
An Ontology of Time for the Semantic Web
JERRY R. HOBBS AND FENG PAN
University of Southern California / Information Sciences Institute
__

In connection with the DAML project for bringing about the Semantic Web, an ontology of time is being
developed for describing the temporal content of Web pages and the temporal properties of Web services.
The bulk of information on the Web is in natural language, and this information will be easier to encode for
the Semantic Web insofar as community-wide annotation and automatic tagging schemes and the DAML time
ontology are compatible with each other.

Categories and Subject Descriptors: I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods - Representations (procedural and rule-based); Temporal logic; I.2.7 [Artificial Intelligence]:
Natural Language Processing - Text analysis; H.3.5 [Information Storage and Retrieval]: Online
Information Services - Web-based services; H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing - Linguistic processing
General Terms: Design, Documentation, Languages, Theory
Additional Key Words and Phrases: ontology, time, semantic web, temporal information, temporal relation,
duration, clock and calendar, time zone
__

1. INTRODUCTION
The DARPA Agent Markup Language (DAML) project is DARPA’s effort to bring into

reality the Semantic Web, in which Web users and automatic agents will be able to

access information on the Web via descriptions of the content and capabilities of Web

resources rather than via key words. An important part of this effort is the development of

representative ontologies of the most commonly used domains. We have developed such

an ontology of temporal concepts, for describing the temporal content of Web pages and

the temporal properties of Web services. This effort has been informed by temporal

ontologies developed at a number of sites and is intended to capture the essential features

of all of them and make them easily available to a large group of Web developers and

users, embedded in the ontology mark-up language OWL1.

 The bulk of information on the Web is in natural language, and this information will

be easier to encode for the Semantic Web insofar as community-wide annotation and

automatic tagging schemes and the DAML time ontology are compatible with each other.

Indeed, this compatibility was explored by Hobbs and Pustejovsky [2003].

This research was supported by the Defense Advanced Research Projects Agency under Air Force Research
Laboratory contract F30602-00-C-0168 and by the Advanced Research and Development Agency.
Authors' addresses: University of Southern California / Information Sciences Institute, 4676 Admiralty Way,
Marina del Rey, CA 90292, USA. Emails: {hobbs, pan}@isi.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2004 ACM 1073-0516/01/0300-0034 $5.00
1 http://www.w3c.org/2001/sw/WebOnt/

 In this paper we outline the temporal ontology. Five categories of temporal concepts

are considered, and for each the principal predicates and their associated properties are

described.

 A note on notation before we begin: Conjunction (!) takes precedence over

implication (⊃) and equivalence (≡). Formulas are assumed to be universally

quantified on the variables appearing in the antecedent of the highest-level implication.

Thus,

p
1
(x) ! p

2
(y) ⊃ q

1
(x,y) ! q

2
(y)

is to be interpreted as

(∀ x,y)[[p
1
(x) ! p

2
(y)] ⊃ [q

1
(x,y) ! q

2
(y)]]

2. TOPOLOGICAL TEMPORAL RELATIONS
2.1 Instants and Intervals
There are two subclasses of TemporalEntity: Instant and Interval.

Instant(t) ⊃ TemporalEntity(t)

Interval(T) ⊃ TemporalEentity(T)

These are the only two subclasses of temporal entities.

(∀ T)[TemporalEntity(T) ⊃ Interval(T) ∨ Instant(T)

As we will see, intervals are, intuitively, things with extent and instants are, intuitively,

point-like in that they have no interior points. (In what follows, lower case t is used for

instants, upper case T for intervals and for temporal-entities unspecified as to subtype.

This is strictly for the reader’s convenience, and has no formal significance.)

 The predicates begins and ends are relations between instants and temporal entities.

begins(t,T) ⊃ Instant(t) ! TemporalEntity(T)

ends(t,T) ⊃ Instant(t) ! TemporalEntity(T)

For convenience, we can say that the beginning and end of an instant is itself. The

converses of these rules are also true.

Instant(t) ⊃ begins(t,t)

Instant(t) ⊃ ends(t,t)

The beginnings and ends of temporal entities, if they exist, are unique.

TemporalEntity(T) ! begins(t
1
,T) ! begins(t

2
,T) ⊃ t

1
 = t

2

TemporalEntity(T) ! ends(t
1
,T) ! ends(t

2
,T) ⊃ t

1
 = t

2

In one approach to infinite intervals, a positively infinite interval has no end, and a

negatively infinite interval has no beginning. Hence, we use the relations begins and ends

in the core ontology, rather than defining functions beginningOf and endOf, since the

functions would not be total. They can be defined in an extension of the core ontology

that posits instants at positive and negative infinity.

 The predicate inside is a relation between an instant and an interval.

inside(t,T) ⊃ Instant(t) ! Interval(T)

This concept of inside is not intended to include beginnings and ends of intervals, as will

be seen below.

 It will be useful in characterizing clock and calendar terms to have a relation between

instants and intervals that says that the instant is inside or the beginning of the interval.

(∀ t,T)[beginsOrIn(t,T) ≡ [begins(t,T) ∨ inside(t,T)]]

The predicate timeBetween is a relation among a temporal entity and two instants.

timeBetween(T,t
1
,t
2

) ⊃ TemporalEntity(T) ! Instant(t
1
) ! Instant(t

2
)

The two instants are the beginning and end points of the temporal entity.

(∀ t
1
,t
2

)[t
1
 ≠ t

2
 ⊃ (∀ T)[timeBetween(T,t

1
,t
2

) ≡ begins(t
1
,T) !

ends(t
2

,T)]]

The ontology is silent about whether the interval from t to t, if it exists, is identical to

the instant t.

 The ontology is silent about whether intervals consist of instants.

 The ontology is silent about whether intervals are uniquely determined by their starts

and ends.

 The core ontology is silent about whether intervals are uniquely determined by their

beginnings and ends.

 We can define a proper interval as one whose start and end are not identical.

(∀ T)ProperInterval(T)

≡ Interval(T) ! (∀ t
1
,t
2

)[begins(t
1
,T) ! ends(t

2
,T) ⊃ t

1
 ≠ t

2
]]

The ontology is silent about whether there are any intervals that are not proper intervals.

2.2 Before
There is a before relation on temporal entities, which gives directionality to time. If

temporal entity T
1
 is before temporal entity T

2
, then the end of T

1
 is before the start of

T
2

. Thus, before can be considered to be basic to instants and derived for intervals.

(∀ T
1
,T

2
)[before(T

1
,T

2
)

 ≡ (∃ t
1
,t
2

)[ends(t
1
,T
1
) ! begins(t

2
,T

2
) ! before(t

1
,t
2

)]]

The before relation is anti-reflexive, anti-symmetric and transitive.

before(T
1
,T

2
) ⊃ T

1
 ≠ T

2

before(T
1
,T

2
) ⊃ ¬before(T

2
,T
1
)

before(T
1
,T

2
) ! before(T

2
,T

3
) ⊃ before(T

1
,T
3

)

The end of an interval is not before the beginning of the interval.

Interval(T) ! begins(t
1
,T) ! ends(t

2
,T) ⊃ ¬before(t

2
,t
1
)

The beginning of a proper interval is before the end of the interval.

ProperInterval(T) ! begins(t
1
,T) ! ends(t

2
,T) ⊃ before(t

1
,t
2

)

If one instant is before another, there is a time between them.

Instant(t
1
) ! Instant(t

2
) ! before(t

1
,t
2

) ⊃ (∃ T) timeBetween(T,t
1
,t
2

)

The ontology is silent about whether there is a time from t to t.

 If an instant is inside a proper interval, then the beginning of the interval is before the

instant, which is before the end of the interval. This is the principal property of inside.

inside(t,T) ! begins(t
1
,T) ! ends(t

2
,T) ! ProperInterval(T)

 ⊃ before(t
1
,t) ! before(t,t

2
)

The relation after is defined in terms of before.

after(T
1
,T

2
) ≡ before(T

2
,T
1
)

The ontology is silent about whether time is linearly ordered. Thus it supports theories

of time, such as the branching futures theory, which conflate time and possibility or

knowledge.

 The basic ontology is silent about whether time is dense, that is, whether between any

two instants there is a third instant. Thus it supports theories in which time consists of

discrete instants.

2.3 Interval Relations
The relations between intervals defined in Allen’s temporal interval calculus [Allen and

Kautz 1985; Allen and Ferguson 1997] can be defined in a straightforward fashion in

terms of before and identity on the beginning and end points. It is a bit more

complicated than the reader might at first suspect, because allowance has to be made for

the possibility of infinite intervals. Where one of the intervals could be infinite, the

relation between the end points has to be conditionalized on their existence.

 The standard interval calculus assumes all intervals are proper, and we will do that

here too. The definitions of the interval relations in terms of before relations among their

beginning and end points, when they exist, are given by the following axioms. In these

axioms, t
1
 and t

2
 are the beginning and end of interval T

1
; t

3
 and t

4
 are the beginning

and end of T
2

.

(∀ T
1
,T

2
)[intEquals(T

1
,T

2
)

 ≡ [ProperInterval(T
1
) ! ProperInterval(T

2
)

 ! (∀ t
1
)[begins(t

1
,T
1
) ≡ begins(t

1
,T

2
)]

 ! (∀ t
2

)[ends(t
2

,T
1
) ≡ ends(t

2
,T

2
)]]]

(∀ T
1
,T

2
)[intBefore(T

1
,T

2
)

 ≡ ProperInterval(T
1
) ! ProperInterval(T

2
) ! before(T

1
,T

2
)]

(∀ T
1
,T

2
)[intMeets(T

1
,T

2
)

 ≡ [ProperInterval(T
1
) ! ProperInterval(T

2
)

 ! (∃ t)[ends(t,T
1
) ! begins(t,T

2
)]]]

(∀ T
1
,T

2
)[intOverlaps(T

1
,T

2
)

 ≡ [ProperInterval(T
1
) ! ProperInterval(T

2
)

 ! (∃ t
2

,t
3

)[ends(t
2

,T
1
) ! begins(t

3
,T

2
) ! before(t

3
,t
2

)

 ! (∀ t
1
)[begins(t

1
,T
1
) ⊃ before(t

1
,t
3

)]

 ! (∀ t
4

)[ends(t
4

,T
2

) ⊃ before(t
2

,t
4

)]]]]

(∀ T
1
,T

2
)[intStarts(T

1
,T

2
)

 ≡ [ProperInterval(T
1
) ! ProperInterval(T

2
)

 ! (∃ t
2

)[ends(t
2

,T
1
) ! (∀ t

1
)[begins(t

1
,T
1
) ≡ begins(t

1
,T

2
)]

 ! (∀ t
4

)[ends(t
4

,T
2

) ⊃ before(t
2

,t
4

)]]]]

(∀ T
1
,T

2
)[intDuring(T

1
,T

2
)

 ≡ [ProperInterval(T
1
) ! ProperInterval(T

2
)

 ! (∃ t
1
,t
2

)[begins(t
1
,T
1
) ! ends(t

2
,T
1
)

 ! (∀ t
3

)[begins(t
3

,T
2

) ⊃ before(t
3

,t
1
)]

 ! (∀ t
4

)[ends(t
4

,T
2

) ⊃ before(t
2

,t
4

)]]]]

(∀ T
1
,T

2
)[intFinishes(T

1
,T

2
)

 ≡ [ProperInterval(T
1
) ! ProperInterval(T

2
)

 ! (∃ t
1
)[begins(t

1
,T
1
) ! (∀ t

3
)[begins(t

3
,T

2
) ⊃ before(t

3
,t
1
)]

 ! (∀ t
4

)[ends(t
4

,T
2

) ≡ ends(t
4

,T
1
)]]]]

The inverse interval relations can be defined in terms of these relations.

intAfter(T
1
,T

2
) ≡ intBefore(T

2
,T
1
)

intMetBy(T
1
,T

2
) ≡ intMeets(T

2
,T
1
)

intOverlappedBy(T
1
,T

2
) ≡ intOverlaps(T

2
,T
1
)

intStartedBy(T
1
,T

2
) ≡ intStarts(T

2
,T
1
)

intContains(T
1
,T

2
) ≡ intDuring(T

2
,T
1
)

intFinishedBy(T
1
,T

2
) ≡ intFinishes(T

2
,T
1
)

In addition, it will be useful below to have a single predicate for intervals intersecting in

at most an instant.

nonoverlap(T
1
,T

2
)

 ≡ [intBefore(T
1
,T

2
) ∨ intAfter(T

1
,T

2
) ∨ intMeets(T

1
,T

2
)

 ∨ intMetBy(T
1
,T

2
)]

We could have as easily defined this in terms of before relations on the beginnings and

ends of the intervals.

 So far, the concepts and axioms in the ontology of time would be appropriate for scalar

phenomena in general.

2.4 Linking Time and Events
The time ontology links to other things in the world through four predicates — atTime,

during, holds, and timeSpan. We assume that another ontology provides for the

description of events—either a general ontology of event structure abstractly conceived, or

specific, domain-dependent ontologies for specific domains.

 The term “eventuality" will be used to cover events, states, processes, propositions,

states of affairs, and anything else that can be located with respect to time. The possible

natures of eventualities would be spelled out in the event ontologies. The term

“eventuality" in this paper is only an expositional convenience and has no formal role in

the time ontology.

 The predicate atTime relates an eventuality to an instant, and is intended to say that

the eventuality holds, obtains, or is taking place at that time.

atTime(e,t) ⊃ Instant(t)

The predicate during relates an eventuality to an interval, and is intended to say that the

eventuality holds, obtains, or is taking place during that interval.

during(e,T) ⊃ Interval(T)

If an eventuality obtains during an interval, it obtains at every instant inside the interval

and during every subinterval.

during(e,T) ! inside(t,T) ⊃ atTime(e,t)

during(e,T) ! intDuring(T
1
,T) ⊃ during(e,T

1
)

Note that this means that an intermittant activity, like writing a book, does not hold

“during" the interval from the beginning to the end of the activity. Rather the “convex

hull" of the activity holds “during" the interval.

 Whether a particular process is viewed as instantaneous or as occuring over an interval

is a granularity decision that may vary according to the context of use, and is assumed to

be provided by the event ontology.

 Often the eventualities in the event ontology are best thought of as propositions, and

the relation between these and times is most naturally called holds. The predication

holds(e,T) would say that e holds at instant T or during interval T. The predicate holds

would be part of the event ontology, not part of the time ontology, although its second

argument would be be provided by the time ontology. The designers of the event

ontology may or may not want to relate holds to atTime and during by axioms such as

the following:

holds(e,t) ! Instant(t) ≡ atTime(e,t)

holds(e,T) ! Interval(T) ≡ during(e,T)

Similarly, the event ontology may provide other ways of linking events with times, for

example, by including a time parameter in predications.

p(x,t)

This time ontology provides ways of reasoning about the t’s; their use as arguments of

predicates from another domain would be a feature of the ontology of the other domain.

The predicate timeSpan relates eventualities to instants or intervals (or temporal

sequences of instants and intervals). For contiguous states and processes, it tells the

entire instant or interval for which the state or process obtains or takes place.

timeSpan(T,e) ⊃ TemporalEntity(T) ∨ tseq(T)2

timeSpan(T,e) ! Interval(T) ⊃ during(e,T)

timeSpan(t,e) ! Instant(t) ⊃ atTime(e,t)

timeSpan(T,e) ! Interval(T) ! ¬inside(t,T) ! ¬begins(t,T) ! ¬ends(t,T)

2 tseq(T): T is a temporal sequence.

 ⊃ ¬atTime(e,t)

timeSpan(t,e) ! Instant(t) ! t
1
 ≠ t ⊃ ¬atTime(e,t

1
)

Whether the eventuality obtains at the start and end points of its time span is a matter for

the event ontology to specify. The silence here on this issue is the reason timeSpan is not

defined in terms of necessary and sufficient conditions.

 In an extension of the time ontology, we also allow temporal predicates to apply

directly to events, should the user wish. Thus, begins(t,e) says that the instant t begins

the interval that is the time span of eventuality e; see the documentation3 for details.

 Different communities have different ways of representing the times and durations of

states and events (or processes). In one approach, states and events can both have

durations, and at least events can be instantaneous. In another approach, events can only

be instantaneous and only states can have durations. In the latter approach, events that

one might consider as having duration (e.g., heating water) are modeled as a state of the

system that is initiated and terminated by instantaneous events. That is, there is the

instantaneous event of the start of the heating at the start of an interval, that transitions

the system into a state in which the water is heating. The state continues until another

instantaneous event occurs—the stopping of the heating at the end of the interval. These

two perspectives on events are straightforwardly interdefinable in terms of the ontology

we have provided. This is a matter for the event ontology to specify. This time ontology

is neutral with respect to the choice.

3. MEASURING DURATIONS
3.1 Temporal Units
This development assumes ordinary arithmetic is available.

 There are at least two approaches that can be taken toward measuring intervals. The

first is to consider units of time as functions from Intervals to Reals. Because of infinite

intervals, the range must also include Infinity.

minutes: Intervals → Reals ∪ {Infinity}

minutes([5:14,5:17]) = 3

The other approach is to consider temporal units to constitute a set of entities — call it

TemporalUnits — and have a single function duration mapping Intervals ×

TemporalUnits into the Reals.

duration: Intervals × TemporalUnits → Reals ∪ {Infinity}

duration([5:14,5:17],*Minute*) = 3

3 http://www.isi.edu/~pan/damltime/time-entry-documentation.txt

The two approaches are interdefinable:

seconds(T) = duration(T,*Second*)

minutes(T) = duration(T,*Minute*)

hours(T) = duration(T,*Hour*)

days(T) = duration(T,*Day*)

weeks(T) = duration(T,*Week*)

months(T) = duration(T,*Month*)

years(T) = duration(T,*Year*)

Ordinarily, the first is more convenient for stating specific facts about particular units.

The second is more convenient for stating general facts about all units.

 The arithmetic relations among the various units are as follows:

seconds(T) = 60∗minutes(T)

minutes(T) = 60∗hours(T)

hours(T) = 24∗days(T)

days(T) = 7∗weeks(T)

months(T) = 12∗years(T)

The relation between days and months (and, to a lesser extent, years) will be specified as

part of the ontology of clock and calendar below. On their own, however, month and year

are legitimate temporal units.

3.2 Concatenation and Hath
The multiplicative relations above don’t tell the whole story of the relations among

temporal units. Temporal units are composed of smaller temporal units. A larger

temporal unit is a concatenation of smaller temporal units. We will first define a general

relation of concatenation between an interval and a set of smaller intervals. Then we will

introduce a predicate Hath that specifies the number of smaller unit intervals that

concatenate to a larger interval.

 Concatenation: A proper interval x is a concatenation of a set S of proper intervals if

and only if S covers all of x, and all members of S are subintervals of x and are mutually

disjoint. (The third conjunct on the right side of ≡ is because beginsOrIn only covers

instants that begin or are inside x.)

concatenation(x,S)

 ≡ ProperInterval(x)

 ! (∀ z)[beginsOrIn(z,x) ⊃ (∃ y)[member(y,S) ! beginsOrIn(z,y)]]

 ! (∀ z)[ends(z,x) ⊃ (∃ y)[member(y,S) ! ends(z,y)]]

 ! (∀ y)[member(y,S)

 ⊃ [intStarts(y,x) ∨ intDuring(y,x) ∨ intFinishes(y,x)

∨ intEquals(y,x)]]

 ! (∀ y
1
,y
2

)[member(y
1
,S) ! member(y

2
,S)

 ⊃ [y
1
= y

2
 ∨ nonoverlap(y

1
,y
2

)]]

The following properties of concatenation can be proved as theorems:

There are elements in S that start and finish x:

concatenation(x,S) ⊃ (∃ ! y
1
)[member(y

1
,S) ! intStarts(y

1
,x)]

concatenation(x,S) ⊃ (∃ ! y
2

)[member(y
2

,S) ! intFinishes(y
2

,x)]

If S is a singleton set, its single element is x.

concatenation(x,S) ! card(S) = 1 ⊃ S = {x}

The property of convexity holds in the ontology if and only if the end points of an

interval uniquely determine it. This is an assumption the user can make for any

application and will normally want to.

Convex() ≡ (∀ T
1
,T

2
)[intEquals(T

1
,T

2
) ≡ T

1
 = T

2
]

If convexity holds, then except for the first and last elements of S, every element of S has

elements that precede and follow it.

Convex() ⊃

[concatenation(x,S)

 ⊃ (∀ y
1
)[member(y

1
,S)

 ⊃ [intFinishes(y
1
,x)

 ∨ (∃ ! y
2

)[member(y
2

,S) ! intMeets(y
1
,y
2

)]]]]

Convex() ⊃

[concatenation(x,S)

 ⊃ (∀ y
2

)[member(y
2

,S)

 ⊃ [intStarts(y
2

,x)

 ∨ (∃ ! y
1
)[member(y

1
,S) ! intMeets(y

1
,y
2

)]]]]

The uniqueness (∃ !) follows from nonoverlap.

 Hath: The basic predicate used here for expressing the composition of larger intervals

out of smaller clock and calendar intervals is Hath, from statements like “30 days hath

September" and “60 minutes hath an hour." Its structure is

Hath(N,u,x)

meaning “N proper intervals of duration one unit u hath the proper interval x." That is, if

Hath(N,u,x) holds, then x is the concatenation of N unit intervals where the unit is u. For

example, if x is some month of September then Hath(30,*Day*,x) would be true.

 Hath is defined as follows:

Hath(N,u,x) ≡ (∃ S)[card(S) = N ! (∀ z)[member(z,S) ⊃ duration(z,u) = 1]

! concatenation(x,S)]

That is, x is the concatenation of a set S of N proper intervals of duration one unit u.

 The type constraints on its arguments can be proved as a theorem: N is an integer

(assuming that is the constraint on the value of card), u is a temporal unit, and x is a

proper interval:

Hath(N,u,x) ⊃ integer(N) ! TemporalUnit(u) ! ProperInterval(x)

This treatment of concatenation will work for scalar phenomena in general. This

treatment of Hath will work for measurable quantities in general.

3.3 The Structure of Temporal Units
We now define predicates true of intervals that are one temporal unit long. For example,

week is a predicate true of intervals whose duration is one week.

second(T) ≡ seconds(T) = 1

minute(T) ≡ minutes(T) = 1

hour(T) ≡ hours(T) = 1

day(T) ≡ days(T) = 1

week(T) ≡ weeks(T) = 1

month(T) ≡ months(T) = 1

year(T) ≡ years(T) = 1

We are now in a position to state the relations between successive temporal units.

minute(T) ⊃ Hath(60,*Second*,T)

hour(T) ⊃ Hath(60,*Minute*,T)

day(T) ⊃ Hath(24,*Hour*,T)

week(T) ⊃ Hath(7,*Day*,T)

year(T) ⊃ Hath(12,*Month*,T)

The relations between months and days are discussed in Section 4.5.

4. CLOCK AND CALENDAR
4.1 Time Zones
What hour of the day an instant is in is relative to the time zone. This is also true of

minutes, since there are regions in the world, e.g., central Australia, where the hours are

not aligned with GMT hours, but are, e.g., offset half an hour. To our knowledge,

seconds are not relative to the time zone.

 Days, weeks, months and years are also relative to the time zone, since, e.g., 2004

began in the Eastern Standard time zone three hours before it began in the Pacific

Standard time zone. Thus, predications about all clock and calendar intervals except

seconds are relative to a time zone.

 This can be carried to what seems like a ridiculous extreme, but turns out to yield a

very concise treatment. The Common Era (C.E. or A.D.) is also relative to a time zone,

since 2004 years ago, it began three hours earlier in what is now the Eastern Standard

time zone than in what is now the Pacific Standard time zone. What we think of as the

Common Era is in fact 24 (actually more) slightly displaced half-infinite intervals. (We

leave B.C.E. to specialized ontologies.)

 The principal functions and predicates will specify a clock or calendar unit interval to

be the nth such unit in a larger interval. The time zone need not be specified in this

predication if it is already built into the nature of the larger interval. That means that the

time zone only needs to be specified in the largest interval, that is, the Common Era; that

time zone will be inherited by all smaller intervals. Thus, the Common Era can be

considered as a function from time zones to intervals.

CE(z) = T

Fortunately, this counterintuitive conceptualization will usually be invisible and, for

example, will not be evident in the most useful expressions for time, in Section 4.5

below. In fact, the CE predication functions as a good place to hide considerations of time

zone when they are not relevant.

 We have been refering to time zones, but in fact it is more convenient to work in

terms of what we might call the “time standard" that is used in a time zone. That is, it is

better to work with *PST* as a legal entity than with the *PST* zone as a geographical

region. A time standard is a way of computing the time, relative to a world-wide system

of computing time. For each time standard, there is a zone, or geographical region, and a

time of the year in which it is used for describing local times. Where and when a time

standard is used have to be axiomatized, and this involves interrelating a time ontology

and at least a simple geographical ontology. These relations can be quite complex. We

have done this for the entire world; see Section 4.2.

 If we were to conflate time zones (i.e., geographical regions) and time standards, it

would likely result in problems in several situations. For example, the Eastern Standard

zone and the Eastern Daylight zone are not identical, since most of Indiana is on Eastern

Standard time all year. The state of Arizona and the Navajo Indian Reservation, two

overlapping geopolitical regions, have different time standards – one is Pacific and one is

Mountain.

 Time standards that seem equivalent, like Eastern Standard and Central Daylight,

should be thought of as separate entities. Whereas they function the same in the time

ontology, they do not function the same in the ontology that articulates time and

geography. For example, it would be false to say those parts of Indiana shift in April from

Eastern Standard to Central Daylight time.

4.2 Time Zone Data in OWL
We have developed a time zone resource in OWL for not only the US but also the entire

world4, including three parts: the time ontology file, the US time zone instance file, and

the world time zone instance file.

 The time zone ontology links a simple geographic ontology with our time ontology.

It defines a vocabulary about regions, political regions (countries, states, counties,

reservations, and cities), time zones, daylight savings policies, and the relationships

among these concepts. Its instances also link to other existing data on the Web, such as

Terry Payne’s US states instances5, FIPS 55 county instances6, and ISO country

instances7.

 It can handle all the usual time zone and daylight savings cases. For example, Los

Angles uses PST, the time offset from Greenwich Mean Time (GMT) is -8 hours, and it

observed daylight savings from April 4 to October 31 in 2004. But it handles unusual

cases as well. For example, in Idaho the northern part is in the Pacific zone, the southern

part in the Mountain. The city of West Wendover, Nevada is in the Mountain time zone,

while the rest of Nevada is in the Pacific.

 For the details, see the documentation8 which includes an outline of the ontology and

examples of anticipated use.

4.3 Clock and Calendar Units
The aim of this section is to explicate the various standard clock and calendar intervals.

A day as a calender interval begins at and includes midnight and goes until but does not

include the next midnight. By contrast, a day as a duration is any interval that is 24

hours in length. The day as a duration was dealt with in Section 3. This section deals

with the day as a calendar interval.

 Including the beginning but not the end of a calendar interval in the interval may

strike some as arbitrary. But we get a cleaner treatment if, for example, all times of the

4 http://www.isi.edu/ pan/timezonehomepage.html
5 http://www.daml.ri.cmu.edu/ont/USRegionState.daml
6 http://www.daml.org/2003/02/fips55/
7 http://www.daml.org/2001/09/countries/iso
8 http://www.isi.edu/~pan/damltime/time-zone-documentation.txt

form 12:xx a.m., including 12:00 a.m. are part of the same hour and day, and all times of

the form 10:15:xx, including 10:15:00, are part of the same minute.

 It is useful to have three ways of saying the same thing: the clock or calendar interval y

is the nth clock or calendar interval of type u in a larger interval x in time zone z. This

can be expressed as follows for minutes:

min(y,n,x)

Under the reasonable assumption that there is only one such y, this can also be expressed

as follows:

minFn(n,x) = y

For stating general properties about clock intervals, it is useful also to have the following

way to express the same thing:

clockInt(y,n,u,x)

This expression says that y is the nth clock interval of type u in x. For example, the

proposition clockInt(10:03,3,*Minute*,[10:00,11:00]) holds.

 Here u is a member of the set of clock units, that is, one of *Second*, *Minute*, or

Hour.

 The larger interval x may not line up exactly with clock intervals. In this case we take

y to be the nth complete clock interval of type u in x.

 In addition, there is a calendar unit function with similar structure:

calInt(y,n,u,x)

This says that y is the nth calendar interval of type u in x. For example, the proposition

calInt(12Mar2002,12,*Day*,Mar2002) holds. Here u is one of the calendar units *Day*,

Week, *Month*, and *Year*.

 The unit *DayOfWeek* will be introduced below in Section 4.4.

 The relations among these modes of expression are as follows:

sec(y,n,x) ≡ clockInt(y,n,*Second*,x)

secFn(n,x) = y ≡ clockInt(y,n,*Second*,x)

min(y,n,x) ≡ clockInt(y,n,*Minute*,x)

minFn(n,x) = y ≡ clockInt(y,n,*Minute*,x)

hr(y,n,x) ≡ clockInt(y,n,*Hour*,x)

hrFn(n,x) = y ≡ clockInt(y,n,*Hour*,x)

da(y,n,x) ≡ calInt(y,n,*Day*,x)

daFn(n,x) = y ≡ calInt(y,n,*Day*,x)

mon(y,n,x) ≡ calInt(y,n,*Month*,x)

monFn(n,x) = y ≡ calInt(y,n,*Month*,x)

yr(y,n,x) ≡ calInt(y,n,*Year*,x)

yrFn(n,x) = y ≡ calInt(y,n,*Year*,x)

Weeks and months are dealt with separately below.

 The am/pm designation of hours is represented by the function hr12.

hr12(y,n,*am*,x) ≡ hr(y,n,x)

hr12(y,n,*pm*,x) ≡ hr(y,n+12,x)

A distinction is made above between clocks and calendars because they differ in how they

number their unit intervals. The first minute of an hour is labelled with 0; for example,

the first minute of the hour [10:00,11:00] is 10:00. The first day of a month is labelled

with 1; the first day of March is March 1. We number minutes for the number just

completed; we number days for the day we are working on. Thus, if the larger unit has N

smaller units, the argument n in clockInt runs from 0 to N-1, whereas in calInt n runs

from 1 to N. To state properties true of both clock and calendar intervals, we can use the

predicate calInt and relate the two notions with the axiom

calInt(y,n,u,x) ≡ clockInt(y,n-1,u,x)

Note that the Common Era is a calendar interval in this sense, since it begins with 1

C.E. and not 0 C.E.

 The type constraints on the arguments of calInt are as follows:

calInt(y,n,u,x) ⊃ Interval(y) ! integer(n) ! TemporalUnit(u) ! Interval(x)

Each of the calendar intervals is that unit long; for example, a calendar year is a year long.

calInt(y,n,u,x) ⊃ duration(y,u) = 1

There are properties relating to the labelling of clock and calendar intervals. If N u’s hath

x and y is the nth u in x, then n is between 1 and N.

calInt(y,n,u,x) ! Hath(N,u,x) ⊃ 0 < n ≤ N

The larger interval x need not line up with calendar intervals. For example, it might go

from 12:36 pm, February 1, to 12:36 pm, February 3; this interval Hath two days, but

not two calendar days. However, if x is itself a calendar interval, and u is a unit other than

Week, then there is a 1st small interval, and it starts the large interval.

Hath(N,u,x) ! calInt(x,n
1
,u
1
,x
1
) ! u ≠ *Week* ⊃ (∃ ! y) calInt(y,1,u,x)

Hath(N,u,x) ! calInt(x,n
1
,u
1
,x
1
) ! u ≠ *Week* ! calInt(y,1,u,x)

⊃ intStarts(y,x)

Under the same conditions, there is an Nth small interval, and it finishes the large

interval.

Hath(N,u,x) ! calInt(x,n
1
,u
1
,x
1
) ! u ≠ *Week* ⊃ (∃ ! y) calInt(y,N,u,x)]

Hath(N,u,x) ! calInt(x,n
1
,u
1
,x
1
) ! u ≠ *Week* ! calInt(y,N,u,x)

⊃ intFinishes(y,x)

Under these conditions, all but the last small interval have a small interval that succeeds

and is met by it.

calInt(y
1
,n,u,x) ! calInt(x,n

1
,u
1
,x
1
) ! u ≠ *Week* ! Hath(N,u,x) ! n < N

 ⊃ (∃ ! y
2

)[calInt(y
2

,n+1,u,x) ! intMeets(y
1
,y
2

)]

Moreover, all but the first small interval have a small interval that precedes and meets it.

calInt(y
2

,n,u,x) ! calInt(x,n
1
,u
1
,x
1
) ! u ≠ *Week* ! Hath(N,u,x) ! 1 < n

 ⊃ (∃ ! y
1
)[calInt(y

1
,n-1,u,x) ! intMeets(y

1
,y
2

)]

4.4 Weeks
A week is any seven consecutive days. A calendar week, by contrast, according to a

commonly adopted convention, starts at midnight, Saturday night, and goes to the next

midnight, Saturday night. That is, weeks start with Sunday. (By contrast, the ISO 8061

standard week starts with Monday.) There are 52 weeks in a year, but there are not

usually 52 calendar weeks in a year.

 Weeks are independent of months and years. However, we can still talk about the nth

week in some larger period of time, e.g., the third week of the month or the fifth week of

the semester.9 So the same three modes of representation are appropriate for weeks as

well.

wk(y,n,x) ≡ calInt(y,n,*Week*,x)

wkFn(n,x) = y ≡ calInt(y,n,*Week*,x)

As it happens, the n and x arguments will often be irrelevant, when we only want to say

that some period is a calendar week.

 The day of the week is a calendar interval of type *Day*. The nth day-of-the-week in a

week is the nth day in that interval.

dayofweek(y,n,x) ≡ da(y,n,x) ! (∃ n
1
,x
1
) wk(x,n

1
,x
1
)

The days of the week have special names in English.

dayofweek(y,1,x) ≡ Sunday(y,x)

dayofweek(y,2,x) ≡ Monday(y,x)

dayofweek(y,3,x) ≡ Tuesday(y,x)

dayofweek(y,4,x) ≡ Wednesday(y,x)

dayofweek(y,5,x) ≡ Thursday(y,x)

dayofweek(y,6,x) ≡ Friday(y,x)

9This may not accord perfectly with how we talk about such things, since we really
mean the nth complete week in x.

dayofweek(y,7,x) ≡ Saturday(y,x)

For example, Sunday(y,x) says that y is the Sunday of week x.

 Since a day of the week is also a calendar day, it is a theorem that it is a day long.

dayofweek(y,n,x) ⊃ day(y)

One correspondence will anchor the cycle of weeks to the rest of the calendar, for example,

saying that January 1, 2002 was the Tuesday of some week x.

(∀ z)(∃ x)Tuesday(dayFn(1,monFn(1,yrFn(2002,CE(z)))),x)

We can define weekdays and weekend days as follows:

weekday(y,x) ≡ [Monday(y,x) ∨ Tuesday(y,x) ∨ Wednesday(y,x)

∨ Thursday(y,x) ∨ Friday(y,x)]

weekendday(y,x) ≡ [Saturday(y,x) ∨ Sunday(y,x)]

4.5 Months and Years
The months have special names in English. In these rules we specify that the larger

interval is a calendar year.

[yr(x,n
1
,x
1
) ! mon(y,1,x)] ≡ January(y,x)

[yr(x,n
1
,x
1
) ! mon(y,2,x)] ≡ February(y,x)

[yr(x,n
1
,x
1
) ! mon(y,3,x)] ≡ March(y,x)

[yr(x,n
1
,x
1
) ! mon(y,4,x)] ≡ April(y,x)

[yr(x,n
1
,x
1
) ! mon(y,5,x)] ≡ May(y,x)

[yr(x,n
1
,x
1
) ! mon(y,6,x)] ≡ June(y,x)

[yr(x,n
1
,x
1
) ! mon(y,7,x)] ≡ July(y,x)

[yr(x,n
1
,x
1
) ! mon(y,8,x)] ≡ August(y,x)

[yr(x,n
1
,x
1
) ! mon(y,9,x)] ≡ September(y,x)

[yr(x,n
1
,x
1
) ! mon(y,10,x)] ≡ October(y,x)

[yr(x,n
1
,x
1
) ! mon(y,11,x)] ≡ November(y,x)

[yr(x,n
1
,x
1
) ! mon(y,12,x)] ≡ December(y,x)

The number of days in a month have to be spelled out for individual months.

January(m,y) ⊃ Hath(31,*Day*,m)

March(m,y) ⊃ Hath(31,*Day*,m)

April(m,y) ⊃ Hath(30,*Day*,m)

May(m,y) ⊃ Hath(31,*Day*,m)

June(m,y) ⊃ Hath(30,*Day*,m)

July(m,y) ⊃ Hath(31,*Day*,m)

August(m,y) ⊃ Hath(31,*Day*,m)

September(m,y) ⊃ Hath(30,*Day*,m)

October(m,y) ⊃ Hath(31,*Day*,m)

November(m,y) ⊃ Hath(30,*Day*,m)

December(m,y) ⊃ Hath(31,*Day*,m)

The definition of a leap year is as follows:

(∀ z)[leapYear(y) ≡ (∃ n,x)[yr(y,n,CE(z))

 ! [divides(400,n) ∨ [divides(4,n) !

¬divides(100,n)]]]

We leave leap seconds to specialized ontologies.

 Now the number of days in February can be specified.

February(m,y) ! leapYear(y) ⊃ Hath(29,*Day*,m)

February(m,y) ! ¬leapYear(y) ⊃ Hath(28,*Day*,m)

A reasonable approach to defining month as a unit of temporal measure would be to

specify that the start and end points have to be on the same days of successive months.

The following rather ugly axiom captures this.

month(T)

 ≡ (∃

t
1
,t
2

,d
1
,d
2

,n
1
,n
2

,n
3

,n
4

,m
1
,m

2
,y
1
,y
2

,e,h
1
,h
2

,j
1
,j
2

,s
1
,s
2

)

 [begins(t
1
,T) ! ends(t

2
,T) ! beginsOrIn(t

1
,d
1
)

 ! beginsOrIn(t
2

,d
2

) ! da(d
1
,n
1
,m

1
) ! mon(m

1
,n
3

,y
1
)

 ! yr(y
1
,n
4

,e) ! da(d
2

,n
2

,m
2

)

 ! [mon(m
2

,n
3

+1,y
1
)

∨ (∃ y
2

)[n
1
 = 12 ! mon(m

2
,1,y

2
) ! yr(y

2
,n
4

+1,e)]]

 ! Hath(n,*Day*,m
2

) ! [[n ≥ n
1
 ! n

2
 = n

1
]

∨ [n < n
1
 ! n

2
 = n]]

 ! beginsOrIn(t
1
,h
1
) ! beginsOrIn(t

2
,h
2

)

 ! (∃ i)[hr(h
1
,i,d

1
) ! hr(h

2
,i,d

2
)]

 ! beginsOrIn(t
1
,j
1
) ! beginsOrIn(t

2
,j
2

)

 ! (∃ i)[min(j
1
,i,h

1
) ! min(j

2
,i,h

2
)]

 ! beginsOrIn(t
1
,s
1
) ! beginsOrIn(t

2
,s
2

)

 ! (∃ i)[sec(s
1
,i,j

1
) ! sec(s

2
,i,j

2
)]]

The first eight conjuncts in the consequent identify and label the days the interval begins

and ends in. The ninth conjunct checks that the months are right, taking care of the

rollover from December to January. The tenth and eleventh conjuncts makes sure the days

are right, taking care of the case where the second month has too few days. In this

definition, one month from 2:36 pm, January 31, 2004, is 2:36 pm, February 29, 2004.

The last nine conjuncts make sure the hours, minutes and seconds are right. This

definition does not handle precisions less than a second. It would be a technical exercise

to do so.

 Thus, the month as a measure of duration is related to days as a measure of duration

only indirectly, mediated by the calendar. It is possible to prove that months are between

28 and 31 days.

 The mismatch between days and months in the calendar entails significant difficulties

in working out a satisfactory temporal arithmetic. We will deal with this problem in a

subsequent paper.

 To say that July 4 is a holiday in the United States one could write

(∀ d,m,y)[da(d,4,m) ! July(m,y) ⊃ holiday(d,USA)]

Holidays like Easter can be defined in terms of this ontology coupled with an ontology of

the phases of the moon.

 Other calendar systems could be axiomatized similarly, and the BCE era could also be

axiomatized in this framework. These are left as exercises for interested developers.

5. DESCRIBING TIMES AND DURATIONS
5.1 Time Stamps
Standard notation for times list the year, month, day, hour, minute, and second. It is

useful to define a predication for this.

timeOf(t,y,m,d,h,n,s,z)

≡ beginsOrIn(t,secFn(s,minFn(n,hrFn(h,

daFn(d,monFn(m,yrFn(y,CE(z))))))))

Alternatively,

timeOf(t,y,m,d,h,n,s,z)

 ≡ (∃ s
1
,n
1
,h
1
,d
1
,m

1
,y
1
,e)

[beginsOrIn(t,s
1
) ! sec(s

1
,s,n

1
) ! min(n

1
,n,h

1
)

 ! hr(h
1
,h,d

1
) ! da(d

1
,d,m

1
) ! mon(m

1
,m,y

1
)

 ! yr(y
1
,y,e) ! CE(z) = e]

For example, an instant t has the time

5:14:35pm PST, Wednesday, February 6, 2002

if the following properties hold for t:

timeOf(t,2002,2,6,17,14,35,*PST*)

(∃ w,x)[beginsOrIn(t,w) ! Wednesday(w,x)]

The second line says that t is in the Wednesday w of some week x.

 The relations among time zones can be expressed in terms of the timeOf predicate.

Two examples are as follows:

timeOf(t,y,m,d,h,n,s,*EST*) ≡ timeOf(t,y,m,d,h,n,s,*CDT*)

timeOf(t,y,m,d,h,n,s,*GMT*) ! hours(T) = 8 ! ends(t,T)

 ! begins(t
1
,T) ! timeOf(t

1
,y
1
,m

1
,d
1
,h
1
,n,s,*GMT*)

 ⊃ timeOf(t,y
1
,m

1
,d
1
,h
1
,n,s,*PST*)

In the second rule, subtracting an interval of 8 hours from the time t and looking at the

time of its beginning point hides the ugly details of computing the years, months and

days in case of rollover. For those who would prefer the ugly details, here they are:

(∀ t,y,m,d,h,n,s)[h ≥ 8

 ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m,d,h-8,s,*PST*)

(∀ t,y,m,d,h,n,s)[h < 8 ! d > 1

 ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m,d-1,h+16,s,*PST*)

(∀ t,y,m,d,h,n,s,M,d
1
,Y)[h < 8 ! d = 1 ! m > 1 ! mon(M,m,Y)

 ! yr(Y,y,CE(*GMT*) ! Hath(d
1
,*Day*,M)

 ⊃ [timeOf(t,y,m,d,h,s,*GMT*) ≡ timeOf(t,y,m-1,d
1
,h+16,s,*PST*)

(∀ t,y,m,d,h,n,s)[h < 8

 ⊃ [timeOf(t,y,1,1,h,s,*GMT*) ≡ timeOf(t,y-1,12,31,h+16,s,*PST*)

5.2 Calendar-Clock Descriptions
To express calInt(y,n,u,x) and clockInt(y,n,u,x) directly in a description logic-based

markup language, such as OWL, is inconvenient since x is itself a clock or calendar

interval that requires description. So we have defined a calendar-clock or time description

in OWL for specifying both calendar and clock information for a calendar-clock interval.

 A calendar-clock description has the following properties or fields: unitType, yearOf,

monthOf, weekOf, dayOf, hourOf, minuteOf, secondOf, and timeZoneOf. The property

unitType specifies the temporal unit type of the calendar-clock description, and its

domain is the set of temporal units.

 For example, the unit type of 10:30 is minute, and the unit type of March 20, 2003 is

day. The unit type is required. For a given temporal unit type, all the fields or properties

for smaller units will be ignored. For instance, if the temporal unit type is day, the values

of the fields or properties hourOf, minuteOf, and secondOf, if present, will be ignored.

 Since calendar-clock descriptions are for describing calendar-clock intervals, we have

defined a property or relation, called calendarClockDescriptionOf with

CalendarClockDescription as the range, for calendar-clock intervals.

 To express calInt(12Mar2002,12,*Day*,Mar2002), for example, using a calendar-

clock description, we need an instance of CalendarClockDescription that has values only

for unitType (day), yearOf (2002), monthOf (3), and dayOf (12).

clockInt(10:03,3,*Minute*,[10:00, 11:00]) can be expressed similarly.

 More details about calendar-clock descriptions, as well as duration descriptions,

together with examples used in OWL-S10 can be found in Pan and Hobbs [2004].

5.3 Duration Descriptions
There are two systems of time, based on different astronomical facts. The year-month

system is based on the revolution of the Earth around the Sun. The week-day-hour-

minute-second system is based on the rotation of the Earth around its axis. As long as we

don’t mix these two systems, temporal arithmetic is simple. But they don’t align well,

and when we try to relate days and months, complications arise, as we have already seen.

 We cannot simply rule out months as units, as some have suggested. Monthly rates

play a very important role in commerce. If you pay $1000 a month in rent, you are

paying more per day for your apartment in February than in March, and often when rents

are prorated, the number of days in that specific month is used in the calculation,

although in some industries months have been normalized to 28 or 30 days.

 It is therefore important to build a consistent system of duration measurement that

involves both months and days.

 Here we introduce duration descriptions, in which the duration of an arbitrary finite

interval can be described as a concatenation of years, months, weeks, days, hours,

minutes, seconds, and fractions of seconds. The primary convention we will follow is

that followed by car rental and other companies that have different rates for different

periods of time. From the beginning of the interval, we fit in as many as possible of the

10 http://www.daml.org/services/owl-s/

largest unit type. Then into the remainder we fit in as many as possible of the next

largest unit type, and so on. For example, when we rent a car, we pay the weekly rate for

as many full weeks as we keep the car, then we pay the daily rate for any leftover full

days, then the hourly rate for any leftover hours.

 The predication durationOf(T,y,m,w,d,h,n,s) says that duration of the interval T is y

years, m months, w weeks, d days, h hours, n minutes, and s seconds. The values of the

numeric arguments can be any real number, although indeterminacies will arise if we try

to determine the identity of a duration described as a fractional number of months and a

duration described in terms of days. The reason we allow real numbers, rather than

restricting the values to integers, is that we frequently talk about such durations as one

and a half months. However, for the rest of this development we will assume all of the

numeric arguments are integers.

 The predicate durationOf can be defined in the following rather cumbersome manner:

durationOf(T,y,m,w,d,h,n,s)

 ≡ (∃ S,T
1
)[concatenation(T,S ∪{T

1
}) ! card(S) = y

 ! (∀ v)[v∈S ⊃ year(v)]

 ! intFinishes(T
1
,T) ! durationOf(T

1
,0,m,w,d,h,n,s)]

durationOf(T,0,m,w,d,h,n,s)

 ≡ (∃ S,T
1
)[concatenation(T,S ∪{T

1
}) ! card(S) = m

 ! (∀ v)[v∈S ⊃ month(v)]

 ! intFinishes(T
1
,T) ! durationOf(T

1
,0,0,w,d,h,n,s)]

durationOf(T,0,0,w,d,h,n,s)

 ≡ (∃ S,T
1
)[concatenation(T,S ∪{T

1
}) ! card(S) = w

 ! (∀ v)[v∈S ⊃ week(v)]

 ! intFinishes(T
1
,T) ! durationOf(T

1
,0,0,0,d,h,n,s)]

durationOf(T,0,0,0,d,h,n,s)

 ≡ (∃ S,T
1
)[concatenation(T,S ∪{T

1
}) ! card(S) = d

 ! (∀ v)[v∈S ⊃ day(v)]

 ! intFinishes(T
1
,T) ! durationOf(T

1
,0,0,0,0,h,n,s)]

durationOf(T,0,0,0,0,h,n,s)

 ≡ (∃ S,T
1
)[concatenation(T,S ∪{T

1
}) ! card(S) = h

 ! (∀ v)[v∈S ⊃ hour(v)]

 ! intFinishes(T
1
,T) ! durationOf(T

1
,0,0,0,0,0,n,s)]

durationOf(T,0,0,0,0,0,n,s)

 ≡ (∃ S,T
1
)[concatenation(T,S ∪{T

1
}) ! card(S) = n

 ! (∀ v)[v∈S ⊃ minute(v)]

 ! intFinishes(T
1
,T) ! durationOf(T

1
,0,0,0,0,0,0,s)]

durationOf(T,0,0,0,0,0,0,s)

 ≡ (∃ S,T
1
)[concatenation(T,S) ! card(S) = s

 ! (∀ v)[v∈S ⊃ second(v)]]

The axiom saying that an instant has 0 duration is

Instant(t) ⊃ durationOf(t,0,0,0,0,0,0,0)

The predicates timeOf and durationOf can be related. Corresponding to every time is the

duration of the interval from the beginning of the Common Era to that time.

timeOf(t0,1,1,1,0,0,0) ! timeBetween(T,t0,t)

 ⊃ (∀ y,m,d,h,n,s)[timeOf(t,y,m,d,h,n,s)

 ≡ durationOf(T,y-1,m-1,d-1,h,n,s)]

The duration of an interval can have many different descriptions. An interval can be 1 day

2 hours, or 26 hours, or 1560 minutes, and so on. It is useful to be able to talk about

these descriptions in a convenient way as independent objects and to talk about their

equivalences. Thus, we define a specific kind of individual called a “duration

description", together with a number of functions relating the duration description to the

values of each of the eight arguments of durationOf. Thereby we convert the 8-ary

predicate durationOf into eight binary relations that are more convenient for description

logic-based markup languages, such as OWL. Here is the definition of the duration

description:

(∀ T,y,m,w,d,h,n,s)[durationOf(T,y,m,w,d,h,n,s)

 ≡ (∃ D)[durationDescriptionOf(D,T) ! DurationDescription(D)

 ! yearsOf(D) = y ! monthsOf(D)=m

 ! weeksOf(D)=w ! daysOf(D)=d

 ! hoursOf(D)=h ! minutesOf(D)=n ! secondsOf(D)=s]]

We will say that a duration description is canonical if the number of weeks is zero and

the number of all other units is less than the number of those units in the next higher

unit. That is, there is an arbitrarily large number of years, less than 12 months, less than

24 hours, less than 60 minutes, and less than 60 seconds. The number of days is less

than the number that could be consumed by one more month, given where the interval is

anchored in time.

 The definition of canonicalDurDescr(D) is as follows:

canonicalDurDescr(D)

 ≡ [0 ≤ monthsOf(D) < 12 ! weeksOf(D) = 0

 ! 0 ≤ hoursOf(D) < 24 ! 0 ≤ minutesOf(D) < 60

 ! 0 ≤ secondsOf(D) < 60

 ! (∃ T,T
1
,T

2
,t,t

1
,t
2

)

 [durationOf(T
1
,yearsOf(D),monthsOf(D),0,0,0,0,0)

 ! durationDescriptionOf(D,T) ! begins(t
1
,T)

 ! begins(t
1
,T
1
) ! month(T

2
) ! intMeets(T

1
,T

2
)

 ! ends(t
2

,T
2

) ! ends(t,T) ! before(t,t
2

)]]

The existentially quantified expression at the end requires explanation. T is the interval

that D describes. T
1
 is the interval starting at the same point and including only D’s

year and month segments. T
2

 is a month-long interval that is appended to the end of

T
1
. The daysOf slot of D is canonical if and only if T ends before T

2
 does. The

complexities of day-month arithmetic are hidden in the predicate month.

6. FUTURE DIRECTIONS
6.1 Temporal Arithmetic
As long as we stay within the year-month system or within the week-day-hour-minute-

second system, temporal arithmetic is just arithmetic and requires only a few simple

axioms to encode. When we mix months and days, problems arise.

 We are currently working on a set of relatively simple rules that will allow one to do

temporal arithmetic with months and days with a moderate degree of consistency. This

will be the subject of a future paper. However, just to give the reader a flavor of the

problems, consider that January 31, 2003, plus 2 months equals March 31, 2003. But if

we add the months one at a time, we get a different result. January 31, 2003, plus one

month is February 28, 2003. February 28, 2003, plus one month would seem to be

March 28, 2003. If we want to avoid results like this we need to keep track, in some

sense, of the history of the computation.

6.2 Deictic Time
Deictic temporal concepts, such as “now”, “today”, “tomorrow night”, and “last year”,

are more common in natural language texts than they will be in descriptions of Web

resources, and for that reason we have postponed a development of this domain until the

first three are in place. But since most of the content on the Web is in natural language,

ultimately it will be necessary for this ontology to be developed. It should, as well, mesh

well with the annotation standards used in automatic tagging of text (cf. Hobbs and

Pustejovsky, 2003).

 We expect that the key concept in this area will be a relation now between an instant

and an utterance or document.

now(t,d)

It may refer to the time of writing, the time of reading, a period of validity, or some other

functionally determined instant or interval.

 The concept of “today" would also be relative to a document, and would be defined as

follows:

today(T,d) ≡ (∃ t,n,x)[now(t,d) ! inside(t,T) ! da(T,n,x)]

That is, T is today with respect to document d if and only if there is an instant t in T that

is now with respect to the document and T is a calendar day (and thus the nth calendar

day in some interval x).

 Present, past and future can be defined in the obvious way in terms of now and before.

 Another feature of a treatment of deictic time will be an axiomatization of the concepts

of “last", “this", and “next" on anchored sequences of temporal entities.

6.3 Aggregates of Temporal Entities
A number of common expressions and commonly used properties are properties of

sequences of temporal entities. These properties may be properties of all the elements in

the sequence, as in “every Wednesday”, or they may be properties of parts of the

sequence, as in “three times a week” or “an average of once a year”. We have also

postponed development of this domain until the first three domains are well in hand.

6.4 Vague Temporal Concepts
In natural language a very important class of temporal expressions are inherently vague.

Included in this category are such terms as “soon", “recently", “late", and “a little

while". These require an underlying theory of vagueness, and in any case are probably not

immediately critical for the Semantic Web. This area will be postponed for a little while.

ACKNOWLEDGMENTS
We have profited from discussions with James Allen, George Ferguson, Pat Hayes,

Inderjeet Mani, Drew McDermott, Adam Pease, James Pustejovsky, Stephen Reed, and

Austin Tate, among others, none of whom however would necessarily agree entirely with

the way we have characterized the effort. The research was funded by the Defense

Advanced Research Projects Agency under Air Force Research Laboratory contract

F30602-00-C-0168 and by the Advanced Research and Development Agency.

REFERENCES
ALLEN, J.F., AND FERGUSON, G. 1997. Actions and Events in Interval Temporal Logic. In Spatial and
Temporal Reasoning, O. STOCK, Eds. Kluwer Academic Publishers, Dordrecht, Netherlands, 205-245.
ALLEN, J.F. AND KAUTZ, H.A. 1985. A model of naive temporal reasoning. In Formal Theories of the
Commonsense World, J.R. HOBBS AND R.C. MOORE, Eds. Ablex Publishing Corp., 251-268.
HOBBS, J.R., AND PUSTEJOVSKY, J. 2003. Annotating and Reasoning about Time and Events. In Proceedings of
AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning, Stanford, California, March
2003.
PAN, F. AND HOBBS, J.R. 2004. Time in OWL-S. In Proceedings of AAAI Spring Symposium on Semantic Web
Services, Stanford University, CA, March 2004.

