

Names are put to many uses and therefore carry a great deal of

information. Parents select names for their children for pleasing con-
notative or aesthetic qualities. Many women still change their names to
signal a change in marital status. Movie stars, like Rock Hudson and Clint
Eastwood, choose names that are in concord with the image they wish to
present. There is a connection among the facts that President Carter ran
as a “man of the people”, that he wore cardigan sweaters during his fire-
side chats, and that he called himself “Jimmy”. Immigrants often change
their names to names more typical of their new country, “Golda Meyerson”
to “Golda Meier”, for example. A name change signals one’s ascension as
Pope or emperor. In

other cultures, even more suggestive use is made of names. Japanese
artists typically changed their names when they changed their artistic

styles. Geertz (1973) reports that in Bali a man changes his name on
the birth of his first son, and then again on the birth of his first grandson,
signalling elevation of status in a society that honors age and family. I've
drawn my examples only from names of people; place names can be put
to an even wilder variety of uses. Proper names do not simply designate
individuals. They frequently tell a great deal about

these individuals. By treating names as predicates, we can hope to
capture, as axioms in the knowledge base, some of the wealth of connotations
associated with proper names.

2.4.9 Indexicals

The treatment of indexicals can be divided into two parts, a theory of dis-
course situations and a theory of the self and how one is embedded in the
world. We can view most of the knowledge base as fairly stable across time.
Generally, facts are learned and beliefs change at a much slower rate than
texts are read or conversations are conducted. There is one exception to
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this, however. An important part of the knowledge base must be a continu-
ously updated theory of “what’s going on right now”. This is the theory of
how one is embedded in the world. In natural language understanding part
of what’s going on right now will always be the text itself and the discourse
situation surrounding the text. Facts about these will be constructed out of
a theory of discourse situations in general.

Within the discourse situation there are utterance situations—the situa-
tions surrounding and determined by the character of individual utterances.
Among the many facts that characterize an utterance situation at any given
moment, there are several kinds of facts that are always relevant: who the
speaker is, who the hearers are, and the time and location of the utterance.
Thus, an utterance situation is characterized by, among others, the following
axioms:

(V s)Utterance-situation(s i)Speaker(i,s)

3
Ju)Hearer(u, s)
(V s)Utterance-situation(s dt)time-of (t, s)

(V s)Utterance-situation(s) D (31)location-of(t,s)

Vs) (s) D (
(V s)Utterance-situation(s) D (
Vs) (s) D (

Speaker(i,s) means that ¢ is the speaker in discourse situation s, and the
other axioms are interpreted similarly.

Indexicals, such as “I”, “you”, “now”, “hear” and “today”, are, un-
surprisingly, treated as predicates, like everything else. They are all with
respect to an utterance situation, and we can include this as a second ar-
gument. Following the treatment of context parameters in Section 2.4.2,
we will have subscripted predicates in which the utterance situation is ex-
plicit and unsubscripted ones in which it is not. The relevant axioms for the

subscripted predicates are as follows.
(Vi,8)1y(i,s) = Utterance-situation(s) A Speaker(i,s)
(Vu, s)youp(u, s) = Utterance-situation(s) N Hearer(u,s)
(Vt, s)nowy(t,s) = Utterance-situation(s) N time-of(t,s)
(V1,s)hereg(l,s) = Utterance-situation(s) A location-of(l,s)
(Vd, s)todayo(d,s) = (3t)Utterance-situation(s) Atime-of (t,s) A
in(t,d) A day(d)

If an agent ¢ is referred to as “I” in an utterance situation s, then ¢ is the
speaker in s. “Hearer” refers to intended hearers in s, not anyone who just
happens along.
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The axioms relating the subscripted and unsubscripted predicates are as
follows:

vII() = 38Tl s)]

Vu)you(u) = (3 s)youg(u, s)]
Vit)now(t) = (3 s)nowy(t,s)]
Vi)here(l) = (3s)herep(l, s)]

(
(
(
(
(Vd)today(d) = (3 s)today(t, s)]

The entity 4 is describable as “I” if and only if the subscripted predicate I
is true of ¢ and some utterance situation s. The other axioms are interpreted
similarly.

When we encounter an indexical in an utterance, we need to determine
the utterance situation containing the indexical, and we are then able to
identify the referent. Treating indexicals axiomatically like this, rather than
metalinguistically, allows us to deal in a unified manner with uses of indexi-
cals other than just those in the current situation, such as “now” referring to
a time within the events of a narrative and “I” in direct quotes. The many
uses of “you” can be analyzed in terms of envisioned utterance situations.

The word “this” is somewhat more complicated. At first cut, it refers to
something nearby (under some granularity) and perceptually salient. It can
thus be used to refer to something being pointed at or something that has
just been mentioned in the discourse. We won’t have built up the machinery
to axiomatize this intuition until Chapter 5.

Now consider the simplest case of a context-dependent discourse rich in
indexicals. I see scrawled on a wall this graffitti:

I am now writing this sentence here for you.

The problem I face in interpreting this text is to piece together some idea
of the utterance situation S. The only thing I know about the time of .S,
and hence the referent of “now”, is that it was sometime after the last time
the wall was washed and before my arrival on the scene. The referent of
“this sentence”, assuming this sentence is all that is written on the wall, can
only be the sentence itself. The place of S, and hence the referent of “here”,
I can identify quite precisely if I can identify “this sentence”. About the
speaker in S, and hence the referent of “I”, all I can know is that he wrote
the sentence there at that time. It is quite uncertain who the hearers in S
are; it might have been written for someone specific, or it might have been



DRAFT 40

written for anyone who happens to read it, in which case I would be one of
the hearers in S.

If 'm walking through a museum of Americana and I see a poster show-
ing Uncle Sam pointing directly at me and saying “I want you!” I don’t
take it personally and join the U.S. Army. I understand that the utterance
situation is some other time, and that in any case, the intended hearers, the
referents of “you”, are much younger and healthier than I.

In reading any text, there is a discourse situation .S in which the speaker
(“T”) is the author, or the persona the author wishes to adopt, or the nar-
rator. The hearers (“you”) are the readers or imagined readers. “Now” can
mean anything from this point in the reading of the text to the present era,
depending on the granularity.

Many Al dialogue systems deal with indexicals by the simple rule: “I”
means you and “you” means me. This has been considered a hack. But in
fact, since the utterance situation in which the system finds itself is one in
which the user is the speaker and the system is the hearer, this “hack” is
precisely the right, and even principled, thing to do.

In addition to a theory of discourse and utterance situations, a language
user A must have a theory of himself and how he is embedded in the world.
Consonant with our decision to represent all semantic content via predicates,
let us suppose there is in A’s knowledge base the predicate Ego, which is
true only of A, and a very large number of axioms of the form

(Vz)Ego(x) > p(z)

encoding A’s knowledge about himself.™

Most of A’s beliefs about his embedding in the world can be represented
in the same way as any other beliefs. However, since A is moving through
time, there must be some way of anchoring him to the current time at any
instant. The predicate Rexist does just this. A’s awareness that John is
asleep can be encoded as

Rexist(E) A asleep' (E, J)

If the next time A checks, John is no longer asleep, A’s theory of the world
must be updated to eliminate Rexist(E) and to add Past(E), or perhaps
more precise temporal information about E, but no other properties must

4 One might possess the predicate Ego, i.e. a concept of self, innately or because that
has turned out to be the most economical way to organize one’s beliefs. Either possibility
seems perfectly reasonable to me.
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be added or deleted about E. In particular, FE is still a sleeping event by
John.!®

Suppose T' is an instant in time. Then we can say it is now time T by
saying Rexist(T'). Otherwise, either Past(T') or Future(T') is true. Instants
in time can be treated like eventualities.

When the discourse situation S is recognized to be the current situation,
and the speaker is recognized to be one’s self (this usually happens), the
appropriate identifications can be made. In particular, it will be known
that

Speaker(A,S) N Ego(A)

so that “I” will be an appropriate way for A to refer to himself.
It will also be known that

time-of (T',S) N Rexist(T)

so that an appropriate way to refer to the current time 7" will be with the
word “now”.

Two problems of philosophical interest can be explicated in this approach
to indexicals. Kaplan (1977) and Perry (1979) discuss the following prob-
lem: I'm walking along in a store and in a mirror I see the lower half of
a man’s body and I see that his pants are on fire. I think, “His pants are
on fire.” Suddenly I realize that the person reflected in the mirror is me,
and I think, “My pants are on fire.” These two beliefs differ radically in
the actions they are likely to lead me to, but “his” and “my” refer to the
same person in the two sentences. How can we characterize the distinction
between the two beliefs? This is a case, like the two problems of Section 2.7,
in which confusion results from assuming the objects of belief are natural
language sentences. Put another way, it is a result of a failure to distinguish
between the claim a sentence makes and the information it conveys in order
to make that claim. If we view beliefs as atomic predications, the difficulty
evaporates. When I have the first belief, I believe

on-fire(P) N wear(X, P)
When I have the second belief, I believe
on-fire(P) A wear(X,P) N Ego(X)

150f course, many other eventualities will begin or cease to exist when the status of E
changes. Determining these changes is the frame problem and beyond the scope of this
book.
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The distinction is precisely that in the second case I believe that the man
whose pants are on fire is myself.

Finally an example due to Geoff Nunberg: In the movie “Year of Liv-
ing Dangerously”, the hero, a reporter in Indonesia is going around trying
to learn about a possible shipment of arms from China to the Indonesian
Communists, who are planning a revolution. If the Communists discover
his investigation, his life could be in danger. At one point he asks a total
stranger about the shipment, and the man chastises him for asking, saying,
“I could have been a Communist.” This sentence is interesting because the
word “I” does not rigidly designate the speaker. The man is not saying that
he himself could have been a Communist, say, if his economic circumstances
had been a bit different, but that a different man in the same discourse
situation could have been. The modal “could” outscopes the indexical “I”.
Since we have channelled the interpretation of “I” through the theory of ut-
terance situations, rather than taking it as referring directly to the speaker
in the current utterance situation, we are free to take the relevant utterance
situation to be not the current one but an abstracted version of a situation
in which the reporter asks somebody, whom he knows no better than the
speaker, about the shipment.

The treatment of both of these problems illustrates a strength of the
ontologically promiscuous approach to logical notation. Viewing all infor-
mation encoded in natural language utterances as combinations of simple
predications gives us a tool for analysis sufficiently fine-grained to ferret out
and capture the distinctions that natural language texts depend upon.

2.5 Quantities and Properties

2.5.1 Motivation
The sentence

In most democratic countries most politicians can fool most of
the people on almost every issue most of the time.

has 120 readings. Moreover, they are distinct, in that for any two readings
one can find a model under which one is true and the other isn’t. Yet
when people hear this sentence, they have the impression they understand
it. They do not compute the 120 possible readings and then choose the best
among them. Rather, they use world knowledge to constrain some of the
dependencies among quantified expressions and leave other dependencies
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unresolved. For example, for me, the sets of politicians and the sets of
people depend on the country, but I have no view on whether or not the
politicians outscope the people. A representation is needed that allows this
underspecification of meaning and in which learning more about scoping
relations is captured simply as new conjoined properties.

The style of representation presented in this chapter enables just that.
The principle stated in Section 2.2,

All morphemes are created equal.

indicates that information about plurals and quantification should be en-
coded in the form of predications consisting of a predicate applied to one
or more arguments, just as all other information conveyed by a sentence is
represented. My aim here is to show this is as possible for quantifiers as it
is for every other morpheme.

It is desirable to have sets or aggregates'® among the first-class individ-
uals in our Platonic universe, since natural language discourse talks about
sets. Sentences with plural noun phrases under collective interpretations
make predications about sets:

The men lifted the piano.
The men agreed.

Many quantifiers and adjectives express properties of sets or relations be-
tween sets—“most”, “three”, “numerous”, “various”.

Thus, we will allow individual constants and variables referring to sets
in our notation. Sets will have no special ontological status. They will just
be individuals. They will have other individuals as their elements, and the
element-of relation is just a relation between individuals, no different in
kind from other relations.

It will also be convenient to assume that a set has a “typical element”,
because most instances of plural noun phrases are in the service of a predi-
cation made about all the members of the set. In

The men ran.

it is not that the set of men ran; sets can’t run. Each individual member of
the set of men ran. We will represent this by saying that the typical element

161 won’t distinguish here between the abstract notion of sets and the physical assem-
blages often called aggregates. For every set there is a corresponding aggregate, and for
every aggregate under a description there is a corresponding set.
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of the set ran, and formulate an axiom that says that real elements inherit
the properties of typical elements. In a sense, the typical element is a reified
universally quantified variable (cf. McCarthy, 1977).

The logical form for a plural noun phrase will then make reference to
both a set and its typical element.

Part of the linguistic motivation for this idea is that one can use singular
pronouns and definite noun phrases as anaphors for plurals. Consider

Each node that has a bit set in the MARKED field is not re-
claimed. The bit indicates that it is accessible from other
nodes.

There are many nodes and many bits, yet “the bit” and “it” are singular. We
can view “it” as referring to the typical node and “the bit” as referring to the
typical node’s bit. Definite and indefinite generics can also be understood
as referring to the typical element of a set.

In the spirit of ontological promiscuity, we simply assume that typical
elements of sets are things that exist, and we encode in axioms the necessary
relations between a set’s typical element and its real elements.

In brief, the approach to quantifiers presented here consists of four ele-
ments:

1. Sets are individuals. Quantifiers are relations between sets.

2. Sets have typical elements. Ordinary elements inherit the properties
of typical elements.

3. Functional dependencies are expressed as relations between typical
elements.

4. Disambiguating scope is done by learning functional dependencies.

The first three elements of this approach are discussed in some detail in
this chapter. The last one is explored in Chapter 6.

This simple and appealing picture runs into technical difficulties. The
aim of the rest of Section 2.5 is to solve the difficulties in a way that allows
us to return to the original simplicity. In a sense, we are frontloading the
complexity. We will have to involve ourselves in substantial complications
in order to return to where we started on a basis that is more solid formally.

As noted, the principal property that typical elements should have is
that their properties should be inherited by the ordinary elements of the
set. A first cut at expressing this property is the following axiom schema:
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(2.16)  (Vx,s)[typelt(x, s)
2 [p(x) = (Vy)ly € s O p(y)]]]

That is, if x is the typical element of set s, then p is true of z if and only if
p is true of every ordinary element y of s.

We would also like to have means for expressing what in ordinary set
notation is expressed by the formula

(3s)s ={z [ p(z)}

For this we introduce a predicate dset, where dset(s, z,e) means that s is a
set whose typical element is x and whose defining property is e, correspond-
ing to the p(x) in ordinary set notation. The key property we would like is
that an entity is in the set if and only if it satisfies the property. Thus, the
key axiom schema for dset should be something like

(2.17)  (Vs)[[(Fz,e)dset(s,x,e) A p'(e,x)]
= (Vy)ly€s = p)ll

That is, s is the defined set whose typical element is x and whose defining
condition is the eventuality e of p being true of x if and only if for all y, y
is in the set if and only if p is true of y.

There are three problems concerning typical elements that now must be
dealt with.

1. Because of the Law of the Excluded Middle, it would seem that for any
predicate p, either p(z) or —p(x) would be true of the typical element
x. Then by (5), the elements of s could not differ on any properties.
They all would inherit either p or —p from

x.

2. There is a question as to whether the typical element of a set is itself
an element of the set. Both choices seem to lead to difficulties.

3. The third difficulty arises because of the flat notation we are using.
This forces us into a first-order axiomatization of substitution.

The next section deals with the first two of these problems. The third is
addressed in the following section.
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2.5.2 The Nature of Typical Elements

There are three ways one might try to view typical elements:

1. The typical element of a set is one of the ordinary elements, but we
will never know which one, so that anything we learn about it will be
true of all.

2. The typical element is not an element of the set, and only special kinds
of predicates are true of typical elements.

3. The typical element is not an element of the set, and ordinary predi-
cates are true of them, except in set-theoretic axioms, which must be
formulated carefully.

The first alternative is similar to the stance one takes toward instantia-
tions of universally quantified variables in proofs. In proving (Vz € s)p(z),
one might consider an element a of s and show p(a) while relying only on
properties of a that are true for all elements of s. This alternative seems
dangerous, however. The set consisting of John and George would have
as its typical element either John or George, so by the desired properties
(2.16) and (2.17), any property one has the other has too. The variable a
in the proof is used only in a very limited context and in a very constrained
way, whereas we want typical elements to exist in a persistent fashion in the
Platonic universe and sometimes in the real world as well.

The second approach was taken in Hobbs (1983). The problem that
arises when the typical element is assumed to be something other than an
element of a set is that if the property p in Axiom Schema (2.16) is taken
to be Ax[z ¢ s], then we can conclude that none of the members of the
set are members of the set. This difficulty was handled in Hobbs (1983) by
introducing a complex scheme of indexing predicates according to the kinds
of arguments they would take. Essentially, for every predicate p, there was
a basic level predicate pg that applied to ordinary individuals that are not
typical elements, and a number of other predicates ps that applied to the
typical element of set s. More precisely, if x is the typical element of s, then
ps(z) was defined to be true if and only if p(y) was true for every y in s,
and otherwise ps was equivalent to pg.

Axiom schema (2.16) could then be stated

(Vx, s)[typelt(x, s)
2 [ps(z) = (Vy)ly €o s 2 po(y)l]]
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This solves the first difficulty with typical elements. It is true that either
ps(z) or =(ps)(z) holds, but this does not imply that all elements of s have
all the same properties. That would hold only if either ps(z) or (—p)s(x)
were true, but this is not what the Law of the Excluded Middle entails. The
difference is the same as the difference between having negation outscope
universal quantification and having universal quantification outscope nega-
tion.

The second difficulty with typical elements is solved as well. Suppose x is
the typical element of s. We can simply stipulate that = €y s, and since this
is a basic level rather than an indexed predicate, no consequences follow for
real elements. To determine whether x €, s is true, by the indexed version
of Axiom Schema (2.16), we have to ask whether

(Yy)ly €0s D y €o s

and this of course is trivially true. So x €, s is true. In fact, it is equivalent
to saying that x is the typical element of s.

This solution is inconvenient, however, because it forces us to carry
around complex indices in many contexts where they are irrelevant to the
content being expressed. For example, the axiom

(Va)[man(z) D person(x)]

is true regardless of whether x is an ordinary individual or a typical element
of a set. If all the members of a set are men, they are all persons. We
would not like to have to specify indices in such axioms, and most axioms
are exactly of this nature.

The primary place where the indices must be attended to is in set theo-
retic axioms. If z is the typical element of s, then x € s but x €, s. Thus,
axioms that depend crucially on whether an entity is or is not in a set must
be stated in terms of indexed predicates.

This leads to the third alternative, which we will adopt. We can avoid
the complexity of indices by considering a bit how they are actually used in
discourse processing. One must reintroduce the unindexed predicate p to use
in the logical form of sentences, before interpretation, that is, before quan-
tifier scope ambiguities are resolved. The relation between the indexed and
unindexed predicates can be expressed, inter alia, by the following axiom
schemas:

(V)[po(z) O
(V's,2)[ps(x)

()]

p
D p(x)]
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That is, the indexed predicates are specializations or strengthenings of the
unindexed predicates, and in the course of discourse interpretation by ab-
duction, one of the things that happens is that, as the existentially quan-
tified variables are resolved to ordinary entities or to typical elements, the
predicates that apply to them are specialized to the corresponding indexed
predicate.

In this context of use, the indexing of the predicate is uniquely deter-
mined by the nature of its arguments. This would hold if constraints such
as the following were stipulated:

(Vx,s)[p(x) A typelt(zx,s)
D [ps(x) A =po(x) A (Vs1)ls1 # s D —ps (2)]]]

That is, if p is true of the typical element z of a set s, then the specialization
ps of p is true of x, and no other indexing of p is true of x.

A more thorough development of this idea depends on a treatment of
functional dependencies, and is addressed in Section 2.5.7 below.

It is worth noting that the consistency of the formulation I have given
of typical elements can be demonstrated by taking as a model one in which
the denotation of the typical element of a set is the set itself. In this case,
typelt is simply identity. However, I wish to admit as well interpretations
in which the set and its typical element are distinct, since there are a num-
ber of contexts in which this distinction is a useful one to make, including
representing the difference between collective and distributive readings.

For the remainder of this paper, only the unindexed predicates are used.

2.5.3 Substitution
Consider
John believes men work.
The logical form of this sentence is (approximately)

(2.18)  (Fe1,m,s,ez)believe(J,e1) A work’(eg,m)
Adset(s,m,e2) A man'(e2, m)

That is, John believes the eventuality e; to obtain where e; is the eventuality
of m working, where m is the typical element of a set s defined by the
property e of m being a man.
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Suppose John believes George is a man and thus in the set s. We would
like to conclude that John believes George works. But this does not follow
from Axiom Schemas (2.16) and (2.17). The entity m is the typical element
of s, John believes m works, and so John should believe that George works.
The predication p(x) in Axiom (2.16) would have to be “John believes m
works”. If p is restricted to be an atomic predicate, the axiom schemas won’t
do the job, because “John believes m works” is not represented by an atomic
predicate. Suppose p can be an arbitrary lambda expression. Then given
that m is the typical element of s, Axiom (2.16) implies that any property
of m must also hold of G, specifically, for the property

Ambelieve(J,e1) N work'(e1,m)]
Thus it would follow from (2.18) that
believe(J,e1) N work!(e1, Q)

But this is the wrong result. The problem is that ey is the eventuality of
men working, not the distinct eventuality of George’s working. If Sam is
also a man, then this approach leads to ey’s also being the eventuality of
Sam’s working.

To get around this difficulty, we can introduce a predicate Subst that ex-
presses substitution relations among expressions directly. In a way, it mimics
in the flat notation what substitution does in conventional notations, and
one may thus suspect it is just a formal trick. However, I think that sub-
stitution itself is one particular formalization of an intuitive, commonsense
concept—that of “playing the same role”. Subst(a,e1,b,e2) can be read as
saying that a plays the same role in e that b plays in es. (Subst differs from
“playing the same role” in one aspect noted below.)

In conventional notations, the first important property of substitution is
the following:

p(tl’ ce ’tn)|g = p(t1|g, s ’tn|g)

That is, the substitution of a predicate applied to a number of terms is the
predicate applied to the substitution of the terms.

We can remain maximally noncommittal about the identity conditions
among eventualities if we translate this schema into the following four axiom
schemas, where p is now restricted to atomic predicates.



DRAFT 50

(2.19)  (Ya,b,eq,eq,...,u;,...)[Subst(a,ei,b,es)
Ap'(er, ... ug,...)
D 3., )P (ea, 00,0
A ... N Subst(a,u;,b,v;) A ...

This says that if a plays the same role in e; that b plays in eg, p is the
predicate of e1, and the arguments of e; are u;, then es also is an eventuality
with predicate p and arguments v; where a plays the same role in each u; that
b plays in the corresponding v;. This allows us to proceed in substitution
from predications to their arguments.

(2.20)  (Ma,b,eq,...,u;,vi...)[... A Subst(a,u;,b,v;) A ...
Ap'(ery. .. ug,...)
D (Fea)[p'(e2y ..., viy...) A Subst(a,eq,b,es)]]

This says that if e; is an eventuality with predicate p and arguments wu;,
where a plays the same role in each u; that b plays in a corresponding v;,
then there is an eventuality es whose predicate is p and whose arguments
are v; and a plays the same role in e; that b plays in es. This allows us to
proceed from arguments to predications involving the arguments.

Two more axiom schemas are required because eventualities are not nec-
essarily uniquely determined by their predicates and arguments. p'(Ej, X)
and p'(FEy, X) can both be true without Ej being identical to Fy. Axiom
Schemas (2.19) and (2.20) guarantee a “substitution” eventuality of the
right structure. The next two axiom schemas say that an eventuality is of
the right structure if and only if it is a substitution eventuality.

(2.21)  (Ma,b,eq,ea,...,u;,v;,...)[Subst(a,eq,b,es)
Ap'(ery. .. ug,...)
D [p’(eg,...,vi,...)
= ... A Subst(a,u;, b,v;) A ...]]

This says that if a plays the same role in e; that b plays in eo, p is the
predicate of eq, and the arguments of e are u;, then eg also is an eventuality
with predicate p and arguments v; if and only if a plays the same role in
each u; that b plays in the corresponding v;.
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(2.22)  (Va,b,eq,e9,...,u;,v5...)[... A Subst(a,u;,b,v;) A ...

Ap'(er, ... U, ...)
D [p'(e2,...,vi,...) = Subst(a,er,b,e)]]

This says that if e; is an eventuality with predicate p and arguments wu;,
where a plays the same role in each wu; that b plays in a corresponding v;,
then the eventuality ey has predicate p and arguments v; if and only if a
plays the same role in e; that b plays in es.

The next two axioms enable substitution to bottom out.

(2.23)  (Ya,b)Subst(a,a,b,b)
That is, a plays the same role in a that b plays in b.
(2.24)  (Ya,b,c)meventuality(c) A ¢ # a DO Subst(a,c,b,c)

That is, if ¢ is not an eventuality and not equal to a, then a plays the same
role in ¢ that b plays in c.

Notice that Axiom (2.24) allows ¢ to be b. Substituting b for a in b
results in b. This is the one asymmetry in the Subst predicate, and the
reason that Subst is really more like substitution than like playing the same
role. This asymmetry will allow us to draw from the fact that everyone
in a set including John likes John the conclusion that John likes himself.
That is, from typelt(x,s), p(x,y), and y € s, we can conclude p(y,y). The
one constraint on Subst is that the first and fourth arguments cannot be
the same. Substitution for the first argument would have eliminated such
occurrences.

(Va,b,ti,t2)[a # b A Subst(a,ti,b,ta) D a # ta]

That is, substituting b for a will never result in a.

In addition to its role in expressing the properties of quantification, Subst
turns out to be a useful concept in discourse interpretation wherever the
similarity of two entities must be established.
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2.5.4 Lambda Abstraction

There has been a strong tradition since the time of Montague (1971) of
using lambda abstraction in natural language semantics. Verb phrases, for
example, are often taken to denote a one-argument function, to be applied
to the representation of the subject of the sentence to produce a proposition.
Thus, the representation of the verb phrase

builds a boat
would be
Az[(Fy)build(z,y) A boat(y)]

In the simplest case, if John is represented by the constant J, then this
function applied to J yields

(Fy)build(J,y) A boat(y)

for the sentence “John builds a boat.”

Having axiomatized substitution, we have developed something equiv-
alent to, or slightly more powerful than, lambda abstraction. If e is the
eventuality for which

(2.25)  and'(e,e1,e2) A build (e1,z,y) A boat'(e2,y)

and eg is such that John plays the same role in eg that x plays in e—
Subst(J, eq, z,€)

—then the following holds as well:
(2.26)  and'(ep, e3,e2) A build (es, J,y) A boat' (e, y)

If z is viewed as the lambda-abstracted variable, then we have in effect
applied the function corresponding to (2.25) to the representation of John,
resulting in the desired (2.26).

Nothing was said, however, about z’s being a variable, and in fact it
need not be. It does not have to be a typical element or a reified universally
quantified variable. It can represent an ordinary individual. John plays the
same role in John’s working that Bill plays in Bill’s working. If
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work!(e1,J) N work/(ea, B)
then
Subst(J, e, B, e2)

The predicate Subst thus gives us a way of doing all the work of lambda
abstraction, with somewhat more power, in a very intuitive way.

2.5.5 Sets and Plurals

We will have a predicate set that says of an individual that it is a set. Its
elements are related to the set by the element-of relation. Only sets have
elements:

(Vz, s)element-of(x,s) D set(s)]

In Section 2.5.6 we will have occasion to refer to subsets of sets. The
predicate subset is defined in the usual way. Both its arguments are sets.

(V 51, s2)subset(s2,s1) D set(sy)
(V 81, 82)subset(sz, s1) D set(s2)
(V s1, s2)[subset(sa, s1) = (Vx)[element-of(x, s9) D element-of(x, s1)]]

In addition, sets have typical elements:
(Vs)[set(s) D (Fx)typelt(x,s)]
Only sets have typical elements:
(Vx, s)[typelt(z,s) D set(s)]

Although we will not require this property, we will later be able to show
that distinct sets must have distinct typical elements.

We will soon write a correct axiom stating that the real elements of a
set inherit the properties of the typical element. That is, we will be able
to infer a property from set membership. However, with the typelt relation
alone, we will not be able to infer set membership from a property. That
is, the fact that p is true of a typical element of a set s and p is true of an
entity y, does not imply that y is an element of s. After all, we will want
“three men” to refer to a set, and to be able to infer from y’s being in the
set the fact that y is a man. But we do not want to infer from %’s being a
man that y is in the set. The phrase may have occurred in a sentence like
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Three men walked into a theatre.

This does not entail that no other men also walked into the theatre.
Nevertheless, as indicated in Section 2.5.1, we will need a notation for ex-
pressing this stronger relation among a set, a typical element, and a defining
condition. In particular, we need it for representing “every man”.
Let us develop the notation from the standard notation for intensionally
defined sets,

(2.27) S ={z[p(2)},

by performing a fairly straightforward, though ontologically promiscuous,
syntactic translation on it. First, instead of viewing z as a universally
quantified variable, let us treat it as the typical element X of S. Next, as
a way of getting a handle on p(z), we will use the nominalization operator
" to reify it, and refer to the condition E of p’s being true of the typical
element X of S—p/(E, X). Expression (2.27) can then be translated into
the following flat predicate-argument form:

dset(S,X,E) N p'(E, X)

This should be read as saying that S is a set whose typical element is X and
which is defined by condition E, which is the condition of p’s being true of
X.

The first argument of dset is a set, and the third argument is an even-
tuality:

dset(s,x,e) D set(s) N eventuality(e)

Its second argument is the typical element of the set. That is, the relation
between the predicates dset and typelt is expressed by the following axiom:

(2.28)  (Vs,x,e)[dset(s,x,e) D typelt(z,s)]

If s is the defined set whose typical element is x and whose defining condition

is the eventuality e, then x is the typical element of s. The predicate dset

is thus a specialization of the predicate typelt, a fact that will play an

important role below in the treatment of monotone decreasing quantifiers.
There should probably not be a rule of the form
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(Vz,s)typelt(z,s) D (Fe)dset(s,z,e)]

since this would entail that every set is definable by some eventuality. This
strikes me as an undesirable property. Some linguistically described sets,
such as the set referred to by “all men”, have natural defining properties.
Others, such as the set referred to by “many men”, do not, but they are sets
nevertheless. In any case, we will not need this property.

Recall that the principal property of typical elements is that their real
elements inherit the properties of their typical elements (Axiom Schema
(2.16)), and the principal additional property of defined sets is that every-
thing that has it defining property is in the set (Axiom Schema (2.17)). Hav-
ing axiomatized substitution with the predicate Subst, we can now recast
Axiom Schemas (2.16) and (2.17) as Axioms (2.29) and (2.30), respectively.

(2.29)  (Vz,s,e)[typelt(x, s)
D [(3er)[Subst(z,e,x,e1) N Rexists(ey)]
= (Vy)ly € s D (Feg)[Subst(x,e,y,e2)
A Rezists(ez)]]]]

This property is now expressed as an axiom rather than an axiom schema.
The explicit specification of the structure p’(e, z) has been eliminated here.
Instead, the eventuality e represents that pattern and the predicate Subst
is used to stipulate that other eventualities exhibit the same pattern. This
axiom says that if e is such a pattern and x is the typical element of s,
then there is a really existing eventuality e; involving x exhibiting that
pattern if and only if for every ordinary element of s, there is a corresponding
eventuality es exhibiting the same pattern that really exists.

Suppose, in (2.29), that z is the typical element of s. If e is not an
eventuality, then it is either x or something else. If it is x, then e = e¢1 =z
and ey = y, so the axiom is valid. If it is something else, then e = e; = e,
and the axiom is valid. Suppose e is an eventuality and p'(e,z) holds.
Then p(z) is equivalent to (Je1)p’(e1,2) A Rexists(er), which is equiva-
lent to (Jey)Subst(z,e,x,e1) N Rexists(er). Similarly, p(y) is equivalent
to (Jez)Subst(z,e,y,e2) N Rexists(ez). Thus, Axiom (2.29) captures the
intent of Axiom Schema (2.16).

Replacing Axiom Schema (2.17) is Axiom (2.30):
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(2.30)  (Vs,x,e)[eventuality(e)
O [(Fer)ldset(s,x,e1) N Subst(z,e,z,e1)]
= (Vy)ly € s = (Feg)[Subst(x,e,y,e2)
A Rexists(ez)]]]]

That is, if e is an eventuality (representing a pattern expressed in terms of
the typical element x of a set s), then there is an eventuality e; of the same
pattern that is the defining eventuality for s if and only if for every ordinary
element y of s there is a corresponding eventuality ey of the same pattern
that really exists. Here it is necessary to express the constraint that e be an
eventuality, because the third argument of dset must be an eventuality.

Let us return to example (2.18). If dset(s,m,e2) and man'(e2, m) hold
and George is a man, then we have

man(G) = man'(es, G) N Rexists(es) by (Al)
= Subst(m,es,G,e3) N Rexists(es) by (2.22)
=(Ges (by (2.30))

Suppose Rexists(eg), believe'(eg, J,e1), and work’(e;,m) all hold. Since
typelt(m,s) holds, and letting e and e; in (2.29) both be eg, there is, by
(2.29), an e4 such that

Subst(m, eg, G,eq) N Rexists(ey)
By (2.19) there is an e5 such that

believe (eq, J,e5) A Subst(m,e1,G,eq) N Rexists(es)
By (2.22),

believe (eq, J,e5) N work(es,G) A Rexists(ey)
By (A1),

believe(J,e5) N work! (es, Q)

That is, John believes George works. (I ignore here the problem of what
inferences it is legitimate to draw inside belief contexts. Think of this ex-
pression as saying that, merely by virtue of the fact that George is a man,
John believes George, whoever he may be, works.)
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Next we want an axiom that will guarantee a defined set for any legiti-
mate definition. That is, for any eventuality and any one of its arguments (or
arguments of arguments .. .), there is a set with a corresponding eventuality
as its definition.

(2.31)  (Yy,eq)eventuality(ea) N arg + (y,e2)
D (Is,x,e1)[Subst(z,e1,y,e2) A dset(s,z,er)]]

That is, given an eventuality es and an entity y that is involved in eg at
some level of embedding, there is an eventuality e; with the same pattern
and a defined set s whose typical element is  and whose definition is e;. Or
put more simply, for any description there is a set of entities, in the Platonic
universe, satisfying that description.

We have said nothing yet about whether defined sets really exist or not.
We can say that a set really exists if and only if something is a member of
the set exactly when it satisfies the description.

(2.32)  (Vs,x,e1)[dset(s,z,e1)
D [Rexists(s)
= (Yy)[member(y,s)
= (Jeg)[Subst(y,e2,z,e1) N Rexists(es)]]]]

This is the place we avoid Russell’s paradox. If the property is something
that nothing satisfies, we have the null set and it exists. However, if we get a
contradiction from the description of the set and the membership property,
as we do with the property Az[z ¢ x|, the set does not exist in the real
world.

2.5.6 Quantifiers as Descriptions of Sets

A determiner like “most” can be viewed as expressing a relation between
sets. The expression most(ss, s1) says that set so is a subset of s1 consisting
of more than half the elements of s;. Then the sentence

Most men work.

can be represented as follows:
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(2.33)  (Is)[most(s2, {z | man(z)}) A Vy)ly € s2 D work(y)]]

That is, there is a set sy that is most of the set of all men (i.e., it is a subset
with more than half the elements), and for every entity y in sq, y works.

We can use the predicates typelt and dset to unwind this into a flat
notation. The set {z | man(x)} is a set s; such that dset(s,x,e) where e
is the eventuality of z’s being a man, man’(e,x). The set sy is a subset
of s1 that consists of most of s;. We can represent this by treating most
as a relation between the two sets—most(sg,s1). The set so has a typical
element y—typelt(y, s2). To say that all elements of sy work, we say that y
works.

With this machinery, we can now rewrite logical form (2.33) as follows:

(2.34) (I se,s1,x,6,x,y)[most(s2,s1) N dset(sy,x,e)
Aman'(e,x) A typelt(y,s2) N work(y)]

That is, there is a set s; defined by the property e of its typical element x
being a man, there is a set so which is most of s; and has y as its typical
element, and y works. It is straightforward to show that (2.34) is equivalent
to (2.33).

It is easy to see how a logical form like (2.34) could be generated compo-
sitionally in a strictly local fashion. The common noun “men” introduces a
set, its typical element, and its defining property, generating the conjuncts
dset(s1,x,e) A man'(e,z). The determiner “most” introduces another set
and its typical element, along with the conjuncts most(sa, s1) A typelt(y, s2).
The latter typical element becomes the logical subject of the predication of
the main verb, which generates the conjunct work(y). This is explicated in
detail in Chapter 4.

Viewing determiners as predicates on sets allows us to express as ax-
ioms more refined properties of the determiners than can be captured by
representing them in terms of the standard quantifiers. This point will be
illustrated for a number of quantifiers in the remainder of this section, al-
though a proper analysis of what they mean is deferred until Chapter 5.

First let us note that, with the proper definitions of “every” and “some”,

(V 51, 82)every(se, s1) = s1 = s2

(Vx,s1)some(x,s1) = element(z, s1)
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the formulas corresponding to expression (2.33) reduce to the standard no-
tation. (This can be seen, by the way, as explaining why the restriction is
implicative in universal quantification and conjunctive in existential quan-
tification.)

Suppose we adopt a common view that the phrase “every N” implies
the existence of at least one N. We can encode this in the following axiom:

(V's1,s2)every(s2, s1) D [s2[ >0

That is, if set so is every element of set si, then the cardinality of s is
greater than zero. (I don’t take a position on whether or not this axiom is
appropriate.)

Next consider “any”. Instead of trying to force an interpretation of “any”
as one of the standard quantifiers, let us take it to mean “a random element
of”.

(2.35)  (Yz,s)any(z,s) DO x = random(s)

where random is a function that returns a random element of a set. This
means that the prototypical use of “any” is in sentences like

Pick any card.

Many of the linguistic facts about “any” can be subsumed under two
broad characterizations:

e [t requires a modal or nondefinite context. For example, “John talks
to any woman” must be interpreted dispositionally. If we adopt (2.35),
we can see this as deriving from the nature of randomness. It simply
does not make sense to say of an actual entity that it is random. The
predicate random needs a set to range over.

e [t normally acts as a universal quantifier outside the scope of the most
immediate modal embedder. This is usually the most natural inter-
pretation of random.

Moreover, since “any” extracts a single element, we can make sense out
of cases in which “any” fails to act like “every”.

T’ll talk to anyone but only to one person.

* T'll talk to everyone but only to one person.
John wants to marry any Swedish woman.

* John wants to marry every Swedish woman.
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(The second pair is due to Moore (1973).)
This approach doe not, however, seem to offer an especially convincing
explanation of why “any” functions in questions as an existential quantifier.
An axiom that characterizes most in perhaps too mathematical a manner
is

(V s1,82)most(s2,51) D |s2| > 1/2]s1]

That is, if s is most of s1, then the cardinality of s is more than half the
cardinality of s;.

Somewhat more complicated is an axiom encoding the meaning of the
determiner “the most”, as in “Of the five candidates, John got the most
votes.”

(V s1, s2)the-most(s2, s1) D (Fu)partition(u, sy)
ANsgeu N (Vsi)(si €u N sa# 8 D |s1] > |si|)

That is, s1 is a element of a partition of s; and is larger than any other ele-
ment of that partition. (The partition is of course contextually determined.)

Determiners like “many”, which cannot be decomposed into more mathe-
matically tractable relations between sets, can nevertheless enter in complex
ways into axiomatizations of various domains, if it is represented as a re-
lation between sets, and thereby receive the appropriate interpretations in
context in the course of inferencing.

Some determiners, such as “the”, “this”, “a” and “any”, are relations
between entities and eventualities. For example, “the” expresses a relation
between the entity referred to by the whole noun phrase and the property
expressed by the remainder of the noun phrase, and says about that entity
that it is mutually identifiable in context by means of that property. These
determiners are discussed further in Section 4.77 on determiners and Section
5.77 on mutual identifiability.

In the noun phrase “numerous tall men” the property numerous applies
to the set of men. The property tall can only apply to an individual man,
not to a set, and thus we represent it as taking the typical element of the
set of men as its argument.

typelt(X,S) A numerous(S) A tall(X) A man(X)
In the sentence

The men agree.
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the collective predicate agree takes the set as its argument. In
The men run.

the predicate run is applied to the typical element.
For collective predicates such as agree and meet, the main predication
of the clause would apply to the set rather than to each of its elements.

typelt(X,S) A agree(S) typelt(X,S) A run(X)

We can similarly represent the distinction between the distributive and
collective readings of a sentence like

The men lifted the piano.

For the collective reading the representation would include lift(S, P) where
S is the set of men. For the distributive reading, the representation would
have lift(M, P), where M is the typical element of the set S.

During semantic composition, a generic noun phrase would be taken to
refer to some entity about which some predication is made. If the sentence
is properly interpreted, then during interpretation, it would be inferred or
assumed that the entity is in fact the typical element of some set.

A difficulty is presented by monotone decreasing quantifiers, such as
“few” and “no” (cf. Barwise and Cooper, 1981). A monotone increasing
quantifier, like “most”, is “monotone increasing” beacuse when the predicate
in the body of the quantified expression is made less restrictive, the truth
value is preserved. Thus,

Most men work hard.

entails

(2.36)  Most men work,

By contrast, for monotone decreasing quantifiers, when the predicate in the
body of the quantified expression is made less restrictive, the truth value
is not necessarily preserved. Quite the opposite. It is preserved when the
body is made more restrictive.

(2.37)  Few men work.
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entails
Few men work hard.

Since “r works hard” entails “x works”, a flat, scope-free representation for
“few men work hard” runs into problems, because it would seem to allow
the incorrect inference “few men work”.

In Hobbs (1983) I suggested very briefly a logical form for such sentences
in which the quantifier “few” is translated into a predicate that means “all
but a few” and the predication of the body of the quantified expression is
negated. Thus, sentence (2.37) would be interpreted as if it were

All but a few men don’t work.

This solves the entailment problem. “x doesn’t work” entails “x doesn’t
work hard.” Thus, “Few men work” would be equivalent to “all but a few
men don’t work”, which entails “all but a few men don’t work hard,” which
would be equivalent to “few men work hard.” This approach is similar to
that of van Eijck (1983).

However, this is not a felicitous solution, since the negation of the main
verb makes the compositional semantics of the quantifier nonlocal, in that
information from the noun phrase other than its referent is required in the
interpretation of the rest of the sentence.

In Hobbs (1995) and in this book I propose a different analysis of mono-
tone decreasing quantifiers, one in which the right interpretation arises from
a combination of a single rule for interpreting quantifiers, both monotone
increasing and monotone decreasing, together with the pragmatic process
of specializing or strengthening interpretations that is the basis of the ab-
duction approach, and a reinterpretation via coercion of what is asserted by
the sentence. The result is a picture wherein syntactic analysis and seman-
tic translation yields a representation that makes fewer distinctions than
we might wish, but is strictly locally compositional, and strengthening and
coercing to the desired representation is done by pragmatic processes that
are independently motivated.

Specifically, the semantic interpretation produced by syntactic analysis
and compositional analysis, as described in Section 4.77, for “Few men work”
is

few'(e,s2,81) A dset(s1,x,e1) A man'(e1,x) A typelt(y,s2) A
work'(ea,y) N Rexists(ea)
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The eventuality e is the relation of “few-ness” between the sets s; and so.
The man’ predication derives from the morpheme “man”, the dset predica-
tion derives from the pluralization of “man”, the few and typelt predications
derive from the word “few”, the work’ predication derives from the word
“work”, and the Rexists predicate derives from the fact that the working is
the top-level assertion of the sentence. The treatment of “most” is exactly
parallel.

For “few”, in the course of interpretation by abduction, as described in
Chapter 3, the typelt predication is strengthened a dset predication, saying
that sy is the set of men who work.

few' (e, s2,81) A dset(sy,x,e1) A man'(e1,x) A dset(s2,y,e3) N
and'(e3, eq, €2) N Subst(y, eq, z, e2) Nwork’(ez,y) A Rexists(ez)

The eventuality e4 is the eventuality of y’s being a man, and e3 is the
conjunction of that eventuality with the eventuality of y’s working.

Finally, there is a coercion of what is asserted by the sentence, that is,
of the argument of Rexists, from es to e, using the coercion relation

work!(ea,y) A typelt(y,s2) A few'(e, s2,51)
as described in Section 4.77. This yields the expression

few' (e, s2,81) A dset(sy,x,e1) A man'(e1,x) A dset(s2,y,e3) A
and'(e3, eq, €2) A Subst(y, eq, z, e2) Nwork’ (e2,y) A Rexists(e)

This now is a representation of the content of the sentence “The men who
work are few,” which is the desired interpretation.

This entails the content of the sentence, “The men who work hard are
few,” since the men who work hard constitute a subset of the men who work.
So the right inference results in the case of monotone decreasing quantifiers.

Like other quantifiers, most and few can be viewed as expressing re-
lations (e.g., comparing cardinalities) between two sets, which can be ex-
pressed in axioms. For example, one property of “few” and “most” is that
they pick out subsets:

(2.38)  (Vs1,s2)[most(sa,s1) D subset(sz, s1)]
(2.39)  (Vs1,s2)[few(s2,s1) D subset(sa, s1)]

The monotone increasing and monotone decreasing properties can also be
expressed as axioms:
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(2.40) (V' s1, s2)most(sa, s1) A subset(sq,s) A subset(s,s1)
D most(s, s1)

(2.41)  (Vs1,s2)few(sa, s1) A subset(s,se) A —null(s)
D few(s,s1)

That is, if s is most of s; and so is a subset of s which in turn is a subset
of s1, then s is also most of s;. This is the monotone increasing property.
If s9 constitutes few members of s1, then so does a non-null subset s of ss.
This is the monotone decreasing property.

Some determiners, such as numbers, are neither monotone increasing or
monotone decreasing. The phrase “at least three” is monotone increasing
and “at most three” is monotone decreasing, but “exactly three” is neither.
Barwise and Cooper (1977) suggested that such determiners can be viewed
as a conjunction of a monotone increasing and a monotone decreasing quan-
tifier. Thus, “exactly three” means “at most three and at least three”.

For the determiner “exactly three” we should not object to the extra
conjuncts since the sentence has an extra word. Nevertheless, a one-word
determiner like “three” is a simple concept in English, and it seems unaes-
thetic to represent it as a conjunction of two determiners. An alternative is
to interpret “three” as “at least three”. This certainly seems to be what it
conveys in sentences such as

One evening three men walked into a movie theatre.

Suppose we have three lines a, b, and ¢ parallel to line d.
We are not saying that only three men walked into a movie theatre, and if
we are talking about Euclidean geometry, we had better not mean there are

only three lines parallel to line d. In those cases where it does convey “three
and only three”, as in

Q: How many people came to your party last night.
A: Three people came to my party.

we can see it as a result of a Gricean implicature, or pragmatic strengthening.
Specifically, the sentence “Three men arrive,” has the logical form, before
pragmatic strengthening,

three'(e1, s) Aman/(ea, x) Atypelt(z, s) A arrive’ (es, ) A Rexists(es)
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This does not commit us to “at most three men arrive”. We strengthen
this by strengthening the typelt predication to a dset relation, and coerc-
ing the assertion from the arriving to the “three-ness”, just as we did in
interpreting monotone decreasing quantifiers. This gives us the logical form

three'(e1,s) A man'(eg,x) N dset(s,z,eq) N and'(eq,e2,e3) A
arrive’(es, ) N Rexists(eq)

The meaning of this is ” The men who arrive are three,” which means exactly
three.

2.5.7 Functional Dependencies

There have been a number of proposals in recent years for underspecified or
scope-neutral representations of natural language sentences involving quan-
tification. Most of these proposals involve special purpose formalisms. How-
ever, further specification of the meaning of the sentences in context requires
inference, so the first requirement on these formalisms is that there be an
inference procedure that supports the full range of commonsense reasoning.
This requirement is generally not met.

By contrast, I proposed an underspecified representation (Hobbs, 1983,
henceforth ITQ), in which natural language sentences involving quantifica-
tion are translated into “underspecified” expressions in first-order predicate
calculus. All that is required to do this is a moderate liberalization in the
ontology one is willing to accept. The advantage of this move is that the
representation comes with a theory of inference that is already worked out,
whether standard deduction, weighted abduction (Hobbs et al., 1993 and
this book), or any of the various nonmonotonic logics for commonsense rea-
soning.

ITQ fell short of an adequate treatment in that the treatment of the func-
tional dependencies that represented scope information was insufficiently
precise. Here we address that problem—the representation of functional
dependencies among variables.

Briefly, the solution is this: Universally quantified variables are reified as
typical elements of sets. Universally quantified statements about members of
a set become statements without universal quantification about the typical
element of the set. Axiom (2.29) and (2.30) enable us to conclude proper-
ties of individual members from the same property of the typical element.
When in ordinary notation, a universal quantifier outscopes an existential
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quantifier, the dependence between their variables is expressed as a func-
tional dependency between two typical elements. When scope information
is absent, e.g., when only compositional semantics has applied, then there
are no predications of functional dependency. As scope information is ac-
quired during abductive interpretation, it is represented as predications of
functional dependency.

We thus have a representation that is scope-neutral initially and during
the course of pragmatic processing becomes more specific merely through
the conjunction of further properties.

Consider

@s)(Vu)u € s > (Fv)p(u,v)
If we skolemize v, we have

@fs)(Vu)lues D plu, f(u))]

Replacing u by the typical element = of s gives us

(2.42) (3 f,x,s)[typelt(z,s) A p(z, f(x))]

We define F' Dy by

(Y, y)[FDo(y,x, f) = y = f(z)]

That is, y is functionally dependent on x via function f if y equals f(z).
Then (2.42) becomes

(2.43)  (3=z,s,y, ftypelt(z,s) A p(x,y) N FDy(y,z, f)

That is, p is true of x and y where z is the typical element of the set s and
y is functionally dependent upon x.

A sentence with a quantifier scope ambiguity is then represented along
the lines of

(3, s,y)typelt(x,s) A p(z,y)

This is scope-neutral. When scoping information is discovered by inference
during pragmatic processing, the predication FD(y,z, f) is conjoined to
produce the disambiguated form (2.43).
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The predication F'Dy(y, x, f) carries information about what the precise
relation between y and z is, namely, f. Normally, we will not learn this.
We will only learn that some functional dependency exists, and that will be
enough to constrain the scoping possibilities in the ordinary representation
of quantification. Essentially, what we learn is an F'D relation, where F'D
is defined as

In many cases the functional dependencies are never discovered and do
not matter. For me, in the sentence we began the discussion of quantifiers
with,

In most democratic countries (c), most politicians (p) can fool
most of the people (z) on almost every issue (i) most of the
time (t).

the sets of politicians, people, and issues are dependent on the countries,
but I have no opinion on what other dependencies there are. I would thus
infer FD(p,c), FD(x,c), and F'D(i,c), but no other F'D predications. (And
the 120 readings are reduced to only 30 readings.)

TO BE DONE: Axiomatize the properties of the F'D relation. Technical
difficulties. Several examples showing ways in which functional dependencies
can be derived during pragmatic processing.

The logical form for

Most men like several women.
is
(I s, 81, 2,€,2,9, 2, $3)[most(sa, s1) N dset(si,x,e)

Aman'(e,x) N\ typelt(y,se) A like(y,z) A several(ss)
Atypelt(z, s3) N woman(z)]

That is, there is a set s; defined by the property e of its typical element x
being a man, there is a set so which is most of s; and has y as its typical
element, and y likes z, where z is the typical element of a set s3, z is a
woman, and s3 has several members.

This is the scope-neutral representation. In the course of further process-
ing, we may discover that s3 is an actual set of several women, corresponding
to wide scope for “several”, or we may discover that sz is functionally de-
pendent upon so, in which case s3 is the typical element of a set of sets of
women, one for each man in so, corresponding to the narrow scope.
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This treatment of functional dependencies is similar to the ordering con-
straints of Allen (1987) and Poesio (1991).

2.5.8 Abstractions and Their Instances

Frequently predicates are used not to make predications but to name a
concept which then functions in the sentence as an individual. The problem
this poses is relating the two uses in the right way. For a concrete example,
consider the following three sentences:

(2.44)  The boat is red.
(2.45)  Red is the color of the boat.
(2.46)  Red is my favorite color.

Intuitively, “red” refers to the same entity in (2.45) and (2.46), and sentences
(2.44) and (2.45) mean the same thing. We would like a representation of
abstractions like the concept “red” in which “red” is represented in the
same way in (2.45) and (2.46) and for which (2.44) and (2.45) are, with the
appropriate axioms, logically equivalent.

We approach this problem in two steps, first appealling to set theory
for conceptual guidance. Let us, for the moment, say that the concept
“red” is in fact the set of all red things, {x | red(x)}, and that the concept
“color” is the set of all such sets, {{z | red(z)}, {z | blue(z)},...}. Then the
representation of (2.44) is red(B) and of (2.45) is color-of ({x | red(x)}, B).
These are equivalent, given the following axiom:

(2.47)  (Yx,y)color-of (x,y) = color(x) Ny € x

That is, x is the color of y if and only if x is a color (i.e., in the set of colors)
and y is in the set x.

Let us introduce a new predicate Red (with the first letter capitalized)
which is true only of the set of all red things, i.e. of the color red. Thus the
English word “red” is ambiguous between its

noun sense, as in

My favorite color is red.

where Red is predicated of some color X, and its adjective sense, as in
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My favorite boat is red.

where red is predicated of a physical object.

Switching from standard set-theoretic notation to the notation we have
developed for defined sets, we now have the following axiom relating Red
and red:

= (Jx,e)[dset(r,z,e) A red(e,z)]
Vr)Red(r) D color(r)

That is, the color red is a set r whose typical element is  and whose defining
property e is x’s redness, and if r is the color red, then 7 is a color.

Now the second step: We would like to have abstractions like “Red”
with all these properties, without committing ourselves to the somewhat
unintuitive notion that a concept is a set. We can do this by inventing
a new predicate concept, which is exactly parallel to the predicate dset.
Corresponding to any set defined by a property e there is a concept defined
by the same property. Something is an element of the set if and only if it is
an instance of the concept.

(2.50)  (Vz,e)[(Ts)dset(s,z,e) = (3 c)concept(c,x,e)]
(2.51)  (Vs,c,z,d)[dset(s,x,e) A concept(c,z,e)
D (Vz)[element(z,s) = instance(z,c)]]

Properties of concepts and their instances can be proved by translating them
into properties of defined sets and their members.

Note that no concept equalities follow from set equalities. The set of
unicorns and the set of centaurs may both be empty and thus equal, but
that does not imply that the concept of being a unicorn and the concept of
being a centaur are the same.

Ontologically, a concept is just an individual in the Platonic universe,
like any other.

Specific families of concepts, like color, can be axiomatized in terms of
the predicate concept. We illustrate this with the concept “Red”. First we
would like to be assured that the concept “Red” is related to the predicate
red in the proper way, with our new version of axiom (2.48):
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(2.52)  (Vr)Red(r) = (Fz,e)[concept(r,z,e) N red (e, x)]

If we wish the concept “Red” to be unique, we could do so with an axiom of
the standard sort. The existence of the concept “Red” can be assured with
the axiom

(2.53)  (Ir)Red(r)

The rule that red is a color is
(2.49) (Vr)Red(r) D color(r)

That is, if r is the color red, then r is a color.
Finally we rewrite axiom (2.47) about colors:

(2.54)  (Vx,y)color-of (x,y) = color(z) N instance(y,x)

Now the representations of sentences (2.44) - (2.46) become, respectively,

(2.44’) red(B)
(2.45")  color-of (R, B) N Red(R)
(2.46°)  color(R) N favorite(R) A Red(R)

The proof of the equivalence of (2.44") and (2.45’) is as follows: From
Axiom Schema (A2) we know

(2.55)  (Feq,x)red (es,x1)
and from this and Axiom (2.31) we know
(2.56) (s, x,e9)dset(s,z,e2) N red (e, x)

Replace the existentially quantified variables s, x, and es by the constants
S, X, and Es, respectively. From this and Axiom (2.50) we know
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(2.57)  (3r)[concept(R, X, E2) A red (Eq, X)

Call this  “R”. From this and Axiom (2.52) we know
(2.58)  Red(R)

From this and Axiom (2.49) we know
(2.59)  color(R)

Now the following expressions are equivalent:

(2.60) red(B) (2.44)

(2.61) iff red'(e, B) A Rexists(e;) from (Al)

(2.62)  iff member(B,S) from (2.56), and (2.30)

(2.63) iff instance(B, R) from (2.56), (2.57), and (2.51)
(2.64) iff color-of (R, B) from (2.59) and (2.54)

(2.65)  color-of(R,B) N Red(R) (2.45%)

2.6 Opaque Contexts

2.6.1 Logical Operators, Especially Negation
Consider

Because Mary and her husband both work, they can afford ex-
pensive vacations.

It is not just Mary’s working or just her husband’s working that enables
them to afford expensive vacations. It is that both conditions are true.
Thus, we must be able to refer to a conjunction of eventualities, as well as
the eventualities themselves. All of the other tests for whether something
should be reified also hold for conjunctions; they can be modified adverbially,
be specified as to time and place, be referred to pronominally, and be the
object of a propositional attitude.
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Last year, Mary and her husband both worked.

(2.66)  John and Mary both work, and that surprises George.
Rudely, Mary and her husband both declined the invitation. One
of them should have gone.

What is true of conjunction is true of the other logical operators as well.

(2.67)  Mary doesn’t work, and that surprised George.

(2.68)  George believes that either Mary or her husband works.

(2.69) If Mary doesn’t work, then her husband does, because their house
is expensive.

Just as we need “handles” for events and conditions, we need them also for
the results of applying logical operators to events and conditions.

We therefore introduce the predicates and, or, not and imply, and their
corresponding primed predicates. The following translations of sentences
(2.66) - (2.69) illustrate their use:

(2.66") Rexist(A) A and (A, WM,WH) A work (WM, M)
ANwork'(WH, H) A surprise(A,G)

(2.67) Rezist(EN) A not'(EN,WM) N work' (WM, M)
A surprise(EN, G)

(2.68") believe(G, EO) N or'(EO,WM,WH) A work! (WM, M)
ANwork'(WH, H)

(2.69) cause(EE,EI) N imply (EI,EN,EWH) A not'(EN, EW M)
ANwork (EWM, M) N work(EWH, H)
A expensive' (EE, HOU)

The predicates and, or, imply and not can be related to the logical
connectives by means of axioms. First and:

(2.70)  (Ve1,ez)and(e1,ez) = Rewist(e1) N Rexist(eq)

Using this axiom and axioms A1, we can infer p(X) A ¢(Y') from and(E, E2)
AP (E1, X)Nq' (Es,Y). Conversely, from p(X) A q(Y') we can infer and(E1, E2)
AP (E1, X) A ¢ (E2,Y) for some Eq and Es.
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In negation we encounter, for the first time in a serious way, an opaque
predicate. From

Rexist(E1) N not'(Ey, Es)
we cannot conclude
Rexist(Es)

Quite the opposite. Hence, we should take some care in formulating the
representation.

The predicate not is related to the logical operator — by the following
axiom:

(2.71)  (Ve)not(e) = —Rexist(e)

Using this and axiom schema (A1), we can infer from —p(X) that there is
no E such that p/(E, X) A Rexist(E), or equivalently, for all E for which
P (E, X) is true, not(E) is true.

However, the converse does not necessarily hold. It does not follow
from not(E) A p/(E, X) that —p(X) holds, for the latter is a much stronger
statement. The former denies a particular condition of p’s being true of
X, whereas the latter denies all such conditions. If we leave things like
this, negation will pack no punch. It will be too weak. When I say “John
didn’t do his homework”, I would mean something like “John didn’t do his
homework at 8:15 last night,” and would not exclude the possibility that
John did his homework at 9:15 last night.

The predicate not can be strengthened to equivalence with the logical
operator — by means of the following axiom for one-argument eventualities:

(2.72)  (Veq,ea,e3,x)[not’ (ea,e1) A Subst(x,es,x,es)
D —[Rexists(esz) N Rexists(ea)]]

That is, if e is the negation of condition e; and e3 is any other eventuality
with the same pattern as eq, then es and e3 cannot both exist in the real
world. This axiom means that by negating any condition of a predicate p’s
being true of x we negate all of them.

Similar axioms can be written for two- and three-argument eventualities.



DRAFT 74

This however is too strong. When we say “John didn’t do his homework,”
we are not saying he has never done his homework. We generally have a
particular context in mind, for example, all possible doings of his homework
one particular evening. Thus, when we write not(e) we intend e to be
not a particular eventuality but the typical element of some set of similar
eventualities—typelt(e, s). The set may be the set of all eventualities of that
description—dset(s, e, e). But more likely, it will be a subset of this set.

Condoravdi et al. (1977) propose a similar analysis of “prevent”. When
we say, “John’s closing the barn door prevented the horse from leaving,”
we don’t mean to deny every possible leaving by the horse from the barn,
but just those within a particular temporal context. They describe this as
preventing a subtype of the type, rather than preventing a token. This is
equivalent to saying that the thing prevented is the typical element of some
subset of the set defined by the property.

It is hopeless to prove the consistency of an entire large knowledge base.
But it will allow us to proceed with more confidence if we can establish the
consistency of the theory comprised of Axioms (2.71) and (2.72) and axiom
schema (Al). The following model does just that: Let the domain be the
set of integers. Let Rexist(X) be true if and only if X is even, let not(X)
be true if and only if X is odd, and, for any p, including Rexist and not,
let p'(E, X) be true if and only if F is even and p(X) is true. That this is
a model for the theory is left as an exercise for the reader.

With this treatment of negation, we have reified not only events and
conditions, but also the nonoccurrence or nonexistence of events and condi-
tions. Thus, a condition of John’s not running is a condition F; such that
there is a condition Es5 such that

not'(E1, E2) A run'(Es, J)

The axioms corresponding to (2.70) and (2.71) for or and imply are as
follows:

(2.73)  (Ve1,ez)[or(e1,e2) = [Rexist(e;) V Rexist(es)]]
(Ver,ex)[imply(er,e2) = [Rexist(e;) D Rexist(es)]]

The commutativity of and and or follows from axioms (2.70) and (2.73).
The usual relations among and, or, imply and not can be encoded in such
axioms as the following:
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(Ver,e)or(er,e2)
= (Jes, eq,65)[not(es) A and (es,eq,es5)
Anot'(eq,e1) N not'(e5, ez)

(Vey,eq)[imply(er,ea) = (Fes)or(es,ex) A not'(es,er)]]

But there is a question: Are a conjunction and its commutation the same
condition, or two different conditions that always exist at the same time?
Should we write the strong axiom

(Ve,er,ex)and (e,e1,e3) = and'(e, ez, €1)
or the weaker axiom

(Ve, e1,ex)Rexist(e) A and(e,e1,e5) = (Feg)and (es,ea,e1) A
Rexist(e3)

On a parallel issue in their own logics, Church (1951) and Levesque (1984)
both argue for the former, stronger position, essentially contending that the
equivalence is too obvious to have to deduce and that the distinction is only
forced upon us as a result of our linear representation. A similar problem
faces us for negation. Should the equivalence P = ——P be stated with the
strong axiom

(Vey,ex)not'(e1,e3) = not'(ea,€1)

(i.e., P and —=—P are the same propositions), or with
the weaker axioms

(Veq,ea,e3)[not’'(e2,e1) A not'(es, ea)
D [Rexists(e1) = Rewxists(es)]]

(i.e., P and == P are different propositions that are always true at the same
time)? Adopting the stronger axioms would make certain proofs go through
more easily, for example, in reasoning about other agents’ reasoning. How-
ever, I tend to favor the weaker forms, since it gives one greater control over
what is inferred, and consequently, over what is “actively believed”. I would
not want to say, for example, that because someone knows P A @ is true,
he also knows whether (P V =Q) D =(—=P V —Q) is true. Where language
provides the means to make a distinction, occasions are likely to arise in
which the distinction is significant, and we should not destroy our ability
to deal with it at the earliest stage of the enterprise—in defining the logical
notation.
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Obviously, and is transparent in both its arguments, and not, or and
imply are not transparent.

Our dual notation allows us to move freely between representations of
logical operations as predicates and as operators. Although in our axiomati-
zations we use the standard logical operators freely, generally logical words
occurring in English sentences are translated into the predicates. This is
in line with our initial decision to represent all of the content of sentences
in predicates, rather than in other logical symbols. The logical operator A
will be used only for the conjunction implicit in syntactic structure.

It is convenient to introduce a notational convention at this point. We
frequently have occasion to write

(274‘) p(E) A a’nd/(Ea ElaEQ) A q,(ElaX) A T/(EQaX)

That is, p is a property of the conjunction of ¢(X) and r(X). Because this
is cumbersome, we introduce a constant with the name E1&F5. Then when
we write

p(El&Eg) A q/(El,X) A T/(EQ,X)

it is to be understood as an abbreviation for (2.74). That is, F1&F, refers to
an entity which has the property and (E1&Es, E1, E3). 1t is the eventuality
of both Fy’s and Fs’s obtaining.

This notation allows us to finesse a problem in representing the propo-
sitional content of sentences. In

John dreams he is running slowly.

John is dreaming of both the running and the slowness of the running. We
may represent this sentence as

dream(J, Ey&E3) N run/(Ey,J) A slow'(Es, Ey)
The more clumsy alternative would be
dream(J, E) N\ and (E, Ey,E2) A run/(Ey,J) N\ slow'(Eq, EY)

involving the predicate and’ when no word “and” occurs in the sentence.
Similarly, in unembedded sentences with transparent adverbial modifiers,
like
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John runs slowly.

it seems incomplete to say that the slowness of the running is by itself the
main assertion, and representing the conjunction explicitly seems cumber-
some and unmotivated. With the notational convention, we can represent
the sentence as

Rexist(E1&FE2) A run’(Eq,J) A slow'(Eq, Eq)
The noun phrase
a former eminent scientist,

with the opaque adjective “former”, may refer to a person who is both
formerly eminent and formerly a scientist. We can represent this as an X
such that

former(E1&E2) A eminent' (E1, X) A scientist'(E2, X)

2.6.2 Nonexistent Objects

Briefly, the treatment of nonexistent objects, such as unicorns and Santa
Claus, is to assume they exist in the Platonic universe but do not exist in
the real world. There might even be the following axioms in the knowledge
base:

(Vx)unicorn(z) D —Rexist(x)
(Vz)Santa-Claus(xz) D —Rexist(x)

Recall from Section 2.3 that the existential quantifier asserts existence in
the Platonic universe of possible individuals, not in the real world of actual
individuals. We can now see one reason for this. Suppose we could assert
nonexistence in the real world by the negation of an existential statement.

—(Jx)unicorn(x)

—(3z)Santa-Claus(z)

Then it would be vacuously true that Santa Claus is a unicorn, which we all
know is false.

In the ontologically promiscuous approach, we may write axioms stating
the well-known facts about nonexistent unicorns, that they are horse-like
and have a single horn, and about Santa Claus that he is fat and jolly.
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V x)unicorn(z) O single-horned(x)
V z)unicorn(z) D horse-like(x)
Vz)Santa-Claus(z) D fat(x)
Vx)Santa-Claus(x) O jolly(x)

Existence in the real world is only one possible “mode of existence”.
Existence in various counterfactual contexts is possible, and these contexts
can be reified either as predicates or as entities that can be in a kind of
“exists-in” relation with possible individuals. Negation and implication are
the simplest such contexts. The representation of the sentence “If he is
Santa Clause, he is jolly,” is

imply(e1,ea) N Santa-Claus'(e1,x) N jolly (e, x)

The property of z’s being Santa Claus and «’s being jolly exist in the world
created by the antecedent of the implication, and x exists in that world too.

A more complex example is the context created by an extended coun-
terfactual. An assumption is made. Conditions and entities are inferred to
exist in the world created by that assumption. It is shown a contradiction
follows, and thus the assumed condition and some of the other conditions
and entities do not exist in the real world.

We can similarly say that in fiction, a fictional world is created. Entities
can exist in that fictional world, but may not exist in the real world. For
example, the expression

Leopold-Bloom!(e,x) N world-of (w,Ulysses) A exist-in(e,w) A
exist-in(x,w)

says that in the Platonic universe there is an entity x that is Leopold Bloom,
and an eventuality e of x’s being Leopold Bloom. There is a world w created
by the novel Ulysses. Both e and z exist in that world, but not in the real
world.

Fictional worlds cannot be applied in any simple-minded way. We cannot
simply fix the world for the interpretation of a particular sentence, because
many sentences mix worlds in complex ways, as in

Who do you think I am, Santa Claus?

Here the speaker is relying on several facts about Santa Claus, but his ex-
istence in the real world is not one of them. At the very least it would be
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necessary to say more specifically what such worlds look like, how they are
related to the real world, and how several such worlds could be called upon
in the interpretation of single sentences.

The relation of fictional worlds to the real world is in general quite com-
plex. In some cases, the invocation of a single fictional entity calls with it
an entire world, as Zeus may bring along with him the entire world of Greek
mythology. In other cases, as with Santa Claus, the fictional world is just
the real world with a few new characters and a few events of questionable
plausibility. The nature of the fictional world that accompanies unicorns is
not at all clear. Each of these fictional worlds is constructed by means of
a transformation of the real world, involving perhaps just its augmentation
by certain characters and improbable incidents. Often there is a different
knowledge base in the fictional world from that used in the real world, with
respect to which sentences mentioning such entities are interpreted. Perhaps
more drastically, there can be changes in physical laws, as in the book Flat-
land. Just how these fictional worlds are constructed is a complex process
that would have to be subjected to case-by-case analysis.

The problem of entities with contradictory properties presents a some-
what more difficult case, but yields to a similar solution. This problem
is the focus of Russell’s criticism (1905) of an earlier approach to logical
form—that of Meinong (1904). Russell is worth quoting:

Of the possible theories which admit such constituents [nonexis-
tent entities| the simplest is that of Meinong. This theory re-
gards any grammatically correct denoting phrase as standing
for an object. Thus “the present King of France,” “the round
square,” etc., are supposed to be genuine objects. It is ad-
mitted that such objects do not subsist, but nevertheless they
are supposed to be objects. This in itself is a difficult view;
but the chief objection is that such objects, admittedly, are
apt to infringe on the law of contradiction. It is contended,
for example, that the existent present King of France exists,
and also does not exist; that the round square is round, and
also not round; etc. But this is intolerable; and if any theory
can be found to avoid this result, it is surely to be preferred.

The difference between ontological promiscuity and the Meinongian ap-
proach is that in the former, one distinguishes clearly between the real world,
where the law of contradiction holds, and the Platonic universe, where one
has certain escape hatches. Meinong’s objects are entities in the Platonic
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universe and his notion of subsistence is encoded by our predicate Rexist,
establishing the relation between the Platonic universe and the real world.
Let us consider Russell’s own sentence,

It is contended that ... the round square is round, and also not
round.

The first question we face in discourse interpretation theory is how to repre-
sent the information content in this sentence before any inferences are drawn.
The representation must allow us to reason about what the sentence says,
and in particular to draw the conclusion from it that Russell wants us to
draw, that no such thing as a round square

could exist.

First of all, what do we mean by a round square existing in the Platonic
universe? We will take this to mean an entity X for which there are, in the
Platonic universe, a condition 7 of X’s roundness and a condition Ey of
X’s squareness. Then we want to show that these conditions cannot both
exist in the real world. More precisely, given

round (E1,X) N square' (Eq, X)

we want to show

(2.75)  —[Rexist(E1) N Rexist(Es)]

Suppose X’s squareness Fs exists. Then by the transparency of “square”,
X would exist. By (A1), X would be square. By means of an axiom (or
more likely a theorem)

(Vx)square(z) D —round(z)

we could conclude that X was not round. If X’s roundness F; existed, then
by (Al), X would be round, a contradiction. Thus, Rexist(Fy) implies
—Rexist(E2), establishing (2.75).

We needed a notation to do this. The notation needs a semantics. The
Platonic universe is an invention that allows us to specify a semantics for
the notation.
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2.6.3 Opaque Adverbials and Modal Operators

It seems reasonably natural to treat transparent adverbials as properties
of events. For opaque adverbials, like “almost”, it seems less natural, and
one is inclined to follow Reichenbach (1947) in treating them as functionals
mapping predicates into predicates. Thus,

John is almost a man.
would be represented
almost(man)(J)

That is, almost maps the predicate man into the predicate almost-a-man.

This representation is undesirable for our purposes since it is not first-
order. It would be preferable to treat opaque operators as we do transparent
ones, as properties of events or conditions. The sentence would be repre-
sented

almost(E) A man'(E, J)

But does this get us into difficulty?

First note that this representation does not imply that John is a man, for
we have not asserted E’s existence in the real world, and almost is opaque
and does not imply its argument’s existence. In fact, the opposite is true.
We would want the axiom

(Ve)almost(e) D not(e)

That is, something that almost occurs doesn’t occur.

But is there enough information in £ to allow one to determine the truth
value of almost(F) in isolation, without appeal to other facts? The answer is
that there could be. We can construct a model in which for every functional
F' there is a corresponding equivalent predicate ¢, such that

(Vp,2)[F(p)(z) = (Fe)lale) A p'le,2)]]

The existence of the model shows that this is not necessarily contradictory.

Let the domain of interpretation D be the class of finite sets built out of
a finite set of urelements. The interpretation of a constant X will be some
element of D; call it I(X). The interpretation of a monadic predicate p will
a subset of D; call it I(p). Then if E is such that p/(E, X), we define the
interpretation of E to be < I(p), [(X) >.

Now suppose we have a functional F' mapping predicates into predicates.
We can define the corresponding predicate g to be such that
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q(E) is true iff there are a predicate p and a constant X where
the interpretation of E is < I(p),I(X) > and F(p)(X) is
true.

The fact that we can define such a predicate ¢ in a moderately rich model
means that we are licensed to treat opaque adverbials as properties of (pos-
sible) events and conditions.

The purpose of this exercise is only to show the viability of the approach.
I am not claiming that a running event is an ordered pair of the runner
and the set of all runners, although it should be mostly harmless for those
irredeemably committed to set-theoretic semantics to view it like that.

Returning to “almost”, the sentence

John was almost killed by a car.
would be represented
Past(A) A almost' (A, E) A kill'(E,C,J)

That is, an ‘almost-ness’ of a car’s killing John occurred in the past.

This representation is of course very unrevealing about the meaning of
“almost”, but as always that sort of information must be built into the
axioms. “Almost” is discussed further in Section 5.77.

Modal operators can be treated similarly. They are simply predicates
which take other entities as their arguments and, generally, do not imply
the existence of their arguments. Thus, the modal adverbial “possibly” is
represented by the predicate possible:

Possibly, John works. = possible(E) A work!(E,J)
Modal auxilliaries can also be represented like this:
John can work. = can(E) A work/(E, J)

Possible and can are opaque predicates, so the existence of John’s working
is not implied. If we had had Rexist(E), it would tell us that John’s working
exists in the real world; possible(E) and can(E) tells us something rather
weaker about the existential status of John’s working.

Finally, recall that in Section 2.4.7 we represented

This glass is full for a drink at this bar.

as
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for(full,DS)(G)
We can now translate it into first-order notation:
for(E,DS) A full'(E,QG)

That is, the fullness E of glass G is for or with respect to the reference
set DS. The predicate for is not transparent in its first argument, so we
cannot conclude that the glass is full absolutely. If the sentence is negated,
it is for(E, DS) that is negated, rather than full(G). We would thus be
denying the fullness with respect to a specific reference set, and not in general.
It should be noted that this treatment of adverbials has consequences
for the individuating criteria on eventualities. We can say “John is almost
a man” without wishing to imply “John is almost a mammal,” so we would
not want to say that John’s being a man is the same condition as his be-
ing a mammal. We are forced, though not unwillingly, into a position of
individuating eventualities according to very fine-grained criteria.

2.7 Belief and Mutual Belief

2.7.1 Objects of Belief

Our representation for “John believes P” is believe(J, P). It is necessary to
say something about what the second argument of the predicate believe is.
What sort of entity is P? There seem to be four possibilities for, say, “John
believes Mary is asleep”.

1. P is an eventuality, the eventuality or condition in the Platonic uni-
verse of Mary’s being asleep, that may or may not exist in the real world.

2. P is the proposition that is true when the eventuality of Mary’s being
asleep exists in the real world, that is, the proposition that Mary is asleep.

3. P is some sort of mental representation in John’s head that represents
the proposition that Mary is asleep or the eventuality of Mary’s being asleep.

4. P is the English sentence “Mary is asleep.”

It doesn’t make very much difference which of the first three positions one
adopts, for they are interchangeable via coercion functions like “the propo-
sition that is true when the eventuality P exists” or “the eventuality that
exists when the proposition P is true” or “the mental representation that
represents proposition/eventuality P”. Whatever they are, the class of them
must be fine-grained enough that logically equivalent propositions can be
distinguished, and rich enough to include logically impossible propositions.
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I generally speak of P as an eventuality, but I am deliberately cavalier about
the distinction between eventualities and propositions, if there is one. One
sign of this is my use of both the letters E and P, as well as others, in the
second argument position.

It is important, however, that we do not take P to be an English
sentence.'” An English sentence conveys a number of propositions, and
it is necessary to be clear about just which of them are in fact believed.
In line with our principle of allowing only predicates and not constants to
convey information, we will want to say that the sentence “Mary is asleep”
conveys two predications. There is some entity—call it M, but don’t assume
from that choice of letters that we know anything about M—about which
we know two things: M is asleep and M is named “Mary”. We can repre-
sent these asleep(M) and Mary(M). Generally when we say “John believes
Mary is asleep” we mean that John believes both of these propositions. This
is not necessarily the case, however. I might explain John’s behavior at a
reception with the sentence

John knew Chomsky was famous, but couldn’t remember his
name.

The first clause conveys
know(J, P) A famous'(P,C)

but not (at least after the second clause cancels it)
know(J,Q) N Chomsky'(Q,C)

Two classes of problems arise in the representation of belief, the first
introduced by Al researchers and the second by philosophers. The first class
involves reasoning about other agents’ beliefs. The second class includes the
problem, introduced by Quine (1956), of distinguishing de re and de dicto
belief reports, and the problem of identity, raised by Frege (1892). We will
look at the AI problems first.'®

"Moore and Hendrix (1982), who argue that belief should be viewed as a relation
between an agent and an internal representation, make this same point when they say the
internal “language of thought” cannot be identical with an external, natural language.

8Other proposals have been made in AT for representing knowledge and belief (e.g.,
Moore, 1980; Konolige, 1985). They have been developed specifically for this problem and
are superior to the present proposal possibly in clarity and certainly in efficiency. But it is
not clear how conveniently they will extend to a logical notation for representing discourse
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2.7.2 Reasoning about Beliefs

The problem raised by artificial intelligence researchers involves drawing
the appropriate inferences from belief reports. Given that an agent believes
some propositions and is rational, how do we draw inferences about what
else he believes? How do we reason about an agent’s reasoning?

The approach taken here has been called the “syntactic” approach. The
deductive processes of agents are modelled explicitly. This requires us to
state two kinds of rules. First, agents know and use modus ponens. Second,
they know and use universal instantiation.

The first of these is straightforward to state.

(2.76)  (Ya,p,q,i)believe(a,p) A believe(a,i) A imply (i,p,q)
D believe(a, q)

That is, if an agent a believes p and he believes 7 which is the

proposition that p implies g, then he believes q.

Universal instantiation is not so simple to state, for we have to de-
cide upon how the agent represents or understands universal quantification.
There is a way to sneak past the problem by using universal instantiation
outside of the belief contexts to do the work for us inside belief contexts. In
this approach “John believes all men are mortal” is represented as follows:

(2.77)  (Yp,x)man’(p, x)
D (Fgq,i)believe(J,i) A imply (i,p,q) N\ mortal'(q,x)

That is, if p is z’s being a man, then there is a ¢ which is x’s being mortal
and an ¢ which is the implication from p to ¢, and John believes i. If we
also know that John believes Socrates is a man,

believe(J, P) A man'(P,S)
then we can use universal and existential instantiation on (2.77) to derive

believe(J,I) A imply' (I, P,Q) N man'(P,S) A mortal’ (Q, S)

in general. The logical notation developed here is aimed toward discourse in general. In
this section I merely want to show that it is “representationally adequate” for belief, in the
sense that classical distinctions can be represented and that reasoning can be performed,
neglecting questions of efficiency.
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Then we can use (2.76) to conclude that John believes Socrates is mortal:
believe(J,Q) N mortal’ (Q, S)

The difficulty with proceeding in this way is that axiom (2.77) does not
make a statement about John’s general knowledge. It says rather of every
particular entity (in the Platonic universe) that John believes that that
particular entity is mortal if it is a man. Rather than having one general
belief about man’s mortality, John has infinitely many specific beliefs about
the mortality of infinitely many particular possible men.

The alternative approach, and the one adopted here, is to reconstruct
the syntax of first-order predicate calculus in agents’ belief contexts.'® The
reader should be warned at the outset that this is not pretty. Correspond-
ing to the universally quantified variable, there is something which, following
McCarthy (1977), I call an “inner variable”. Think of it as meaning “any-
thing”. An inner variable is not a variable in the logic but an entity in the
Platonic universe, whose mysterious nature I will explicate only by listing
the axioms it satisfies. It is not unrelated to typical elements; indeed, it may
be thought of as a typical element of the class of all entities in the Platonic
universe. The fact that something is an inner variable is expressed with the
predicate iv; iv(X) says that X is an inner variable. Specifically, if T is
truth, that is, an eventuality that always exists in the real world—

eventuality(T) N Rexists(T)
—and has no internal structure—
(Vz,y)Subst(zx,T,y,T)

then z is an inner variable if and only if it is the typical element of the set
defined by the eventuality T

(Va)liv(z) = (Is)dset(s,z,T)
In this scheme, “John believes all men are mortal” is represented

(2.78)  believe(J,I) A imply' (I, P,Q) N man'(P, X) A mortal'(Q, X)
Niv(X)

9This is similar to approaches taken by McCarthy (1977), Moore (1980), and Konolige
(1985). I follow McCarthy most closely, though perhaps not so closely that he would
recognize it.
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A gloss of this is “John believes the proposition I that P, X’s being a
man, implies (), X’s being mortal, where X is anything.” Notice that inner
variables are represented by constants in the notation.

Universal instantiation can now be stated as follows:

(2.79)  (VYa,y,p)[Rexists(p) A iv(x) D (3q)[Subst(y,q,x,p) N Rexists(q)

If an eventuality p exists in the real world and x is an inner variable, then
for any y there is a ¢ such that y plays the same role in ¢ as x plays in
p and ¢ also exists in the real world. This is intended to be used when p
somehow involves z—arg + (x,p)—but we don’t need to state this in the
axiom because if this doesn’t hold, p and ¢ are identical.

It is a straightforward consequence of this and the axioms for Subst that
agents who believe general statements use universal instantiation:

(2.80)  (Ya,z,y,p)[believe(a,p) A iv(z)
D (F¢q)[Subst(y,q,x,p) A believe(a,q)

If agent a believes p and x is an inner variable, then for any y, there is a
q such that y plays the same role in ¢ that x plays in p, then a believes gq.
We need not state that a believes x is an inner variable. We can simply
assume that knowing a proposition involving an inner variable is knowing
the general fact. A creature incapable of doing universal instantiation would
not know a proposition involving an inner variable.

We can now work through a simple syllogism.?? John believes that
Socrates is a man,

(2.81)  believe(J,PS) A man'(PS,S)
and that all men are mortal,

(2.82)  believe(J,I) A imply' (I, P,Q) N man'(P, X)
Amortal’ (Q, X) A iv(X)

20Tt will be obvious that this is a place where a computer implementation would use
special purpose techniques rather than blind deduction.
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To show John believes Socrates is mortal, we must show
(Fgs)believe(J, qs) A mortal'(gs, S)

It follows from (2.82) and (2.80) that there is a I.S such that

(2.83)  Subst(S,I1S,X,I) A believe(J,1S)

From the definitional axioms for Subst this means that there is a (.S such
that

(2.84)  believe(J,1S) A imply' (IS, PS,QS) AN man'(PS,S)
Amortal’ (QS, S)

From this, (2.81), and (2.76) (agents apply modus ponens), we conclude
(2.85)  believe(J,QS) N mortal’ (QS, S)

There are several further properties and nonproperties of belief and
knowledge that we need to axiomatize or avoid axiomatizing. The first
relates belief and conjunction:

(Va,p,q,c)believe(a,p) A believe(a, q) Aand' (c,p,q) D believe(a,c)

That is, if an agent a believes p and believes ¢ and ¢ is a conjunction of p
and ¢, then a believes c. The converse of this is also true:

(2.86)  (Ya,c,p,q)believe(a,c) A and (c,p,q)
D believe(a,p) N believe(a,q)

If an agent a believes the conjunction ¢ of p and ¢, then a believes p and a
believes q.

Notice that we do not want the axiom relating belief and disjunction,
corresponding to (2.86):

*(Va,d,p,q)|believe(a,d) Nor'(d,p,q) D [believe(a,p) V believe(a, q)]]
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The fact that an agent believes p or ¢ does not imply that he believes p or he
believes ¢. He may be genuinely uncertain which is true. As Moore (1980)
has pointed out, this is one of the pitfalls of simple models of belief.

Another pitfall is the relation between belief and negation. We want to
be able to conclude from the fact that an agent believes —p that the agent
does not believe p:

(Va,n,p,bbelieve(a,n) A not'(n,p) A believe' (b,a,p) D not(b)
But we do not want the converse to be true.
*(Va,n,p,b)not(b) A believe' (b,a,p) Anot'(n,p) D believe(a,n)

The agent may have no opinion as to whether p is true or not.
Finally, let us point out a difference in the properties of believe and
know. If someone knows something, that something is true:

(Va,p)know(a,p) O Rexist(p)
But it is not the case that if someone believes something, it is true:
* (Va,p)believe(a,p) D Rexist(p)

It should be noted that by having axioms (2.76) and (2.79) (or (2.80)),
we not only are able to reason about someone’s beliefs. We are also able
to show that an agent believes all the logical consequences of his beliefs.
This is true of other models of belief as well (e.g., Moore, 1980). However, it
violates common sense. We don’t know all the theorems of mathematics just
because we know the axioms of set theory. Konolige (1985) has developed
a treatment of belief that is more intuitive in that it lacks this “deductive
closure” property. My response to this difficulty is what it will be to many
similar difficulties. In the abductive approach outlined in Chapter 3 and
used for the rest of the book, axioms are defeasible and used only when
they contribute to the best interpretation of a text. We will not be able to
conclude that an agent knows all the consequences of his beliefs, because
the discourse being interpreted will not license all of those inferences.

2.7.3 Mutual Belief

An extremely important concept in the study of discourse is “mutual belief”
(McCarthy, 1975; Lewis, 1969; Schiffer, 1972; Clark and Marshall, 1981),
since ideally it determines what can be presupposed by the speaker. A set
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of agents s mutually believes a proposition p when they not only all belief
p individually, but also believe that the others believe p, and believe that
the others believe that the others believe p, and so on, ad infinitum. This
notion can be axiomatized with the two following axioms:

(2.87)  (Vs,p,a)mb(s,p) N member(a,s) D believe(a,p)
(2.88)  (Vs,p,m)Rexist(m) A mb(m,s,p) DO mb(s,m)

The first axiom says that if a set s of agents mutually believe p and agent
a is a member of s, then a believes p. This allows us to infer belief from
mutual belief. The second axiom says that if s mutually believes p, then
s mutually believes that s mutually believes p. This allows us to embed
mutual belief in mutual belief contexts.

If in addition these rules are mutually believed, we can derive that if a
set s of agents mutually believes p and mutually believes a is a member of
s, then they will mutually believe that a believes p.

(2.89)  (Vs,p,a,e,m)[mb(s,p) A member'(e,a,s) A mb(s,e)
D (3b)[mb(s,b) A believe (b, a,p)]]

From this axiomatization it is straightforward to show, for example, that
if a set s mutually believes p and John, Bill, and Mary are in s, then John
believes that Bill believes that John believes that Mary believes p.

All of the axioms that have been stated and will be stated should be
thought of as mutually believed by some set s of agents. Some of the axioms,
such as axiom (2.76) about using modus ponens, are mutually believed by
all rational beings. Other axioms will be much more culturally dependent.
In fact, it’s useful to think of agents’ knowledge bases as being indexed by
what social group each class of facts is shared with. Thus, there is some
knowledge that I share with all Americans or all English speakers, some
facts I share with other people raised in the Midwest, some I share with
other computer scientists, and some I share with a few close friends.

Properly, then, all the axioms should be stated not in the form I have
given them, but embedded in mutual belief contexts. That will not be
done in this book, since that would make the axioms totally impenetra-
ble, whereas now the reader may eventually come to be able to read them.
However, just once, it should be shown that the axioms can be embedded
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within mutual belief contexts. To do this, one first translates the axiom into
Skolemized form. One replaces each universally quantified variable by an
inner variable, say X, and add the conjunct iv(X). One replaces the terms
of the form f(x), where f is a Skolem function, by a constant, say Y, and
adds a conjunct of the form FD(Y,X). Logical operators connecting un-
primed predications are translated into the corresponding logical operator
predicates introduced in Section 2.6.1. The eventuality corresponding to the
highest level logical operator becomes the second argument of the predicate
mb.
As an example, consider an axiom of the form

(Va)p(z) A q(x) O 3y)r(y, =)
Embedded in a mutual belief context, this becomes

mb(S,I) A imply' (I, EA,ER) AN and (EA, EP,EQ) A p'(EP, X)
NG (EQ,X) A r'(ER,Y,X) A iv(X) A FD(Y, X)

A final example: Consider axiom (2.76) that people use modus ponens,
repeated here for the reader’s convenience.

(2.76) (Va,i,p,q)believe(a,p) A believe(a,i) A imply (i, p,q)
D believe(a, q)

Corresponding to the universally quantified variables, we have the constants
A, I, P, and @, which are inner variables. The translation would be as
follows:

(2.90)  mb(S, 1) A imply (I, C, Bs) A and'(C, By, B2) A believe' (B, A, P)
Abelieve' (Ba, A, I) A imply' (I, P,Q) A believe' (Bs, A, Q)
Niw(A) Adv(I) A w(P) A w(Q)

This can be given the tortured paraphrase, the set S of agents mutually
believes the implication I; from the conjunction C of A’s belief By that P
and A’s belief By in the implication I from P to @ to A’s belief Bs that
Q.Ql

2Tt is worth stating, though surely not worth demonstrating, that the “Three Wise

Men” problem, posed by McCarthy (1975) as a challenge for the adequacy of representation
schemes for knowledge and belief, can be solved in the formalism presented here.
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2.7.4 De Re and De Dicto Belief Reports

The AI problems concerning belief involve reasoning about an agent’s be-
liefs. The philosophers’ problems concern the adequate expressivity of the
notation. The first of these is the problem of distinguishing between de re
and de dicto belief reports.

A belief report like

(2.91)  John believes a man at the next table is a spy.

has two interpretations. The de dicto interpretation is likely in the circum-
stance in which John and some man are at adjacent tables and John observes
suspicious behavior. The de re interpretation is likely if some man is sitting
at the table next to the speaker of the sentence, and John is nowhere around
but knows the man otherwise and suspects him to be a spy. A sentence that
very nearly forces the de re reading is

John believes Bill’s mistress is Bill’s wife.?2
whereas the sentence
John believes Russian consulate employees are spies.

strongly indicates a de dicto reading. In the de re reading of (2.91), John
is not necessarily taken to know that the man is in fact at the next table,
but he is normally assumed to be able to identify the man somehow. More
on “identify” below. In the de dicto reading John believes there is a man
who is both at the next table and a spy, but may be otherwise unable to
identify the man. The de re reading of (2.91) is usually taken to support
the inference

(2.92)  There is someone John believes to be a spy.

whereas the de dicto reading supports the weaker inference

(2.93)  John believes that someone is a spy.

22This example is due to Moore and Hendrix (1982).
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As Quine has pointed out, as usually interpreted, the first of these sentences
is false for most of us, the second one true. A common notational maneuver
(though one that Quine rejects) is to represent this distinction as a scope
ambiguity (e.g., Montague, 1974). Sentence (2.92) is encoded as (2.94) and
(2.93) as (2.95):

(2.94)  (3x)believe(J, spy(z))
(2.95)  believe(J, (3x)spy(z))

If one adopts this notation and stipulates what the expressions mean,
then there are certainly distinct ways of representing the two sentences. But
the interpretation of the two expressions is not obvious. It is not obvious
for example that (2.94) could not cover the case where there is an individual
such that John believes him to be a spy but has never seen him and knows
absolutely nothing else about him—mnot his name, nor his appearance, nor
his location at any point in time—beyond the fact that he is a spy.

In fact, the notation we propose takes (2.94) to be the most neutral
representation. Since quantification is over entities in the Platonic universe,
(2.94) says that there is some entity in the Platonic universe such that
John believes of that entity that it is a spy. Expression (2.94) commits
us to no other beliefs on the part of John. When understood in this way,
expression (2.94) is a representation of what is conveyed in a de dicto belief
report. Translated into the flat notation and introducing a constant for the
existentially quantified variable, (2.94) becomes

(2.96)  believe(J,P) A spy'(P,S)

Anything else that John believes about this entity must be stated ex-
plicitly. In particular, the de dicto reading of (2.91) would be represented
by something like

(2.97)  believe(J, P&Q) A spy' (P,S) A at'(Q,S,T)

where T is the next table. That is, John believes S is a spy and that S
is at the next table. John may know many other properties about S and
still fall short of knowing who the spy is. There is a range of possibilities
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for John’s knowledge, from the bare statements of (2.96) and (2.97) that
correspond to a de dicto reading to the full-blown knowledge of S’s identity
that is normally present in a de re reading. In fact, an FBI agent would
progress through just such a range of belief states on his way to identifying
the spy.

To state John’s knowledge of S’s identity properly, we would have to state
explicitly John’s belief in a potentially very large collection of properties of
the spy. To arrive at a succinct way of representing knowledge of identity
in our notation, let us consider the two pairs of equivalent sentences:

What is that?
Identify that.

The FBI doesn’t know who the spy is.
The FBI doesn’t know the spy’s identity.

The answer to the question “Who are you?” and what is required before
we can say that we know who someone is or that we know their identity is a
highly context-dependent matter. Several years ago, before I had ever seen
Kripke, if someone had asked me whether I knew who Saul Kripke was, 1
would have said, “Yes. He’s the author of ‘Naming and Necessity’.” Then
once I was at a workshop which I knew was being attended by Kripke, but
I didn’t yet know what he looked like. If someone had asked me whether I
knew who Kripke was, I would have had to say, “No.” The relevant property
in that context was not his authorship of some paper, but any property that
distinguished him from the others present, such as “the man in the back row
holding a cup of coffee”.

Generally when someone asks me who I am, the appropriate answer is
“Jerry Hobbs.” If someone asks me who Jerry Hobbs is, the appropriate
answer is “Me.” But if I accidently walked into the board room of IBM
during a meeting and the chairman of the board asked me, “Who are you?”,
it would not be an adequate answer for me to say, “Jerry Hobbs.” I am being
asked for some other property, one that will explain my presence, such as “I
was looking for the cafeteria.”

Knowledge of a man’s identity is then a matter of knowing some context-
dependent essential property that serves to identify him for present purposes—
that is, a matter of knowing who he is.

Therefore, we need a kind of place-holder predicate to stand for this
essential property, that in any particular context can be specified more
precisely. It happens that English has a morpheme that serves just this
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function—the morpheme “wh”. In line with our decision to use simple En-
glish morphemes for predicates where they are available and seem to mean
the right thing, we posit a predicate wh that stands for the contextually
determined property or conjunction of properties that would count as an
identification in that particular context.

The de re reading of (2.91) is generally taken to include John’s knowledge
of the identity of the alleged spy. Assuming this, a de re belief report would
be represented as a conjunction of two beliefs, one for the main predication
and the other expressing knowledge of the essential property, the what-ness,
of the argument of the predication.

believe(J, P) A spy' (P, X) A know(J,Q) N wh'(Q, X)

That is, John believes S is a spy and John knows who S is.

This solves the representation problem, but it doesn’t solve the real prob-
lem of how to determine what that context-dependent essential property is
in any particular context. That’s a pragmatics problem and, hence, is dealt
with in Chapter 6. Depending on the context, we may be able to determine
what specific properties of S John knows, or more likely, we will be able
to draw the appropriate inferences about what John will now do, given his
knowledge of the identity of the spy.

However, let us probe this distinction just a little more deeply and in
particular call into question whether knowledge of identity is really part of
the meaning of the sentence in the de re reading. The representation of the
de dicto reading of (2.91), I have said, is

(2.98)  believe(J,P) A spy'(P,S) A believe(J,Q) A at'(Q,S,T)

Let us represent the de re reading as

(2.99a)  believe(J,P) A spy'(P,S) N Rexist(Q) A at'(Q,S,T)
(2.99Db) Aknow(J,R) N wh'(R,S)

What is common to (2.98) and (2.99) are the conjuncts believe(.J, P),
spy'(P,S) and at’(Q,S,T). There is a genuine ambiguity as to whether @
exists in the real world (de re) or is merely believed by John (de dicto).
In addition, (2.99) includes the conjuncts know(J, R) and wh'(R,S) — line
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(2.99b). But are these necessarily part of the de re interpretation of sen-
tence (2.91)7 The following example casts doubt on this. Suppose the entire
Rotary Club is seated at the table next to the speaker of (2.91), but John
doesn’t know this. John believes that some member of the Rotary Club is a
spy, but has no idea which one. Sentence (2.91) describes this situation, and
only (2.99a) holds, not (2.99b) and not (2.98). Judgments are sometimes un-
certain as to whether sentence (2.91) is appropriate in these circumstances,
but it is certain that the sentence

John believes someone at the next table is a spy.

is appropriate, and that is sufficient for the argument.

It seems then that the conjuncts know(J, R) and wh'(R, S) are not part
of what we want in the initial logical form of the sentence,?® but only a very
common conversational implicature. The reason the implicature is very
common is that if John doesn’t know that the man is at the next table,
there must be some other description under which John is familiar with the
man. The story I just told provides such a description, but not one sufficient
for identifying the man.

This analysis of de re belief reports is particularly appealing since it
allows us to see the de re - de dicto distinction as only one example of a more
general problem—the existential status of the grammatically subordinated
propositions conveyed by a sentence. This problem is addressed in Section
4.77.

Moore (1980) approached the problem of essential properties by assum-
ing a set of “standard names” for entities and saying that someone knows
the identity of something when he knows its standard name. Suppose every
entity X in the Platonic universe had a standard name—call it sn(X). In
our approach to proper names this would be a predicate, true of only one in-
dividual, and what we would know when we knew the standard name would
be an eventuality F such that sn(X) (E, X). The standard names approach
would then be equivalent to our approach if we had the axiom

(2.100)  (Ve,z)wh/(e,z) = sn(x) (e, x)

That is, the context-dependent property wh, the what-ness of something, is
always exactly the property conveyed by the standard name. Representing

23 Another way of putting it: they are not part of the literal meaning of the sentence.
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the essential property by means of the predicate wh is thus a generalization
of the standard names approach, since we

do not necessarily want to have axiom (2.100).

We certainly do not have standard names for everything, for example,
the thumb tack that is currently highest on my bulletin board, and exam-
ples above show that knowing Kripke’s name is not the same as knowing
who Kripke is. Moore notes these difficulties and makes no claims for the
standard names approach beyond the statement that it is a convenient ide-
alization. It is not an unreasonable idealization. Proper names (and social
security numbers too) can be viewed as attempts to assign standard names
to large classes of entities. One reason that proper names often function as
the essential property is that much of our knowledge is organized around
proper names. When we learn someone’s name, we usually gain access to
a large class of other facts about that person, often including the relevant
essential property.

But even in cases where standard names seem most appropriate, dif-
ficulties arise. Telephone numbers and combinations of safes are frequent
examples in the literature. It is almost always the essential property of
my telephone number that it is 859-2229, for knowing that is sufficient for
dialing it, and that’s almost all one ever has to do with a telephone num-
ber. But even with telephone numbers, it is possible to construct examples
where knowing the sequence of numbers is not sufficient for the purposes at
hand. Suppose I know that George’s telephone number is 848-7465 and that
Claudia’s telephone number is VITRIOL. Both of these would be considered
standard names. But if what is desired is to know whether the telephone
numbers are the same, then if I don’t know the correspondences between
numbers and letters on the telephone pad, I don’t know the essential prop-
erty. For entities which are characterized by more complex combinations of
properties, namely, nearly everything, it is much more difficult to specify
a property which will almost always tell what is required for the specific
situation and would thus function as a useful standard name.

It was stated above that the representation (2.96) for the de dicto reading
conveys no properties of S other than that John believes him to be a spy. In
particular, it does not convey S’s existence in the real world. S thus refers
to a possible individual, who may turn out to be actual if, for example,
John ever comes to be able to identify the person whom he believes to be
the spy, or if there is some actual spy who has given John good cause for
his suspicions.

However, it may be that S is not actual, only possible. Suppose this



DRAFT 98

is the case. One common objection to possible individuals is that they
may seem to violate the Law of the Excluded Middle. Is S married or not
married? Our intuition is that the question is inappropriate, and indeed the
answer given in our formalism has this flavor. By axiom (A1), married(S)
is really just an abbreviation for married' (E,S) A Rexist(F). This is false,
for the existence of E in the real world would imply the existence of S. So
married(S) is also false. But its falsity has nothing to do with S’s marital
status, only his existential status. The predication unmarried(S) is false for
the same reason. The primed predicates are basic, and for them the problem
of the excluded middle does not arise. The predication married (E,S) is
true or false depending on whether F is the condition of S’s being married.
An unprimed, transparent predicate carries along with it the existence of its
arguments, and it can fail to be true of an entity either through the entity’s
being actual but not having that property or through the nonexistence of
the entity.

2.7.5 Identity in Intensional Contexts

The second of the philosophers’ problems arises in de dicto belief reports.
It is the problem of identity in intensional contexts, raised by Frege (1892).
One way of stating the problem is this. Why is it that if

(2.101)  John believes the Evening Star is rising.

and if the Evening Star is identical to the Morning Star, it is not necessarily
true that

(2.102)  John believes the Morning Star is rising.

By Leibniz’s principle, we ought to be able to substitute for an entity any
entity that is identical to it.

This puzzle survives translation into the logical notation, if John knows
of the existence of the Morning Star and if proper names are unique. The
representation for (the de dicto reading of) sentence (2.101) is

(2.103)  believe(J, P1) A rise/(P1, ES) A believe(J, Q1)
A Evening-Star’ (Q1, ES)



DRAFT 99

John’s belief in the Morning Star would be represented
believe(J,Q2) N Morning-Star'(Qz, M S)

The existence of the Evening Star and the Morning Star is expressed by
Rexist(Q1) N Rexist(Q2)

The uniqueness of the proper name “Evening Star” is expressed by the axiom
(Vz,y)Evening-Star(z) N Evening-Star(y) D x =1y

The identity of the Evening Star and the Morning Star is expressed
(Vx)Evening-Star(z) = Morning-Star(x)

From all of this we can infer that the Morning Star M S is also an Evening
Star and hence is identical to E'S, and hence can be substituted into rise’(P;, ES)
to give rise’(Py, M S). Then we have

believe(J, Py) A rise’(Py, MS) A believe(J,Q2)
A Morning-Star' (Qa, MS)

This is a representation for the paradoxical sentence (2.102).

There are three possibilities for dealing with this problem. The first
is to discard or restrict Leibniz’s Law. The second is to deny that the
Evening Star and the Morning Star are identical as entities in the Platonic
universe; they only happen to be identical in the real world, and that is not
sufficient for intersubstitutivity. The third is to deny that expression (2.103)
represents sentence (2.101) because “the Evening Star” in (2.101) does not
refer to what it seems to refer to.

The first possibility is the approach of researchers who treat belief as an
operator rather than as a predicate, and then restrict substitution inside the
operator. We cannot avail ourselves of this solution because of the flatness
of the our notation. The predicate rise is surely referentially transparent,
so if £S and M S are identical, M S can be substituted for £S in the expres-
sion rise’(Py, ES) to give rise/(P1, M S). Then the expression believe(.J, Py)
would not even require substitution to be a belief about the Morning Star.

In any case, this approach does not seem wise in view of the central
importance played in discourse interpretation by the identity of differently
presented entities, i.e. by coreference. Free intersubstitutibility of identicals
seems a desirable property to preserve.
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The second possible answer to Frege’s problem is to say that in the Pla-
tonic universe, the Morning Star and the Evening Star are different entities.
It just happens that in the real world they are identical. But it is not true
that ES = M S, for equality, like quantification, is over entities in the Pla-
tonic universe. The fact that £S and M .S are identical in the real world
must be stated explicitly, say, by the expression

identical(ES, MS)
or more properly,
(Vz,y)Morning-Star(z) A Evening-Star(y) D identical(z,y)

The predicate identical would refer only to identity in the real world.

For reasoning about “identical” entities, that is, Platonic entities that
are identical in the real world, we may take an approach that parallels our
approach to instantiations of universally quantified variables. The predicate
identical will play a role similar to that of Subst. Corresponding to axiom
schemas (2.19)-(2.22), we would have an axiom schema

(2.104)  (Veq,es,eq,...)p'(e1,...,€3,...) A identical(eyq,es)
D (Fea)p'(ea,...,e4,...) A identical(ez,er)

where eg is the kth argument of p and p is referentially transparent in its kth
argument. There would be an axiom for the first argument of believe but
not its second argument. Substitution of identicals in a condition results
not in the same condition but in an identical condition.

Axioms will express the fact that identical is an equivalence relation:

(Vz)identical(z, x)

(Vz,y)identical(z,y) D identical(y,x)

(Vz,y, 2)identical(x,y) A identical(y,z) D identical(x, z)
Corresponding to the axiom (2.79) expressing universal instantiation, we

would have the following axiom, which together with axiom (2.104) expresses
Leibniz’s Law:

(Vei1,ez)identical(er,ea) D (Rexist(e;) = Rewist(ez))
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From all of this we can prove that if the Evening Star rises then the Morn-
ing Star rises, but we cannot prove from John’s belief that the Evening Star
rises that John believes the Morning Star rises. If John knows the Morning
Star and the Evening Star are identical, and he knows axiom (2.104), then
his belief that the Morning Star rises can be proved as one would prove his
belief in the consequences of any other syllogism whose premises he believed.

This solution is in the spirit of our whole representational approach in
that it forces us to be painfully explicit about everything. The notation does
no magic for us. In my view, it is the correct approach.

There is a significant cost associated with this solution, however. When
proper names are represented as predicates and not as constants, the natural
way to state the uniqueness of proper names is by means of axioms of the
following sort:

(Vz,y)Evening-Star(z) N Evening-Star(y) D x =1y

But since from the axioms for identical we can show that Evening-Star(M.S),
it would follow that MS = ES. We must thus restate the axiom for the
uniqueness of proper names as

(Vz,y)Evening-Star(z) A Evening-Star(y) D identical(x,y)

A similar modification must be made for functions. Since we are using only
predicates, the uniqueness of the value of a function must be encoded with
an axiom like

(Vz,y,z)father(x,z) N father(y,z) D x =y

If x and y are both fathers of z, then z and y are the same. This would
have to be replaced by the axiom

(Va,y,z) father(z,z) N father(y,z) D identical(x,y)

The very common problems involving reasoning about equality, which can
be done efficiently, are thus translated into problems involving reasoning
about the predicate identical, which is very cumbersome.

One way to view this second solution is as a fix of the first solution.
For = we substitute the relation identical, and by means of axiom schema
(2.104), we force substitutions to propagate to the eventualities they occur
in, and we force the distinction between referentially transparent and refer-
entially opaque predicates to be made explicitly. It is thus an indirect way
of rejecting Leibniz’s Law.
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The third solution is to say that “the Evening Star” does not really refer
to the Evening Star, but to some abstract entity somehow related to the
Evening Star. That is, sentence (2.101) is really an example of metonymy.
This may seem counterintuitive, and even bizarre, at first blush. But in fact
the most widely accepted classical solutions to the problem of identity are
of this flavor. For Frege (1892) “the Evening Star” in sentence (2.101) does
not refer to the Evening Star but to the sense of the phrase “the Evening
Star”. In a more recent approach, Zalta (1983) takes such noun phrases to
refer to “abstract objects” related to the real object. In both approaches
noun phrases in intensional contexts refer to senses or abstract objects, while
other noun phrases refer to actual entities, and so it is necessary to specify
which predicates are intensional. In a Montagovian approach, “the Evening
Star” would be taken to refer to the intension of the Evening Star, not its
extension in the real world, and noun phrases would always be taken to
refer to intensions, although for nonintensional predicates there would be
meaning postulates that make this equivalent to reference to extensions.

Thus, in all these approaches intensional and extensional predicates must
be distinguished explicitly, and noun phrases in intensional contexts are
systematically interpreted metonymically.

It would be easy enough in our framework to implement these approaches.
We can define a function « of three arguments — the actual entity, the cog-
nizer, and the condition used to describe the entity—that returns the sense,
or intension, or abstract entity, corresponding to the actual entity for that
cognizer and that condition. Sentence (2.101) would be represented, not as
(2.103), but as

(2.105)  believe(J, Py) A rise (Pr,a(ES, J,Q1)) A believe(J, Q1)
A Evening-Star’ (Q1, ES)

I tend to prefer to think of the value of a(ES,J, Q1) as an abstract entity.
Whatever it is, it is necessary that the value of a(ES, J, Q1) be something
different from the value of a(ES, J, Q2) where Morning-Star’ (Qz, ES). That
is, different abstract objects must correspond to the condition @1 of be-
ing the Evening Star and the condition ()2 of being the Morning Star. It
is because of this feature that we escape the problem of intersubstitutiv-
ity of identicals, for substitution of MS for ES in (2.105) yields ... A
rise/(Py,a(MS,J,Q1)) A ... rather than ... A rise/ (P, a(MS, J,Q2)) A ...,
which would be the representation of sentence (2.102).
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The difficulty with this approach is that it makes the interpretation of
noun phrases dependent on their embedding context:

Intensional context = metonymic interpretation
Extensional context = nonmetonymic interpretation

It thus violates the naive compositionality that I have been at so many pains
to preserve in this chapter. Metonymy is a very common phenomenon in
discourse. In Chapter 4 it will be used to solve several seemingly syntactic
problems. In Chapter 6 we will develop means for dealing with it. But I pre-
fer to think of it as occurring irregularly, and not as signalled systematically
by other elements in the sentence.

Having laid out the three possible solutions and their shortcomings, I
find that I would like to avoid the problem of identity altogether. The
third approach suggests a ruse for doing so. We can assume that, in gen-
eral, (2.103) is the representation of sentence (2.101). We invoke no extra
complications where we don’t have to. When, in interpreting the text, we
encounter a difficulty resulting from the problem of identity, we can go back
and revise our interpretation of (2.101), by assuming the reference must
have been a metonymic one to the abstract entity and not to the actual
entity. In those cases it would be as if we are saying, “John couldn’t believe
about the Evening Star itself that it is rising. The paradox shows that he
is insufficiently acquainted with the Evening Star to refer to it directly. He
must be talking about an abstract entity related to the Evening Star.” My
guess is that we will not have to resort to this ruse often, for I suspect the
problem rarely arises in actual discourse interpretation.

The reader may be either delighted or disturbed that, rather than use
Frege’s problem to force us into a more complex logic or ontology, I have
simply used available resources to patch up the difficulty.
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