
FASTUS: A Finite-state Processor for Information Extraction from
Real-world Text∗

Douglas E. Appelt, Jerry R. Hobbs, John Bear, David Israel and Mabry Tyson
SRI International

333 Ravenswood Ave.
Menlo Park, CA 94025

USA

Abstract

Approaches to text processing that rely on
parsing the text with a context-free grammar
tend to be slow and error-prone because of
the massive ambiguity of long sentences. In
contrast, FASTUS employs a nondeterminis-
tic finite-state language model that produces a
phrasal decomposition of a sentence into noun
groups, verb groups and particles. Another
finite-state machine recognizes domain-specific
phrases based on combinations of the heads of
the constituents found in the first pass. FAS-
TUS has been evaluated on several blind tests
that demonstrate that state-of-the-art perfor-
mance on information-extraction tasks is ob-
tainable with surprisingly little computational
effort.

1 Introduction

There are many reasons to want to process large num-
bers of natural-language texts automatically with high
speed and accuracy. The best information retrieval sys-
tems can retreive texts that have a reasonable likelihood
of being relevant to one’s general concerns. However,
getting the information out of the text that is required
for solving someone’s problem still requires a human to
actually read the texts — a time consuming process that
can easily swamp the available resources. We have de-
veloped the FASTUS system (the acronym is a slight
permutation of Finite State Automata-based Text Un-
derstanding System) to address the need for a system
that extracts prespecified information from a text with
high speed and accuracy. This system has been tested in
the MUC-4 evaluation of text processing systems [Sund-
heim, 1992] and has demonstrated

∗This research was funded by the Defense Advanced Re-
search Projects Agency under Office of Naval Research con-
tracts N00014-90-C-0220, and by an internal research and
development grant from SRI International.

• High Performance (44% Recall and 55% Precision
on a blind test of 100 Texts, which was among the
best scores in the evaluation)

• Short domain-specific development time (three and
a half weeks for the domain of terrorist incidents)

• Fast processing time (texts were processed at the
rate of more than 2,000 words per minute)

1.1 Two Types of System

One can distinguish between two types of natural lan-
guage systems: information extraction systems and text
understanding systems. In information extraction,

• Only a fraction of the text is relevant; in the case of
the MUC-4 terrorist reports, probably only about
10% of the text is relevant.

• Information is mapped into a predefined, relatively
simple, rigid target representation; this condition
holds whenever entry of information into a database
is the task.

• The subtle nuances of meaning and the writer’s
goals in writing the text are of no interest.

This contrasts with text understanding, where

• The aim is to make sense of the entire text.

• The target representation must accommodate the
full complexities of language.

• One wants to recognize the nuances of meaning and
the writer’s goals.

FASTUS is designed for the former case. Although
the task is limited, it is nevertheless an important task
that has many real-world applications.

It is tempting to view the information extraction task
as a simple special case of the text understanding task,
and approach the problem by applying a system designed
for text understanding to the simpler task. We originally
attempted to apply the TACITUS system [Hobbs et al.,
1993] to this task. TACITUS is a text-understanding



system that attempts to recover all implicit information
from the text by abductive inference, using a semantic
analysis of each sentence as the statement to be abduc-
tively proved, and the assumptions necessary to com-
plete the proof comprising the additions to the system’s
knowledge base from understanding the sentence. This
attempt was mildly successful (we managed to achieve
24% Recall and 40% Precision in an objective evaluation
on the same task), however, the system was slow, since
it spent much time on irrelevant text.

The TACITUS experience demonstrates why it was
wrong to approach the information extraction task as a
“traditional” computational linguistics problem. Even
though many techniques to increase the robustness of
the system were employed [Hobbs et al., 1993], the fact
remains that parsing of context-free grammars is rela-
tively slow, and this slowness is evident when encoun-
tering sentences that are 60 to 100 words in length, as
happens not infrequently in real-world texts. Although
TACITUS employed heuristics to guide the parsing of
such long sentences, and statistics could be employed by
a parser to find the most likely analysis first [Magerman
and Weir, 1992], the fact remains that mistakes will be
made, and they will have an impact on performance. A
further problem was that the system had to apply com-
putationally intensive reasoning techniques to every sen-
tence. Since much of the text was irrelevant this meant
that much of this effort was wasted. A statistical rele-
vance filter was employed, but this filter had to have high
recall and hence low precision to avoid excluding truly
relevant text from consideration, and therefore admitted
much irrelevant text to further processing.

1.2 Finite-State Models of English

If there are problems in applying context-free parsing to
real-world text, then an efficient text processor might
make use of weaker language models, i.e., regular or
finite-state grammars. Every computational linguistics
graduate student knows, from the first textbook that in-
troduces the Chomsky hierarchy, that English has con-
structs, e.g., center embedding, that cannot be described
by any finite-state grammar. This fact has no doubt
biased researchers away from serious consideration of
possible applications of finite-state grammars to difficult
problems.

Church [1980] was the first to advocate finite-state
grammars as a processing model for language under-
standing. He contended that, although English is clearly
not a regular language, memory limitations make it im-
possible for people to exploit that context-freeness in its
full generality, and therefore a finite-state mechanism
might be adequate in practice as a model of human
linguistic performance. A computational realization of
memory limitation as a depth cutoff was implemented
by Black [1989].

More recently, Pereira and Wright [1991] have de-

veloped methods for constructing finite-state grammars
from context free grammars that overgenerate in certain
systematic ways. The finite-state grammar could be ap-
plied in situations, e.g. as the language model in a speech
understanding system, where computational considera-
tions are paramount.

At this point, the limitations of the application of
finite-state grammars to natural-language processing
have not yet been determined. We believe this research
establishes that these simple mechanisms can achieve
more than has previously been thought possible.

2 A Description of the Task

SRI International participated in the recent MUC-4 eval-
uation of text-understanding systems [Sundheim, 1992],
the fourth in a series of evaluations. The methodology
chosen for this evaluation was to score a system’s ability
to fill in slots in templates summarizing the content of
newspaper articles on Latin American terrorism. The
articles ranged from one third of a page to two pages in
length. Many articles described multiple incidents, while
other texts were completely irrelevant.

The following are some relevant excerpts from a sam-
ple terrorist report, which is the source of most of the
examples in this paper.

San Salvador, 19 Apr 89 (ACAN-EFE)
– [TEXT] Salvadoran President-elect Alfredo
Cristiani condemned the terrorist killing of At-
torney General Roberto Garcia Alvarado and
accused the Farabundo Marti National Libera-
tion Front (FMLN) of the crime.

. . .
Garcia Alvarado, 56, was killed when a

bomb placed by urban guerrillas on his vehicle
exploded as it came to a halt at an intersection
in downtown San Salvador.

. . .
Vice President-elect Francisco Merino said

that when the attorney general’s car stopped at
a light on a street in downtown San Salvador,
an individual placed a bomb on the roof of the
armored vehicle.

. . .
Guerrillas attacked Merino’s home in San

Salvador 5 days ago with explosives. There
were seven children, including four of the vice
president’s children, in the home at the time.
A 15-year-old niece of Merino’s was injured.

. . .
According to the police and Garcia Al-

varado’s driver, who escaped unscathed, the
attorney general was traveling with two body-
guards. One of them was injured.

This text is taken from a set of one hundred messages
used in the final evaluation of MUC-3 in May 1991.



Some of the corresponding database entries for the
killing of Garcia Alvarado are as follows:

Date: - 19 Apr 89
Location: El Salvador: San Salvador
Incident Type: Bombing
Perpetrator ID: “urban guerrillas”
Perp. Org.: “FMLN”
Confidence: Suspected or Accused

by Authorities: “FMLN”
Physical Target: “vehicle”
Effect: Some Damage: “vehicle”
Human Target: “Roberto Garcia Alvarado”
Description: “attorney general”:

“Roberto Garcia Alvarado”
“driver”
“bodyguards”

Effect: Death: “Roberto
Garcia Alvarado”

No Injury: “driver”
Injury: “bodyguards”

The principal measures in the MUC-4 evaluation were
recall and precision. Recall is the number of answers the
system got right divided by the number of possible right
answers. It measures how comprehensive the system is
in its extraction of relevant information. Precision is
the number of answers the system got right divided by
the number of answers the system gave. It measures the
system’s accuracy. For example, if there are 100 possible
answers and the system gives 80 answers and gets 60 of
them right, its recall is 60% and its precision is 75%.

3 Overview of the FASTUS
Architecture

The input text is first preprocessed to ensure that the
text is in a standardized format for the remainder of the
processing. Spelling correction is done at this point as
well. The preprocessed text is then given to the FASTUS
system proper.

The operation of FASTUS is composed of four steps:

1. Triggering

2. Recognizing Phrases

3. Recognizing Patterns

4. Merging Incidents

These steps are described in the next four sections. A
postprocessing phase then converts the incident struc-
tures generated by FASTUS into the format required for
the MUC-4 templates.

The system is implemented in CommonLisp and runs
on both Sun and Symbolics machines.

3.1 Triggering

In the first pass over a sentence, trigger words are
searched for. There is at least one trigger word for
each pattern of interest that has been defined. Gen-
erally, these are the least frequent words required by the
pattern. For example, in the pattern

take <HumanTarget> hostage

“hostage” rather than “take” is the trigger word. There
are at present 253 trigger words.

In addition, the names of people identified in previous
sentences as victims are also treated, for the remainder of
the text, as trigger words. This allows us, for example,
to pick up occupations of victims when they occur in
sentences with no other triggers, as in

Hector Oqueli and Gilda Flores were assassi-
nated yesterday.

Gilda Flores was a member of the Democratic
Socialist Party (PSD) of Guatemala.

Finally, on this pass, full names are searched for, so
that subsequent references to surnames can be linked
to the corresponding full names. Thus, if one sentence
refers to “Ricardo Alfonso Castellar” but does not men-
tion his kidnapping, while the next sentence mentions
the kidnapping but only uses his surname, we can enter
Castellar’s full name into the template.

The performance of FASTUS on the example message
is illustrative of its performance in general. In that mes-
sage, 21 of 30 sentences were triggered. Thirteen of the
21 triggered sentences were relevant. Two of the 9 sen-
tences not triggered were actually relevant.

3.2 Recognizing Phrases

The problem of syntactic ambiguity is AI-complete.
That is, we will not have systems that reliably parse
English sentences correctly until we have encoded much
of the real-world knowledge that people bring to bear
in their language comprehension. For example, noun
phrases cannot be reliably identified because of the
prepositional phrase attachment problem. However, cer-
tain syntactic constructs can be reliably identified. One
of these is the noun group, that is, the head noun of
a noun phrase together with its determiners and other
left modifiers. Another is what we are calling the “verb
group”, that is, the verb together with its auxiliaries
and any intervening adverbs. Moreover, an analysis that
identifies these elements gives us exactly the units we
most need for recognizing patterns of interest.

Pass Two in FASTUS identifies noun groups, verb
groups, and several critical word classes, including
prepositions, conjunctions, relative pronouns, and the
words “ago” and “that”. Phrases that are subsumed by
larger phrases are discarded. Overlapping phrases are
rare, but where they occur they are kept.



Choosing the longest subsuming phrase could lead to
incorrect analyses in some cases involving lexical ambi-
guity between nouns and verbs. The present tense forms
of such verbs are the same as the corresponding nouns;
therefore a noun phrase could be constructed taking the
misidentified verb as its head. This ambiguity problem
was solved by the simple expedient of assigning a lower
preference to any constituent with a present-tense verb
form. Because the source of texts for this task was news-
paper articles about past events, the use of present tense
verb phrases in relevant sentences was quite rare.

In domains in which this expiedient solution to lex-
ical ambiguity is inapplicable, a part of speech tagger
could be employed to help resolve the ambiguity. We
implemented and considered using a part-of-speech tag-
ger, but we found that there was no clear improvement
in performance, and it would have doubled the time the
system took to process a message.

Noun groups are recognized by a 37-state nondeter-
ministic finite state automaton. This encompasses most
of the complexity that can occur in English noun groups,
including numbers, numerical modifiers like “approxi-
mately”, other quantifiers and determiners, participles in
adjectival position, comparative and superlative adjec-
tives, conjoined adjectives, and arbitrary orderings and
conjunctions of prenominal nouns and noun-like adjec-
tives. Thus, among the noun groups recognized are

approximately 5 kg
more than 30 peasants
the newly elected president
the largest leftist political force
a government and military reaction

Verb groups are recognized by an 18-state nondeter-
ministic finite state machine. They are tagged as Active,
Passive, Gerund, and Infinitive. Verbs are sometimes lo-
cally ambiguous between active and passive senses, as
the verb “kidnapped” in the two sentences,

Several men kidnapped the mayor today.
Several men kidnapped yesterday were released

today.

These are tagged as Active/Passive, and Pass Three re-
solves the ambiguity if necessary.

Certain relevant predicate adjectives, such as “dead”
and “responsible”, are recognized, as are certain adverbs,
such as “apparently” in “apparently by”. However, most
adverbs and predicate adjectives and many other classes
of words are ignored altogether. Unknown words are
ignored unless they occur in a context that could in-
dicate they are surnames. The complete grammars of
noun groups and verb groups are given by Hobbs et al.,
[1992b].

Lexical information is read at compile time, and a
hash table associating words with their transitions in
the finite-state machines is constructed. There is a hash

table entry for every morphological variant of a word.
The TACITUS lexicon of 20,000 words is used for lexical
information. Morphological expansion of these words re-
sults in 43,000 morphological variants in the hash table.
During the actual running of the system on the texts,
only the state transitions accessed through the hash ta-
ble are seen.

In the example message, 243 of 252 phrases, or 96.4%,
were correctly recognized. Of the 9 mistakes, 5 were due
to nouns being misidentified as verbs or verbs as nouns.
The other 4 mistakes were due to simple bugs of the type
that frequently creep into code during development.

3.3 Recognizing Patterns

The input to Pass Three of FASTUS is a list of phrases
in the order in which they occur. Anything that is not
included in a phrase in the second pass is ignored in
the third pass. Patterns of interest are encoded as finite
state machines, where state transitions are effected by
phrases. The state transitions are driven off the head
words in the phrases. That is, a set of state transi-
tions is associated with each relevant head word-phrase
type pair, such as “mayor-NounGroup”, “kidnapped-
PassiveVerbGroup”, “killing-NounGroup”, and “killing-
GerundVerbGroup”. In addition, some nonhead words
can trigger state transitions. For example, “bomb blast”
is recognized as a bombing.

We implemented 95 patterns for the MUC-4 applica-
tion. Among the patterns are the following ones that are
relevant to the example message:

killing of <HumanTarget>
<GovtOfficial> accused <PerpOrg>
bomb was placed by <Perp>

on <PhysicalTarget>
<Perp> attacked <HumanTarget>’s

<PhysicalTarget> with <Device>
<HumanTarget> was injured
<HumanTarget>’s body

As patterns are recognized, incident structures are
built up. For example, the sentence

Guerrillas attacked Merino’s home in San Sal-
vador 5 days ago with explosives.

matches the pattern

<Perp> attacked <HumanTarget>’s
<PhysicalTarget> in <Location>
<Date> with <Device>

This causes the following incident to be constructed.



Incident: ATTACK/BOMBING
Date: 14 Apr 89
Location: El Salvador: San Salvador
Instr: “explosives”
Perp: “guerrillas”
PTarg: “Merino’s home”
HTarg: “Merino”

The incident type is an attack or a bombing, depend-
ing on the Device.

A certain amount of “pseudo-syntax” is done while
patterns are being recognized. In the first place, the
material between the end of the subject noun group and
the beginning of the main verb group must be read over.
There are patterns to accomplish this. Two of them are
as follows:

Subject {Preposition NounGroup}*
VerbGroup

Subject Relpro {NounGroup | Other}* Verb-
Group {NounGroup | Other}* VerbGroup

The first of these patterns reads over prepositional
phrases. The second over relative clauses. The verb
group at the end of these patterns takes the subject noun
group as its subject. There is another pattern for cap-
turing the content encoded in relative clauses:

Subject Relpro {NounGroup | Other}*
VerbGroup

Since the finite-state mechanism is nondeterministic, the
full content can be extracted from the sentence

The mayor, who was kidnapped yesterday, was
found dead today.

One branch discovers the incident encoded in the relative
clause. Another branch marks time through the relative
clause and then discovers the incident in the main clause.
These incidents are then merged.

A similar device is used for conjoined verb phrases.
The pattern

Subject VerbGroup {NounGroup | Other}*
Conjunction VerbGroup

allows the machine to nondeterministically skip over the
first conjunct and associate the subject with the verb
group in the second conjunct. Thus, in the sentence

Salvadoran President-elect Alfredo Cristiani
condemned the terrorist killing of Attorney
General Roberto Garcia Alvarado and ac-
cused the Farabundo Marti National Liber-
ation Front (FMLN) of the crime.

one branch will recognize the killing of Garcia and an-
other the fact that Cristiani accused the FMLN.

The second sort of “pseudo-syntax” that is done while
recognizing patterns is attaching genitives, “of” comple-
ments, and appositives to their heads, and recognizing
noun group conjunctions. Thus, in

seven children, including four of the vice-
president’s children

the genitive “vice-president’s” will be attached to “chil-
dren”. The “of” complement will be attached to “four”,
and since “including” is treated as a conjunction, the en-
tire phrase will be recognized as conjoined noun groups.

In the example message, there were 18 relevant pat-
terns. FASTUS recognized 12 of them completely. Be-
cause of bugs in implemented patterns, 3 more patterns
were recognized only partially.

A rudimentary sort of pronoun resolution is done by
FASTUS. If (and only if) a pronoun appears as a Human
Target, an antecedent is sought. First the noun groups
of the current sentence are searched from left to right, up
to four phrases before the pronoun. Then the previous
sentences are searched similarly for an acceptable noun
group in a left-to-right fashion, the most recent sentence
first. This is continued until a paragraph break is en-
countered, and if nothing is found by then, the system
gives up. A noun group is an acceptable antecedent if
it is a possible human target and agrees with the pro-
noun in number. This algorithm worked in 100% of the
relevant cases in the first 200 messages of the develop-
ment set. However, in its one application the example
message, it failed. The example is

According to the police and Garcia Alvarado’s
driver, who escaped unscathed, the attor-
ney general was traveling with two body-
guards. One of them was injured.

The algorithm incorrectly identifies “them” as “the po-
lice”.

3.4 Merging Incidents

As incidents are found they are merged with other in-
cidents found in the same sentence. Those remaining
at the end of the processing of the sentence are then
merged, if possible, with the incidents found in previous
sentences.

For example, in the first sentence of Message 48 of
TST2, the incident

Incident: KILLING
Perp: –
Confid: –
HTarg: “Roberto Garcia Alvarado”

is generated from the phrase

killing of Attorney General Roberto Garcia Al-
varado

while the incident

Incident: INCIDENT
Perp: FMLN
Confid: Suspected or Accused by Authorities
HTarg: –



is generated from the clause

Salvadoran President-elect Alfredo Cristiani . . .
accused the Farabundo Marti National Lib-
eration Front (FMLN)

These two incidents are merged, by merging the
KILLING and the INCIDENT into a KILLING, and by
taking the union of the other slots.

Incident: KILLING
Perp: FMLN
Confid: Suspected or Accused by Authorities
HTarg: “Roberto Garcia Alvarado”

Merging is blocked if the incidents have incompatible
types, such as a KIDNAPPING and a BOMBING. It is
also blocked if they have incompatible dates or locations.

There are fairly elaborate rules for merging the noun
groups that appear in the Perpetrator, Physical Target,
and Human Target slots. A name can be merged with
a description, as “Garcia” with “attorney general”, pro-
vided the description is consistent with the other descrip-
tions for that name. A precise description can be merged
with a vague description, such as “person”, with the pre-
cise description as the result. Two precise descriptions
can be merged if they are semantically compatible. The
descriptions “priest” and “Jesuit” are compatible, while
“priest” and “peasant” are not. When precise descrip-
tions are merged, the longest string is taken as the result.
If merging is impossible, both noun groups are listed in
the slot.

There were 13 merges altogether in the processing of
the example message. Of these, 11 were valid.

One of the two bad merges was particularly unfortu-
nate. The phrase

. . . Garcia Alvarado’s driver, who escaped un-
scathed, . . .

correctly generated an attack incident with no injury to
the human target, the driver:

Incident: ATTACK
Perp: –
PTarg: –
HTarg: “Garcia Alvarado’s driver”
HEffect: No Injury

This was merged with the attack on Merino’s home

Incident: BOMBING
Perp: “guerrillas”
PTarg: “Merino’s home”
HTarg: “Merino”
HEffect: –

to yield the combined incident

Incident: BOMBING
Perp: “guerrillas”
PTarg: “Merino’s home”
HTarg: “Merino”: “Garcia Alvarado’s driver
HEffect: No Injury

That is, it was assumed that Merino was the driver.
The reason for this mistake was that while a certain
amount of consistency checking is done before merg-
ing victims, and while the system knows that drivers
and vice presidents-elect are disjoint sets, the fact that
Merino was the vice president-elect was recorded only in
a table of titles, and consistency checking did not consult
that table.

4 Controlling the FASTUS System

In the course of designing the system, we parameterized
a number of characteristics of the system’s operation be-
cause we believed that the parameterized behavior would
reflect tradeoffs in recall versus precision. Subsequent
testing revealed that many of these parameters result
in both higher recall and higher precision when in one
state or the other, and therefore we left them perma-
nently in their most advantageous state. Those param-
eters that seemed to affect recall at the expense of pre-
cision were set to produce an optional test run in which
we attempted to maximize the system’s recall. The ef-
fect of these parameters could be described in general
as distrusting the system’s filters’ ability to eliminate
templates for incidents that were defined by the MUC-4
rules as being of no interest, including military incidents,
incidents in uninteresting countries, and incidents that
occurred more than two months before the date of the
article. We observed a small but measurable increase
in recall at the expense of precision by distrusting our
filters.

Here we summarize some of the more interesting re-
sults we obtained regarding optimizing our parameter
settings for the MUC-4 evaluation.

• Conservative Merging. A major emphasis of MUC-
4, largely because of its scoring algorithm, was the
proper individuation of incidents. When the Con-
servative Merging option is selected in FASTUS,
the system would not merge incidents that had
nonoverlapping targets with proper names. When
not selected, any merges consistent with the inci-
dent types were permitted. Testing revealed that
merging should always be conservative.

• Civilian Target Requirement. Incidents that in-
volved only the military were of no interest in MUC-
4. The Civilian Target Requirement filter would
reject any template that did not have at least one
nonmilitary target, including templates that iden-
tified a perpetrator, but no physical or human tar-
get at all. This option appears to produce a recall-



precision tradeoff of about one or two points. That
is, recall improved at the expense of precision if we
distrusted our system and assumed that there really
were civilian targets but that they were missed by
the system.

• Subjectless Verb Groups. This parameter would al-
low the system to generate an incident structure
from a verb together with its object, even if its sub-
ject could not be determined. Although early tests
showed a recall-precision tradeoff, subsequent and
more thorough testing indicated that this should al-
ways be done.

• Military Filtering. This heuristic causes the system
to eliminate all military targets from templates, on
the belief that we may have incorrectly merged a
military incident with a civilian incident and incor-
rectly reported the union of the two. Tests show
that this filtering improves precision slightly.

• Spelling Correction. This parameter controls how
much spelling correction the system does. Our ex-
periments indicated that spelling correction hurts,
primarily because novel proper names get corrected
to other words, and hence are lost. We tried a
weaker version of spelling correction which would
correct only misspelled words that did not occur
on a large list of proper names that we had assem-
bled. This showed an improvement, but spelling
correction still had a small negative effect. This
was also a surprising result, and we were not will-
ing to abandon spelling correction, and ran all tests
with weak spelling correction enabled, although to
some extent a complete lack of spelling correction
is compensated for by the presence of common mis-
spellings of important domain words like “guerrilla”
and “assassinate” in the lexicon.

• Stale Date Filtering. This parameter causes filtering
of any template that has a date that is earlier than
two months before the date of the article. Elimi-
nating this filtering produces an increase in recall
at the expense of precision, the magnitude of which
depends on how well our date detection currently
works. We would expect about a one-point trade-
off.

5 Results in the MUC-4 Evaluation

On a blind test of 100 texts, we achieved a recall of 44%
with precision of 55% using the most rigorous penal-
ties for missing and spurious fills. On a different blind
test of 100 texts covering incidents from a different time
span than the training data, we observed, surprisingly,
an identical recall score of 44%; however our precision
fell to 52%. It was reassuring to see that there was very
little degradation in performance when moving to a time
period over which the system had not been trained.

We also conducted a test in which we attempted to
maximize the system’s recall by not filtering military tar-
gets, and allowing incidents with stale dates. On the first
test set, this led to a two-point increase in recall at the
expense of one point in precision. On the second test
set, our recall did not increase, although our precision
fell by a point. These results were consistent with our
observations during development, although our failure to
produce even a small increase in recall on the second test
set was somewhat disappointing.

Only General Electric’s system [Jacobs et al., 1992]
performed significantly better (a recall of 62% and a pre-
cision of 53% on the first test set), and their system has
been under development for over five years. Given our
experience in bringing the system to its current level of
performance in three and a half weeks, we feel we could
achieve results in that range with another month or two
of effort. It is unlikely that human coders would achieve
an agreement of more than around 80% on this task.
Thus, we believe this technology can perform 75% as
well as humans, and considerably faster.

The system is extremely fast. The entire set of 100
messages, ranging from a third of a page to two pages
in length, required 11.8 minutes of CPU time on a Sun
SPARC-2 processor. The elapsed real time was 15.9 min-
utes, but observed time depends on the particular hard-
ware configuration involved.

In more concrete terms, this means that FASTUS can
read 2,375 words per minute. It can analyze one text in
an average of 9.6 seconds.

6 Conclusions

FASTUS was more successful than we ever dreamed
when the idea was originally conceived. In retrospect,
we attribute its success to the fact that its processing is
extremely well suited to the demands of the task. The
system’s domain-level processing works successfully be-
cause the input from phrase recognition is already re-
liably processed. Phrase recognition does only the lin-
guistic processing that can be done reliably and fast, ig-
noring all the problems of making attachment decisions,
and the ambiguity introduced by coordination and ap-
positives. This input is adequate for the domain-level
processing because the domain is sufficiently constrained
that, given this initial chunking, the relevant information
can be reliably detected and extracted.

The advantages of the FASTUS system are as follows:

• It is conceptually simple. It is a set of cascaded
finite-state automata.

• The basic system is relatively small, although the
dictionary and other lists are potentially very large.

• It is effective. Only General Electric’s system per-
formed significantly better than FASTUS, and it has
been under development for a number of years.



• It has very fast run time. The average time for an-
alyzing one message is less than 10 seconds. This is
nearly an order of magnitude faster than compara-
ble systems.

• In part because of the fast run time, it has a very
fast development time. This is also true because the
system provides a very direct link between the texts
being analyzed and the data being extracted.

FASTUS is not a text understanding system. It is
an information extraction system. But for information
extraction tasks, it is perhaps the most convenient and
most effective system that has been developed.

One of the lessons to be learned from our FASTUS ex-
perience is that an information extraction task is much
easier than anyone ever thought. Although the full
linguistic complexity of the MUC texts is very high,
with long sentences and interesting discourse structure
problems, the relative simplicity of the information-
extraction task allows much of this linguistic complexity
to be bypassed—indeed much more than we had origi-
nally believed was possible. The key to the whole prob-
lem, as we see it from our FASTUS experience, is to do
exactly the right amount of syntax, so that pragmatics
can take over its share of the load. For the information
extraction task, we think FASTUS displays exactly the
right mixture.

References

[Black, 1989] Black, Alan W., “Finite State Machines
from Feature Grammars,” in Tomita, ed., Interna-
tional Workshop on Parsing Technologies, 1989, pp.
277–285.

[Church, 1980] Church, Ken W., On Memory Limi-
tations in Natural Language Processing, MIT Lab-
oratory of Computer Science Technichal Report
MIT/LCS/TR-245, 1980.

[Hobbs et al., 1992a] Hobbs, Jerry R., Douglas E. Ap-
pelt, John Bear, Mabry Tyson, and David Magerman,
1992a. “Robust Processing of Real-World Natural-
Language Texts”, in Text-Based Intelligent Systems:
Current Research and Practice in Information Extrac-
tion and Retrieval, P. Jacobs, editor, Lawrence Erl-
baum Associates, Hillsdale, New Jersey, pp. 13-33.

[Hobbs et al., 1992b] Hobbs, Jerry R., D. Appelt, J.
Bear, D. Israel, and M. Tyson, FASTUS: A system for
Extracting Information from Natural-Language Text,
SRI International Technical Note No. 519, 1992.

[Hobbs et al., 1993] Hobbs, Jerry R., Mark Stickel, Dou-
glas Appelt, and Paul Martin, “Interpretation as Ab-
duction”, to appear in Artificial Intelligence, 1993.

[Jacobs et al., 1992] Jacobs, P., G. Krupka, L. Rau, L.
Childs, and I. Sider, “GE NLTOOLSET: Description

of the System as Used for MUC-4,” Proceedings of the
MUC-4 Workshop, 1992, pp. 177–185.

[Magerman and Weir, 1992] Magerman, D., and C.
Weir, “Probabilistic Prediction and Picky Chart Pars-
ing,” Proceedings of the Fifth DARPA Workshop on
Speech and Natural Language, February, 1992.

[Pereira and Wright, 1991] Pereira, Fernando, and R.
Wright, “Finite-State Approximation of Phrase Struc-
ture Grammars,” Proceedings of the 29th Meeting of
the ACL, 1991, pp. 246–255.

[Sundheim, 1992] Sundheim, Beth, ed., 1992. Pro-
ceedings, Fourth Message Understanding Conference
(MUC-4), McLean, Virginia, June 1992. Distributed
by Morgan Kaufmann Publishers, Inc., San Mateo,
California.


