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Abstract  Information Extraction (IE) techniques aim to extract the names
of entities and objects from text and to identify the roles that they play in
event descriptions. IE systems generally focus on a specific domain or topic,
searching only for information that is relevant to a user’s interests. In this
chapter, we first give historical background on information extraction and dis-
cuss several kinds of information extraction tasks that have emerged in recent
years. Next, we outline the series of steps that are involved in creating a typi-
cal information extraction system, which can be encoded as a cascaded finite-
state transducer. Along the way, we present examples to illustrate what each
step does. Finally, we present an overview of different learning-based methods
for information extraction, including supervised learning approaches, weakly
supervised and bootstrapping techniques, and discourse-oriented approaches.

21.1 Introduction

Information extraction (IE) is the process of scanning text for information
relevant to some interest, including extracting entities, relations, and, most
challenging, events—or who did what to whom when and where. It requires
deeper analysis than key word searches, but its aims fall short of the very
hard and long-term problem of text understanding, where we seek to capture
all the information in a text, along with the speaker’s or writer’s intention.
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Information extraction represents a midpoint on this spectrum, where the
alm is to capture structured information without sacrificing feasibility. IE
typically focuses on surface linguistic phenomena that do not require deep
inference, and it focuses on the phenomena that are most frequent in texts.

Information extraction technology arose in response to the need for efficient
processing of texts in specialized domains. Full-sentence parsers expended a
lot of effort in trying to arrive at parses of long sentences that were not rel-
evant to the domain, or which contained much irrelevant material, thereby
increasing the chances for error. Information extraction technology, by con-
trast, focuses in on only the relevant parts of the text and ignores the rest.

Typical applications of information extraction systems are in gleaning busi-
ness, government, or military intelligence from a large number of sources; in
searches of the World Wide Web for more specific information than keywords
can discriminate; for scientific literature searches; in building databases from
large textual corpora; and in the curation of biomedical articles. The need for
information extraction is well illustrated in biomedicine, where there are more
than half a million articles a year, and large amounts of money are spent on
curatorial activities. Similarly, in intelligence gathering, an analyst in 1990
said that reading everything she was supposed to read would be like reading
War and Peace every day; in 1995 the same analyst said it was way beyond
that.

Named entity recognition (NER) is one of the most common uses of infor-
mation extraction technology (e.g., (Bikel, Schwartz, and Weischedel 1999;
Collins and Singer 1999; Cucerzan and Yarowsky 1999; Fleischman and Hovy
2002; Sang and Meulder 2003)).

NER systems identify different types of proper names, such as person and
company names, and sometimes special types of entities, such as dates and
times, that can be easily identified using surface-level textual patterns. NER
is especially important in biomedical applications, where terminology is a
formidable problem. But it is important to note that information extraction
is much more than just named entity recognition. A much more difficult and
potentially much more significant capability is the recognition of events and
their participants. For example, in each of the sentences:

“Microsoft acquired Powerset.”
“Powerset was acquired by Microsoft.”

we would like to recognize not only that Microsoft and Powerset are com-
pany names, but also that an acquisition event took place, that the acquiring
company was Microsoft, and the acquired company was Powerset.

Much of the technology in information extraction was developed in response
to a series of evaluations and associated conferences called the Message Un-
derstanding Conference (MUC), held between 1987 and 1998.

Except for the earliest MUCSs, these evaluations were based on a corpus of
domain-specific texts, such as news articles on joint ventures. Participating
teams were supplied with a training corpus and a template definition for
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the events and their roles. For joint ventures, the roles were such things as
the participating companies, the joint venture company that was formed, the
activity it would engage in, and the amount of money it was capitalized for.
The systems were then run on a previously unseen test corpus. A system’s
performance was measured on recall (what percentage of the correct answers
did the system get), precision (what percentage of the system’s answers were
correct), and F-score. F-score is a a weighted harmonic mean between recall
and precision computed by the following formula:
2
F— (ﬁﬁ 24;111;1%

where P is precision, R is recall, and (§ is a parameter encoding the relative
importance of recall and precision. If 3 = 1, they are weighted equally. If
B > 1, precision is more important; if 3 < 1, recall is more important.?

A typical text in the joint ventures domain used in MUC-5 (July 1993)
(MUC-5 Proceedings 1993) is the following:

Bridgestone Sports Co. said Friday it has set up a joint venture
in Taiwan with a local concern and a Japanese trading house to
produce golf clubs to be shipped to Japan.

The joint venture, Bridgestone Sports Taiwan Co., capitalized
at 20 million new Taiwan dollars, will start production in January
1990 with production of 20,000 iron and “metal wood” clubs a
month.

The information to be extracted from this text is shown in the following

templates:
TIE-UP-1:
Relationship: TIE-UP
Entities: “Bridgestone Sports Co.”
“a local concern”
“a Japanese trading house”
Joint Venture Company: “Bridgestone Sports Taiwan Co.”
Activity: ACTIVITY-1
Amount;: NT$20000000
ACTIVITY-1:
Activity: PRODUCTION
Company: “Bridgestone Sports Taiwan Co.”
Product: “iron and ‘metal wood’ clubs”
Start Date: DURING: January 1990

1When in a courtroom you promise to tell the whole truth, you are promising 100% recall.
When you promise to tell nothing but the truth, you are promising 100% precision.
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IE research has since been stimulated by the Automatic Content Extraction
(ACE) evaluations?. The ACE evaluations have focused on identifying named
entities, extracting isolated relations, and coreference resolution.

Information extraction systems have been developed for a variety of do-
mains, including terrorist events (MUC-4 Proceedings 1992; Chieu, Ng, and
Lee 2003; Riloff 1996b; Soderland, Fisher, Aseltine, and Lehnert 1995), joint
ventures (MUC-5 Proceedings 1993), management succession (MUC-6 Pro-
ceedings 1995), plane crashes (MUC-7 Proceedings 1998), vehicle launches (MUC-
7 Proceedings 1998), corporate acquisitions (Freitag 1998b; Freitag and Mec-
Callum 2000; Finn and Kushmerick 2004), disease outbreaks (Grishman, Hut-
tunen, and Yangarber 2002; Patwardhan and Riloff 2007; Phillips and Riloff
2007), job postings (Califf and Mooney 2003; Freitag and McCallum 2000),
rental ads (Soderland 1999; Ciravegna 2001), resumes (Yu, Guan, and Zhou
2005), and seminar announcements (Freitag 1998b; Ciravegna 2001; Chieu
and Ng 2002; Califf and Mooney 2003; Finn and Kushmerick 2004; Gu and
Cercone 2006), There has also been a great deal of work on information extrac-
tion in biological and medical domains (e.g., (Friedman 1986; Subramaniam,
Mukherjea, Kankar, Srivastava, Batra, Kamesam, and Kothari 2003; Anani-
adou, Friedman, and Tsujii 2004; Hirschman, Yeh, Blaschke, and Valencia
2005; Yakushiji, Miyao, Ohta, and Tateisi 2006; Ananiadou and McNaught
2006)), which is discussed in greater depth in the BioNLP chapter of this
book.

21.2 Diversity of IE Tasks

The Message Understanding Conferences led to an increased interest in the
IE task and the creation of additional IE data sets. Researchers began to
work on IE problems for new domains and focused on different aspects of the
information extraction problem. In the following sections, we outline some of
the fundamental distinctions that cut across different information extraction
tasks.

21.2.1 Unstructured vs. Semi-Structured Text

Historically, most natural language processing systems have been designed
to process unstructured text, which consists of natural language sentences. In
contrast to structured data where the semantics of the data is defined by
its organization (e.g., database entries), the meaning of unstructured text
depends entirely on linguistic analysis and natural language understanding.

2http://www.itl.nist.gov/iad /mig/tests/ace/
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Professor John Skvoretz, U. of South Carolina, Columbia, will
present a seminar entitled “Embedded Commitment,” on Thurs-
day, May 4th from 4-5:30 in PH 223D.

FIGURE 21.1: Example of an unstructured seminar announcement

Examples of unstructured text include news stories, magazine articles, and
books.? Figure 21.1 shows an example of a seminar announcement that is
written as unstructured text.

Semi-structured text consists of natural language that appears in a docu-
ment where the physical layout of the language plays a role in its intepretation.
For example, consider the seminar announcements depicted in Figure 21.2.
The reader understands that the speaker is Laura Petitte, who is from the
Department of Psychology at McGill University, because seminar speakers
and their affiliations typically appear at the top of a seminar announcement.
If McGill University had appeared below Baker Hall 355 in the announcement,
then we would assume that the seminar takes place at McGill University.

Several IE data sets have been created specifically to handle domains that
often include semi-structured text, such as seminar announcements, job post-
ings, rental ads, and resumes. To accommodate semi-structured text, IE sys-
tems typically rely less on syntactic parsing and more on positional features
that capture the physical layout of the words on the page.

21.2.2 Single-Document vs. Multi-Document TE

Originally, information extraction systems were designed to locate domain-
specific information in individual documents. Given a document as input, the
IE system identifies and extracts facts relevant to the domain that appear
in the document. We will refer to this task as single-document information
eztraction.

The abundance of information available on the Web has led to the creation
of new types of IE systems that seek to extract facts from the Web or other
very large text collections (e.g., (Brin 1998; Fleischman, Hovy, and Echihabi
2003; Etzioni, Cafarella, Popescu, Shaked, Soderland, Weld, and Yates 2005;
Pasca, Lin, Bigham, Lifchits, and Jain 2006; Pasca 2007; Banko, Cafarella,
Soderland, Broadhead, and Etzioni 2007)). We will refer to this task as multi-
document information extraction

Single-document IE is fundamentally different from multi-document IE, al-
though both types of systems may use similar techniques. One distinguish-
ing issue is redundancy. A single-document IE system must extract domain-

3These text forms can include some structured information as well, such as publication
dates and author by-lines. But most of the text in these genres is unstructured.
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Laura Petitte
Department of Psychology
McGill University

Thursday, May 4, 1995
12:00 pm
Baker Hall 355

Name: Dr. Jeffrey D. Hermes

Affiliation: Department of Autolmmune Diseases

Research & Biophysical Chemistry Merck Research Laboratories
Title: “MHC Class II: A Target for Specific Immunomodulation of
the Immune Response”

Host/e-mail: Robert Murphy, murph@a.crf.cmu.edu

Date: Wednesday, May 3, 1995

Time: 3:30 p.m.

Place: Mellon Institute Conference Room

Sponsor: MERCK RESEARCH LABORATORIES

FIGURE 21.2: Examples of semi-structured seminar announcements

specific information from each document that it is given. If the system fails
to find relevant information in a document, then that is an error. This task
is challenging because many documents mention a fact only once, and the
fact may be expressed in an unusual or complex linguistic context (e.g., one
requiring inference). In contrast, multi-document IE systems can exploit the
redundancy of information in its large text collection. Many facts will appear
in a wide variety of contexts, so the system usually has multiple opportunities
to find each piece of information. The more often a fact appears, the greater
the chance that it will occur at least once in a linguistically simple context
that will be straightforward for the IE system to recognize.*
Multi-document IE is sometimes referred to as “open-domain” IE because
the goal is usually to acquire broad-coverage factual information, which will
likely benefit many domains. In this paradigm, it doesn’t matter where the in-
formation originated. Some open-domain IE systems, such as KnowItAll (Et-
zioni, Cafarella, Popescu, Shaked, Soderland, Weld, and Yates 2005) and Tex-
tRunner (Banko, Cafarella, Soderland, Broadhead, and Etzioni 2007), have

4This issue parallels the difference between single-document and multi-document question
answering (QA) systems. Light et al. (Light, Mann, Riloff, and Breck 2001) found that the
performance of QA systems in TREC-8 was directly correlated with the number of answer
opportunities available for a question.
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addressed issues of scale to acquire large amounts of information from the
Web. One of the major challenges in multi-document IE is cross-document
coreference resolution: when are two documents talking about the same enti-
ties? Some researchers have tackled this problem (e.g., (Bagga and Baldwin
1998; Mann and Yarowsky 2003; Gooi and Allan 2004; Niu, Li, and Srihari
2004; Mayfield, Alexander, Dorr, Eisner, Elsayed, Finin, Fink, Freedman,
Garera, McNamee, Mohammad, Oard, Piatko, Sayeed, Syed, Weischedel, Xu,
and Yarowsky 2009)), and in 2008 the ACE evaluation expanded its focus to
include cross-document entity disambiguation (Strassel, Przybocki, Peterson,
Song, and Maeda 2008).

21.2.3 Asssumptions about Incoming Documents

The IE data sets used in the Message Understanding Conferences consist
of documents related to the domain, but not all of the documents mention a
relevant event. The data sets were constructed to mimic the challenges that a
real-world information extraction system must face, where a fundamental part
of the IE task is to determine whether a document describes a relevant event,
as well as to extract information about the event. In the MUC-3 through
MUC-7 IE data sets, only about half of the documents describe a domain-
relevant event that warrants information extraction.

Other IE data sets make different assumptions about the incoming docu-
ments. Many IE data sets consist only of documents that describe a relevant
event. Consequently, the IE system can assume that each document contains
information that should be extracted. This assumption of relevant-only docu-
ments allows an IE system to be more aggressive about extracting information
because the texts are known to be on-topic. For example, if an IE system is
given stories about bombing incidents, then it can extract the name of every
person who was killed or injured and in most cases they will be victims of a
bombing. If, however, irrelevant stories are also given to the system, then it
must further distinguish between people who are bombing victims and people
who were killed or injured in other types of events, such as robberies or car
crashes.

Some IE data sets further make the assumption that each incoming doc-
ument contains only one event of interest. We will refer to these as single-
event documents. The seminar announcements, corporate acquisitions, and
job postings IE data sets only contain single-event documents. In contrast,
the MUC data sets and some others (e.g., rental ads and disease outbreaks)
allow that a single document may describe multiple events of interest. If the
IE system can assume that each incoming document describes only one rele-
vant event, then all of the extracted information can be inserted in a single
output template.® If multiple events are discussed in a document, then the

5Note that coreference resolution of entities is still an issue, however. For example, a
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IE system must perform discourse analysis to determine how many different
events are being reported and to associate each piece of extracted information
with the appropriate event template.

21.3 1IE with Cascaded Finite-State Transducers

Probably the most important idea that emerged in the course of the MUC
evaluations was the decomposition of the IE process into a series of subprob-
lems that can be modeled with “cascaded finite-state transducers” (Lehnert,
Cardie, Fisher, Riloff, and Williams 1991; Hobbs, Appelt, Bear, Israel, and
Tyson 1992; Hobbs, Appelt, Bear, Israel, Kameyama, Stickel, and Tyson
1997; Joshi 1996; Cunningham, Maynard, Bontcheva, and Tablan 2002). A
finite-state automaton reads one element at a time of a sequence of elements;
each element transitions the automaton into a new state, based on the type
of element it is, e.g., the part of speech of a word. Some states are designated
as final, and a final state is reached when the sequence of elements matches
a valid pattern. In a finite-state transducer, an output entity is constructed
when final states are reached, e.g., a representation of the information in a
phrase. In a cascaded finite-state transducer, there are different finite-state
transducers at different stages. Earlier stages will package a string of elements
into something the next stage will view as a single element.

In the typical system, the earlier stages recognize smaller linguistic objects
and work in a largely domain-independent fashion. They use purely linguistic
knowledge to recognize portions of the syntactic structure of a sentence that
linguistic methods can determine reliably, requiring relatively little modifica-
tion or augmentation as the system is moved from domain to domain. The
later stages take these linguistic objects as input and find domain-dependent
patterns within them. In a typical IE system, there are five levels of process-
ing:

1. Complex Words: This includes the recognition of multiwords and proper
name entities, such as people, companies, and countries.

2. Basic Phrases: Sentences are segmented into noun groups, verb groups,
and particles.

3. Complex Phrases: Complex noun groups and complex verb groups are
identified.

document may mention multiple victims so the IE system needs to determine whether an
extracted victim refers to a previously mentioned victim or a new one.
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4. Domain Events: The sequence of phrases produced at Level 3 is scanned
for patterns of interest to the application, and when they are found,
semantic structures are built that encode the information about entities
and events contained in the pattern.

5. Merging Structures: Semantic structures from different parts of the text
are merged if they provide information about the same entity or event.
This process is sometimes called template generation, and is a complex
process not done by a finite-state transducer.

As we progress through the five levels, larger segments of text are analyzed
and structured. In each of stages 2 through 4, the input to the finite-state
transducer is the sequence of chunks constructed in the previous stage. The
GATE project (Cunningham, Maynard, Bontcheva, and Tablan 2002) is a
widely used toolkit that provides many of the components needed for such an
IE pipeline.

This decomposition of the natural-language problem into levels is essential
to the approach. Many systems have been built to do pattern matching on
strings of words. The advances in information extraction have depended cru-
cially on dividing that process into separate levels for recognizing phrases and
recognizing patterns among the phrases. Phrases can be recognized reliably
with purely syntactic information, and they provide precisely the elements
that are required for stating the patterns of interest.

In the next five sections we illustrate this process on the Bridgestone Sports
text.

21.3.1 Complex Words

The first level of processing identifies multiwords such as “set up”, “trad-
ing house”, “new Taiwan dollars”, and “joint venture”, and company names
like “Bridgestone Sports Co.” and “Bridgestone Sports Taiwan Co.”. The
names of people and locations, dates, times, and other basic entities are also
recognized at this level. Languages in general are very productive in the
construction of short, multiword fixed phrases and proper names employing
specialized microgrammars, and this is the level at which they are recognized.

Some names can be recognized by their internal structure. A common
pattern for company names is “ProperName ProductName”, as in “Acme
Widgets”. Others can only be recognized by means of a table. Internal
structure cannot tell us that IBM is a company and DNA is not. It is also
sometimes possible to recognize the types of proper names by the context in
which they occur. For example, in the sentences below:

(a) XYZ’s sales
(b) Vaclav Havel, 53, president of the Czech Republic

we might not know that XYZ is a company and Vaclav Havel is a person, but
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the immediate context establishes that. These can be given an underspecified
representation that is resolved by later stages.

21.3.2 Basic Phrases

The problem of syntactic ambiguity in natural language is Al-complete.
That is, we will not have systems that reliably parse English sentences cor-
rectly until we have encoded much of the real-world knowledge that people
bring to bear in their language comprehension. For example, noun phrases
cannot be reliably identified because of the prepositional phrase attachment
problem. However, certain syntactic constructs can be identified with reason-
able reliability. One of these is the noun group, which is the head noun of
a noun phrase together with its determiners and other left modifiers (these
are sometimes called “base NPs”). Another is what we are calling the “verb
group”, that is, the verb together with its auxiliaries and any intervening ad-
verbs. Moreover, an analysis that identifies these elements gives us exactly the
units we most need for subsequent domain-dependent processing. The task of
identifying these simple noun and verb groups is sometimes called “syntactic
chunking”. The basic phrases in the first sentence of text (1) are as follows,
where “Company Name” and “Location” are special kinds of noun group that
would be identified by named entity recognition:

Company Name: Bridgestone Sports Co.
Verb Group: said

Noun Group: Friday

Noun Group: it

Verb Group: had set up

Noun Group: a joint venture
Preposition: in

Location: Taiwan

Preposition: with

Noun Group: a local concern
Conjunction: and

Noun Group: a Japanese trading house
Verb Group: to produce

Noun Group: golf clubs

Verb Group: to be shipped
Preposition: to

Location: Japan

Noun groups can be recognized by a relatively simple finite-state grammar
encompassing most of the complexity that can occur in English noun groups
(Hobbs et al., 1992), including numbers, numerical modifiers like “approxi-
mately”, other quantifiers and determiners, participles in adjectival position,
comparative and superlative adjectives, conjoined adjectives, and arbitrary or-
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derings and conjunctions of prenominal nouns and noun-like adjectives. Thus,
among the noun groups that can be recognized are:

“approximately 5 kg”

“more than 30 people”

“the newly elected president”

“the largest leftist political force”

“a government and commercial project”

The principal ambiguities that arise in this stage are due to noun-verb ambi-
guities. For example, “the company names” could be a single noun group with
the head noun “names”, or it could be a noun group “the company” followed
by the verb “names”. One can use a lattice representation to encode the two
analyses and resolve the ambiguity in the stage for recognizing domain events.

Verb groups (and predicate adjective constructions) can be recognized by an
even simpler finite-state grammar that, in addition to chunking, also tags them
as Active Voice, Passive Voice, Gerund, and Infinitive. Verbs are sometimes
locally ambiguous between active and passive senses, as the verb “kidnapped”
in the following two sentences:

“Several men kidnapped the mayor today.”
“Several men kidnapped yesterday were released today.”

These cases can be tagged as Active/Passive, and the domain-event stage can
later resolve the ambiguity. Some work has also been done to train a classifier
to distinguish between active voice and “reduced” passive voice constructions
(Igo and Riloff 2008).

The breakdown of phrases into nominals, verbals, and particles is a linguistic
universal. Whereas the precise parts of speech that occur in any language can
vary widely, every language has elements that are fundamentally nominal in
character, elements that are fundamentally verbal or predicative, and particles
or inflectional affixes that encode relations among the other elements (Croft
1991).

21.3.3 Complex Phrases

Some complex noun groups and verb groups can be recognized reliably on
the basis of domain-independent, syntactic information. For example:

e the attachment of appositives to their head noun group
“The joint venture, Bridgestone Sports Taiwan Co.,”
e the construction of measure phrases
“20,000 iron and “metal wood” clubs a month”

e the attachment of “of” and “for” prepositional phrases to their head
noun groups



12 Handbook of Natural Language Processing

“production of 20,000 iron and “metal wood” clubs a month”
e noun group conjunction
“a local concern and a Japanese trading house”

In the course of recognizing basic and complex phrases, domain-relevant
entities and events can be recognized and the structures for these can be
constructed. In the sample joint-venture text, entity structures can be con-
structed for the companies referred to by the phrases “Bridgestone Sports
Co.”, “alocal concern”, “a Japanese trading house”, and “Bridgestone Sports
Taiwan Co.” Information about nationality derived from the words “local”
and “Japanese” can be recorded. Corresponding to the complex noun group
“The joint venture, Bridgestone Sports Taiwan Co.,” the following relation-
ship structure can be built:

Relationship: TIE-UP

Entities: -

Joint Venture Company: “Bridgestone Sports Taiwan Co.”
Activity: -

Amount: -

Corresponding to the complex noun group “production of 20,000 iron and
‘metal wood’ clubs a month”, the following activity structure can be built up:

Activity: PRODUCTION

Company: -

Product: “iron and ‘metal wood’ clubs”
Start Date: —

Complex verb groups can also be recognized in this stage. Consider the
following variations:

“GM formed a joint venture with Toyota.”

“GM announced it was forming a joint venture with Toyota.”

“GM signed an agreement forming a joint venture with Toyota.”

“GM announced it was signing an agreement to form a joint ven-
ture with Toyota.”

Although these sentences may differ in significance for some applications, often
they would be considered equivalent in meaning. Rather than defining each
of these variations, with all their syntactic variants, at the domain event
level, the user should be able to define complex verb groups that share the
same significance. Thus, “formed”, “announced it was forming”, “signed an
agreement forming”, and “announced it was signing an agreement to form”
may all be equivalent, and once they are defined to be so, only one domain
event pattern needs to be expressed. Verb group conjunction, as in

“Terrorists kidnapped and killed three people.”

can be treated as a complex verb group as well.
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21.3.4 Domain Events

The next stage is recognizing domain events, and its input is a a list of
the basic and complex phrases recognized in the earlier stages, in the order
in which they occur. Anything that was not identified as a basic or complex
phrase in a previous stage can be ignored in this stage; this can be a significant
source of robustness.

Identifying domain events requires a set of domain-specific patterns both
to recognize phrases that correspond to an event of interest and to identify
the syntactic constitutents that correspond to the event’s role fillers. In early
information systems, these domain-specific “extraction patterns” were defined
manually. In Sections 21.4.1 and 21.4.3, we describe a variety of learning
methods that have subsequently been developed to automatically generate
domain-specific extraction patterns from training corpora.

The patterns for events of interest can be encoded as finite-state machines,
where state transitions are effected by phrases. The state transitions are
driven off the head words in the phrases. That is, each pair of relevant
head word and phrase type—such as “company-NounGroup” and “formed-
PassiveVerbGroup”— has an associated set of state transitions. In the sample
joint-venture text, the domain event patterns

<Company/ies> <Set-up> <Joint-Venture> with <Company /ies>
and
<Produce> <Product>
would be instantiated in the first sentence, and the patterns
<Company> <Capitalized> at <Currency>
and
<Company> <Start> <Activity> in/on <Date>

in the second. These four patterns would result in the following four structures
being built:

Relationship: TIE-UP
Entities: “Bridgestone Sports Co.”
“a local concern”
“a Japanese trading house”
Joint Venture Company: -

Activity: -

Amount: -

Activity: PRODUCTION
Company: -

Product: “golf clubs”

Start Date: -
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Relationship: TIE-UP

Entities: -

Joint Venture Company: “Bridgestone Sports Taiwan Co.”
Activity: —

Amount: NT$20000000

Activity: PRODUCTION

Company: “Bridgestone Sports Taiwan Co.”
Product: -

Start Date: DURING: January 1990

The third of these is an augmentation of the TIE-UP structure discovered
in the complex phrase phase.

Certain kinds of “pseudo-syntax” can be done at this stage, including rec-
ognizing relative clauses and conjoined verb phrases, as described in Hobbs et
al. (1997).

Many subject-verb-object patterns are of course related to each other. The
sentence:

“GM manufactures cars.”

illustrates a general pattern for recognizing a company’s activities. But the
same semantic content can appear in a variety of ways, including

“Cars are manufactured by GM.”

“... GM, which manufactures cars...”

“... cars, which are manufactured by GM...”
“... cars manufactured by GM ...”

“GM is to manufacture cars.”

“Cars are to be manufactured by GM.”

“GM is a car manufacturer.”

These are all systematically related to the active voice form of the sentence.
Therefore, there is no reason a developer should have to specify all the varia-
tions. A simple tool would be able to generate all of the variants of the pattern
from the simple active voice Subject-Verb-Object form. It would also allow
adverbials to appear at appropriate points. These transformations would be
executed at compile time, producing the more detailed set of patterns, so that
at run time there is no loss of efficiency.

This feature is not merely a clever idea for making a system more conve-
nient to author. It rests on the fundamental idea that underlies generative
transformational grammar, but is realized in a way that does not impact the
efficiency of processing.

In recent years, full-sentence parsing has improved, in large part through
the use of statistical techniques. Consequently, some IE systems have begun
to rely on full parsers rather than shallow parsing techniques.
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21.3.5 Template Generation: Merging Structures

The first four stages of processing all operate within the bounds of single
sentences. The final level of processing operates over the whole text. Its task
is to see that all the information collected about a single entity, relationship,
or event is combined into a unified whole. This is one of the primary ways that
the problem of coreference is dealt with in information extraction, including
both NP coreference (for entities) and event coreference. One event template
is generated for each event, which coalesces all of the information associated
with that event. If an input document discusses multiple events of interest,
then the IE system must generate multiple event templates. Generating mul-
tiple event templates requires additional discourse analysis to (a) correctly
determine how many distinct events are reported in the document, and (b)
correctly assign each entity and object to the appropriate event template.

Among the criteria that need to be taken into account in determining
whether two structures can be merged are the internal structure of the noun
groups, nearness along some metric, and the consistency, or more generally,
the compatibility of the two structures.

In the analysis of the sample joint-venture text, we have produced three
activity structures. They are all consistent because they are all of type PRO-
DUCTION and because “iron and ‘metal wood’ clubs” is consistent with “golf
clubs”. Hence, they are merged, yielding:

Activity: PRODUCTION

Company: “Bridgestone Sports Taiwan Co.”
Product: “iron and ‘metal wood’ clubs”
Start Date: DURING: January 1990

Similarly, the two relationship structures that have been generated are con-
sistent with each other, so they can be merged, yielding:

Relationship: TIE-UP

Entities: “Bridgestone Sports Co.”
“a local concern”
“a Japanese trading house”

Joint Venture Company: “Bridgestone Sports Taiwan Co.”
Activity: -
Amount: NT$20000000

The entity and event coreference problems are very hard, and constitute
active and important areas of research. Coreference resolution was a task in
the later MUC evaluations (MUC-6 Proceedings 1995; MUC-7 Proceedings
1998), and has been a focus of the ACE evaluations. Many recent research
efforts have applied machine learning techniques to the problem of coreference
resolution (e.g., (Dagan and Itai 1990; McCarthy and Lehnert 1995; Aone and
Bennett 1996; Kehler 1997; Cardie and Wagstaff 1999; Harabagiu, Bunescu,
and Maiorana 2001; Soon, Ng, and Lim 2001; Ng and Cardie 2002; Bean and
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Riloff 2004; McCallum and Wellner 2004; Yang, Su, and Tan 2005; Haghighi
and Klein 2007)).

Some attempts to automate the template generation process will be dis-
cussed in Section 21.4.4.

21.4 Learning-based Approaches to IE

As we discussed in Section 21.3, early information extraction systems used
hand-crafted patterns and rules, often encoded in cascaded finite-state trans-
ducers. Hand-built IE systems were effective, but manually creating the pat-
terns and rules was extremely time-consuming. For example, it was estimated
that it took approximately 1500 person-hours of effort to create the patterns
used by the UMass MUC-4 system (Riloff 1993; Lehnert, Cardie, Fisher, Mc-
Carthy, Riloff, and Soderland 1992)

Consequently, researchers began to use statistical techniques and machine
learning algorithms to automatically create IE systems for new domains. In
the following sections, we overview four types of learning-based IE methods:
supervised learning of patterns and rules, supervised learning of sequential IE
classifiers, weakly supervised and unsupervised learning methods for IE, and
learning-based approaches for more global or discourse-oriented approaches
to IE.

21.4.1 Swupervised Learning of Extraction Patterns and Rules

Supervised learning methods originally promised to dramatically reduce the
knowledge engineering bottleneck required to create an IE system for a new
domain. Instead of painstakingly writing patterns and rules by hand, knowl-
edge engineering could be reduced to the manual annotation of a collection
of training texts. The hope was that a training set could be annotated in a
matter of weeks, and nearly anyone with knowledge of the domain could do
the annotation work. As we will acknowledge in Section 21.4.3, manual an-
notation is itself a substantial endeavor, and a goal of recent research efforts is
to eliminate this bottleneck as well. But supervised learning methods were an
important first step toward automating the creation of information extraction
systems.

The earliest pattern learning systems used specialized techniques, some-
times coupled with small amounts of manual effort. AutoSlog (Riloff 1993)
and PALKA (Kim and Moldovan 1993) were the first IE pattern learning

6In contrast, creating IE patterns and rules by hand typically requires computational lin-
guists who understand how the patterns or rules will be integrated into the NLP system.
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systems. AutoSlog (Riloff 1993; Riloff 1996a) matches a small set of syntac-
tic templates against the text surrounding a desired extraction and creates
one (or more) lexico-syntactic patterns by instantiating the templates with
the corresponding words in the sentence. A “human in the loop” must then
manually review the patterns to decide which ones are appropriate for the
IE task. PALKA (Kim and Moldovan 1993) uses manually defined frames
and keywords that are provided by a user and creates IE patterns by map-
ping clauses containing the keywords onto the frame’s slots. The patterns are
generalized based on the semantic features of the words.

Several systems use rule learning algorithms to automatically generate IE
patterns from annotated text corpora. LIEP (Huffman 1996) creates can-
didate patterns by identifying syntactic paths that relate the role fillers in
a sentence. The patterns that perform well on training examples are kept,
and as learning progresses they are generalized to accommodate new training
examples by creating disjunctions of terms. CRYSTAL (Soderland, Fisher,
Aseltine, and Lehnert 1995) learns extraction rules using a unification-based
covering algorithm. CRYSTAL’s rules are “concept node” structures that in-
clude lexical, syntactic, and semantic constraints. WHISK (Soderland 1999)
was an early system that was specifically designed to be flexible enough to
handle structured, semi-structured, and unstructured texts. WHISK learns
regular expression rules that consist of words, semantic classes, and wildcards
that match any token. (LP)? (Ciravegna 2001) induces two different kinds of
IE rules: tagging rules to label instances as desired extractions, and correction
rules to correct mistakes made by the tagging rules. Freitag created a rule-
learning system called SRV (Freitag 1998b) and later combined it with a rote
learning mechanism and a Naive Bayes classifier to explore a multi-strategy
approach to IE (Freitag 1998a).

Relational learning methods have also been used to learn rule-like struc-
tures for IE (e.g., (Roth and Yih 2001; Califf and Mooney 2003; Bunescu and
Mooney 2004; Bunescu and Mooney 2007)). RAPIER (Califf and Mooney
1999; Califf and Mooney 2003) uses relational learning methods to generate
IE rules, where each rule has a pre-filler, filler, and post-filler component.
Each component is a pattern that consists of words, POS tags, and semantic
classes. Roth and Yih (Roth and Yih 2001) propose a knowledge represen-
tation language for propositional relations and create a 2-stage classifier that
first identifies candidate extractions and then selects the best ones. Bunescu
and Mooney (Bunescu and Mooney 2004) use Relational Markov Networks to
represent dependencies and influences across entities and extractions.

IE pattern learning methods have also been developed for related applica-
tions such as question answering (Ravichandran and Hovy 2002), where the
goal is to learn patterns for specific types of questions that involve relations
between entities (e.g., identifying the birth year of a person).
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21.4.2 Supervised Learning of Sequential Classifier Models

An alternative approach views information extraction as a classification
problem that can be tackled using sequential learning models. Instead of
using explicit patterns or rules to extract information, a machine learning
classifier is trained to sequentially scan text from left to right and label each
word as an extraction or a non-extraction. A typical labeling scheme is called
IOB, where each word is classified as an T’ if it is inside a desired extraction,
'O’ if it is outside a desired extraction, or ‘B’ if it is the beginning of a desired
extraction. The sentence below has been labeled with IOB tags corresponding
to phrases that should be extracted as facts about a bombing incident.

Alleged/B guerrilla/T urban/I commandos/I launched/O two/B
highpower /T bombs/I against/O a/B car/I dealership/I in/O down-
town/O San/B Salvador/I this/B morning/I.

In the example above, the IOB tags indicate that five phrases should be ex-
tracted: “Alleged guerrilla urban commandos”, “two highpower bombs”, “a
car dealership”, “San Salvador”, and “this morning”. Note that the ‘B’ tag
is important to demarcate where one extraction begins and another one ends,
particularly in the case when two extractions are adjacent. For example, if
only T and ’O’ tags were used, then “San Salvador” and “this morning” would
run together and appear to be a single extraction. Depending on the learning
model, a different classifier may be trained for each type of information to be
extracted (e.g., one classifier might be trained to identify perpetrator extrac-
tions, and another classifier may be trained to identify location extractions).
Or a single classifier can be trained to produce different types of IOB tags for
the different kinds of role fillers (e.g., Bperpetrator a1d Blocation) (Chieu and
Ng 2002).

A variety of sequential classifier models have been developed using Hid-
den Markov Models (Freitag and McCallum 2000; Yu, Guan, and Zhou 2005;
Gu and Cercone 2006), Maximum Entropy Classifiers (Chieu and Ng 2002),
Conditional Random Fields (Peng and McCallum 2004; Choi, Cardie, Riloff,
and Patwardhan 2005), and Support Vector Machines (Zelenko, Aone, and
Richardella 2003; Finn and Kushmerick 2004; Li, Bontcheva, and Cunning-
ham 2005; Zhao and Grishman 2005). Freitag and McCallum (Freitag and
McCallum 2000) use Hidden Markov Models and developed a method to au-
tomatically explore different structures for the HMM during the learning pro-
cess. Gu and Cercone (Gu and Cercone 2006) use HMMs in a 2-step IE
process: one HMM retrieves relevant text segments that likely contain a filler,
and a second HMM identifies the words to be extracted in these text seg-
ments. Finn and Kushmerick (Finn and Kushmerick 2004) also use a 2-step
IE process but in a different way: one SVM classifier identifies start and end
tags for extractions, and a second SVM looks at tags that were orphaned (i.e.,
a start tag was found without a corresponding end tag, or vice versa) and tries
to identify the missing tag. The second classifier aims to improve IE recall by
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producing extractions that otherwise would have been missed. Yu et al. (Yu,
Guan, and Zhou 2005) created a cascaded model of HMMs and SVMs. In
the first pass, an HMM segments resumes into blocks that represent different
types of information. In the second pass, HMMs and SVMs extract infor-
mation from the blocks, with different classifiers trained to extract different
types of information.

The chapter on Fundamental Statistical Techniques in this book explains
how to create classifiers and sequential prediction models using supervised
learning techniques.

21.4.3 Weakly Supervised and Unsupervised Approaches

Supervised learning techniques substantially reduced the manual effort re-
quired to create an IE system for a new domain. However, annotating training
texts still requires a substantial investment of time, and annotating docu-
ments for information extraction can be deceptively complex (Riloff 1996b).
Furthermore, since IE systems are domain-specific, annotated corpora cannot
be reused: a new corpus must be annotated for each domain.

To further reduce the knowledge engineering required to create an IE sys-
tem, several methods have been developed in recent years to learn extraction
patterns using weakly supervised and unsupervised techniques. AutoSlog-
TS (Riloff 1996b) is a derivative of AutoSlog that requires as input only a
preclassified training corpus in which texts are identified as relevant or irrel-
evant with respect to the domain but are not annotated in any other way.
AutoSlog-TS’s learning algorithm is a two-step process. In the first step, Au-
toSlog’s syntactic templates are applied to the training corpus exhaustively,
which generates a large set of candidate extraction patterns. In the second
step, the candidate patterns are ranked based on the strength of their associ-
ation with the relevant texts. Ex-Disco (Yangarber, Grishman, Tapanainen,
and Huttunen 2000) took this approach one step further by eliminating the
need for a preclassified text corpus. Ex-Disco uses a small set of manually
defined seed patterns to partition a collection of unannotated text into rele-
vant and irrelevant sets. The pattern learning process is then embedded in
a bootstrapping loop where (1) patterns are ranked based on the strength of
their association with the relevant texts, (2) the best pattern(s) are selected
and added to the pattern set, and (3) the corpus is re-partitioned into new
relevant and irrelevant sets. Both AutoSlog-TS and Ex-Disco produce IE pat-
terns that performed well in comparison to pattern sets used by previous IE
systems. However, the ranked pattern lists produced by these systems still
need to be manually reviewed.”

Stevenson and Greenwood (Stevenson and Greenwood 2005) also begin with

"The human reviewer discards patterns that are not relevant to the IE task and assigns an
event role to the patterns that are kept.
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seed patterns and use semantic similarity measures to iteratively rank and
select new candidate patterns based on their similarity to the seeds. Stevenson
and Greenwood use predicate-argument structures as the representation for
their IE patterns, as did Surdeanu et al. (Surdeanu, Harabagiu, Williams,
and Aarseth 2003) and Yangarber (Yangarber 2003) in earlier work. Sudo et
al. (Sudo, Sekine, and Grishman 2003) created an even richer subtree model
representation for IE patterns, where an IE pattern can be an arbitrary subtree
of a dependency tree. The subtree patterns are learned from relevant and
irrelevant training documents. Bunescu and Mooney (Bunescu and Mooney
2007) developed a weakly supervised method for relation extraction that uses
Multiple Instance Learning (MIL) techniques with SVMs and string kernels.

Meta-bootstrapping (Riloff and Jones 1999) is a bootstrapping method that
learns information extraction patterns and also generates noun phrases that
belong to a semantic class at the same time. Given a few seed nouns that
belong to a targeted semantic class, the meta-bootstrapping algorithm itera-
tively learns a new extraction pattern and then uses the learned pattern to
hypothesize additional nouns that belong to the semantic class. The patterns
learned by meta-bootstrapping are more akin to named entity recognition pat-
terns than event role patterns, however, because they identify noun phrases
that belong to general semantic classes, irrespective of any events.

Recently, Phillips and Riloff (Phillips and Riloff 2007) showed that boot-
strapping methods can be used to learn event role patterns by exploiting role-
identifying nouns as seeds. A role-identifying noun is a word that, by virtue
of its lexical semantics, identifies the role that the noun plays with respect
to an event. For example, the definition of the word kidnapper is the agent
of a kidnapping event. By using role-identifying nouns as seeds, the Basilisk
bootstrapping algorithm (Thelen and Riloff 2002) can be used to learn both
event extraction patterns as well as additional role-identifying nouns.

Finally, Shinyama and Sekine (Shinyama and Sekine 2006) have developed
an approach for completely unsupervised learning of information extraction
patterns. Given texts for a new domain, relation discovery methods are used
to preemptively learn the types of relations that appear in domain-specific
documents. The On-Demand Information Extraction (ODIE) system (Sekine
2006) accepts a user query for a topic, dynamically learns IE patterns for
salient relations associated with the topic, and then applies the patterns to
fill in a table with extracted information related to the topic.

21.4.4 Discourse-oriented Approaches to IE

Most of the IE systems that we have discussed thus far take a relatively
localized approach to information extraction. The IE patterns or classifiers
focus only on the local context surrounding a word or phrase when making
an extraction decision. Recently, some systems have begun to take a more
global view of the extraction process. Gu and Cercone (Gu and Cercone 2006)
and Patwardhan & Riloff (Patwardhan and Riloff 2007) use classifiers to first
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identify the event-relevant sentences in a document and then apply an IE
system to extract information from those relevant sentences.

Finkel et al. (Finkel, Grenager, and Manning 2005) impose penalties in their
learning model to enforce label consistency among extractions from different
parts of a document. Maslennikov and Chua (Maslennikov and Chua 2007) use
dependency and RST-based discourse relations to connect entities in different
clauses and find long-distance dependency relations.

Finally, as we discussed in Section 21.3.5, IE systems that process multiple-
event documents need to generate multiple templates. Template generation
for multiple events is extremely challenging, and only a few learning systems
have been developed to automate this process for new domains. WRAP-
UP (Soderland and Lehnert 1994) was an early supervised learning system
that uses a collection of decision trees to make a series of discourse decisions
to automate the template generation process. More recently, Chieu et al.
(Chieu, Ng, and Lee 2003) developed a system called ALICE that generates
complete templates for the MUC-4 terrorism domain (MUC-4 Proceedings
1992). ALICE uses a set of classifiers that identify extractions for each type
of slot and a template manager to decide when to create a new template.
The template manager uses general-purpose rules (e.g., a conflicting date will
spawn a new template) as well as automatically derived “seed words” that
are associated with different incident types to distinguish between events.

21.5 How Good is Information Extraction?

Extracting information about events from free text is a challenging problem
that is still far from solved. Figure 21.3 illustrates how the various MUC
systems progressed from year to year. The vertical axis is precision, and the
horizontal axis is recall. We have plotted the top one-third of the system
scores in the small ellipse and the top two-thirds in the large ellipse.

We can see that between MUC-3 and MUC-4, the top systems moved up
from the high 40s to the high 50s. The principal difference in MUC-5 is that
more systems are in the high 50s. By MUC-6 the top two-thirds of the systems
are all in a tight cluster with recall in the high 50s and precision in the low
60s. The principal difference between MUC-6 and MUC-7 is that in MUC-7
there were fewer participants.

This is a picture of hill-climbing, where there is a 60% barrier that de-
termines the top of the hill. The tasks in these evaluations were somewhat
different, as were the corpora, nevertheless they all seemed to exhibit a ceiling
around 60% recall and precision. Although good progress has been made in
automating the construction of IE systems using machine learning techniques,
current state-of-the-art systems still have not broken through this 60% barrier
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How Did the Field Progress?

P MUC-3: 1991 P MUC-4: 1992 P MUC-5: 1993

60% 60%

R R R
P MUC-6: 1995 P MUC-7: 1998
60% 60%
The 60% barrier R R

FIGURE 21.3: Chronology of MUC system performance

in performance on the MUC data sets (e.g., (Soderland 1999; Chieu, Ng, and
Lee 2003; Maslennikov and Chua 2007)).8

There are several possible explanations for this barrier. Detailed analysis
of the performance of some of the systems revealed that the biggest source
of mistakes was in entity and event coreference; more work certainly needs
to be done on this. Another possibility is that 60% is what the text wears
on its sleeve; the rest is implicit and requires inference and access to world
knowledge.

Another explanation is that there is a Zipf distribution of problems that
need to be solved. When we solve the more common problems, we get a big
boost in performance. But we have solved all the most common problems,
and now we are in the long tail of the distribution. We might take care of

8The one exception is that (Maslennikov and Chua 2007) report an F score of 72% on a
modified version of the MUC-6 corpus.
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a dozen new problems we find in the training data, only to find that none
of these problems occur in the test data, so there is no effect on measured
performance. One possible solution is active learning (e.g., (Lewis and Catlett
1994; Liere and Tadepalli 1997; McCallum and Nigam 1998; Thompson, Califf,
and Mooney 1999)) and the automated selection of rare training examples in
the tail for additional manual annotation. This could help to reduce the overall
amount of annotated training data that is required, while still adequately
covering the rare cases.

A final possibility is both simple and disconcerting. Good named entity
recognition systems typically recognize about 90% of the entities of interest
in a text, and this is near human performance. To recognize an event and
its arguments requires recognizing about four entities, and .90* is about 60%.
If this is the reason for the 60% barrier, it is not clear what we can do to
overcome it, short of solving the general natural language problem in a way
that exploits the implicit relations among the elements of a text.
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