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Abstract

It has been observed that when people make crude estimates, they
feel comfortable choosing between alternatives which di�er by half-order
of magnitude (e.g., were there 100, 300, or 1,000 people in the crowd),
and less comfortable making a choice on a more detailed scale, with �ner
granules, or on a more spacious scale (like 100 or 1,000). In this paper, we
describe two models of choosing granularity in commonsense estimates,
and we show that for both models, in the optimal granularity, the next
estimate is 3-4 times larger than the previous one. Thus, these two opti-
mization results explain the commonsense granularity.

1 Introduction

People often need to make crude estimates of a quantity: e.g., estimate the size
of the crowd, or someone's salary, etc. When people make such crude estimates,
they usually feel reasonably comfortable choosing between alternatives which
di�er by half-order of magnitude. For example, a person can reasonably estimate
that the size of the crowd was closer to 100, or to 300, or to 1,000. If we ask
for an estimate on a more re�ned scale (with �ner granules), or on a more
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spacious scale, with larger granules, then it is much more diÆcult to make such
an estimate (for details, see, e.g., [1]).

This observation naturally leads to the following question: What is the op-

timal granularity in commonsense estimates?
In this paper, we describe two di�erent models for commonsense estimation,

and we show that in both models, the optimal granularity is in good accordance
with the observed half-order of magnitude granularity. Thus, we provide a
theoretical explanation for this half-order phenomenon.

2 Gaussian Model of Commonsense Estimation

2.1 Main Idea Behind Gaussian Model

We are interested in the situation when we estimate a quantity which can only
take non-negative values. To estimate the values of this quantity, we select a
sequence of positive numbers : : : < e0 < e1 < e2 < : : : (e.g., 1, 3, 10, etc.),
and every actual value x of the estimated quantity is then estimated by one of
these numbers. Each estimate is approximate: when the estimate is equal to ei,
the actual value x of the estimated quantity may di�er from ei; in other words,
there may be an estimation error �x = ei � x 6= 0.

What is the probability distribution of this estimation error? This error is
caused by many di�erent reasons. It is known that under certain reasonable
conditions, an error caused by many di�erent reasons is distributed according
to Gaussian (normal) distribution (see, e.g., [2]; this fact { called central limit

theorem { is one of the reasons for the widespread use of Gaussian distribution
in science and engineering applications). It is therefore reasonable to assume
that �x is normally distributed.

It is known that a normal distribution is uniquely determined by its two
parameters: its average a and its standard deviation �. Let us denote the
average of the error �x by �ei, and its standard deviation by �i. Thus, when
the estimate is ei, the actual value x = ei � �x is distributed according to
Gaussian distribution, with an average ei � �ei (which we will denote by eei),
and the standard deviation �i.

For a Gaussian distribution with given a and �, the probability density is
everywhere positive, so theoretically, we can have values which are as far away
from the average a as possible. In practice, however, the probabilities of large
deviations from a are so small that the possibility of such deviations can be
safely neglected. For example, it is known that the probability of having the
value outside the \three sigma" interval [a�3�; a+3�] is � 0:1% and therefore,
in most engineering applications, it is assumed that values outside this interval
are impossible.

There are some applications where we cannot make this assumption. For
example, in designing computer chips, when we have millions of elements on
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the chip, allowing 0.1% of these elements to malfunction would mean that at
any given time, thousands of elements malfunction and thus, the chip would
malfunction as well. For such critical applications, we want the probability of
deviation to be much smaller than 0.1%, e.g., � 10�8. Such small probabilities
(which practically exclude any possibility of an error) can be guaranteed if we
use a \six sigma" interval [a� 6�; a+ 6�]. For this interval, the probability for
a normally distributed variable to be outside it is indeed � 10�8.

Within this Gaussian model, what is the optimal granularity?

2.2 Optimal Granularity: Informal Explanation

In accordance with the above idea, for each ei, if the actual value x is within
the \three sigma" range Ii = [eei� 3�i; eei+ 3�i], then it is reasonable to take ei
as the corresponding estimate.

We want a granulation which would cover all possible values, so each positive
real number must be covered by one of these intervals. In other words, we
want the union of all these intervals to coincide with the set of all positive real
numbers.

We also want to makes sure that all values that we are covering are indeed
non-negative, i.e., that for every i, even the extended \six sigma" interval [eei �
3�i; eei + 3�i] only contains non-negative values.

Finally, since one of the main purposes of granularity is to decrease the num-
ber of \labels" that we use to describe di�erent quantities, we want to consider
optimal (minimal) sets of intervals. Formally, we can interpret \minimal" in
the sense that whichever �nite subset we pick, we cannot enlarge their overall
coverage by modifying one or several of these intervals. Let us formalize these
ideas.

2.3 Optimal Granularity: Formal Description

in the following de�nitions, we will use the fact that an arbitrary interval [a�; a+]
can be represented in the Gaussian-type form [a� 3�; a+ 3�]: it is suÆcient to
take a = (a� + a+)=2 and � = (a+ � a�)=6.
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De�nition 1.

� We say that an interval I = [a�3�; a+3�] is reliably non-negative if every
real number from the interval [a� 6�; a+ 6�] is non-negative.

� A set fIig, i = 1; 2; : : :, of reliably non-negative intervals Ii is called a

granulation if every positive real number belongs to one of the intervals Ii.

� We say that a granulation can be improved if, for some �nite set

fi1; : : : ; ikg, we can replace intervals Iij with some other intervals I0ij for

which
k[

j=1

Iij �
k[

j=1

I0ij

k[
j=1

Iij 6=
k[

j=1

I0ij ;

and still get a granulation.

� A granulation is called optimal if it cannot be improved.

Theorem 1. In an optimal granulation, Ii = [ai; ai+1], where ai+1 = 3ai.

(For reader's convenience, all the proofs are placed in the last section.)

So, half-orders of magnitude are indeed optimal.

3 Uniform Model of Commonsense Estimation

3.1 Motivations

In the Gaussian model, we started with a 3� bound, and we ended up with a
sequence of granules [ai; ai+1] in which the boundary points ai form an arith-
metic progression: ai+1 = q � ai and ai = a0 � qi, with q = 3. We could start
with a bound of 2.5�, then we would have got a geometric progression with a
di�erent q. Which value of q is indeed optimal?

To �nd out, let us take into consideration the fact that a granulation is not
just for storing values, it is also for processing these values. Of course, when
we replace the actual value by the granule to which it belongs, we lose some
information. The idea is to choose q for which this loss is the smallest.

To estimate the loss, we will consider the simplest data processing possible
operation: addition. If we know the exact values of two quantities A and B,
then we can compute the exact value of their sum A + B. In the granulated
case, we do not know the exact values of A and B, we only know the granules

to which A and B belong, and we want to �nd out to which of the granules the
sum belongs. For example, in the above half-order granulation, we know that
the �rst room has about 10 books, the second about 30, and we want to express
the total number of books in the two rooms in similar terms.
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The trouble with this problem is that the sum may belong to two di�erent
granules. Let us take an example in which we use granules [1; 3], [3; 9], [9; 27],
etc. let us assume that all we know about the �rst quantity A is that A 2 [1; 3],
and all we know about the second quantity B is that B 2 [3; 9]. In this case,
the smallest possible values of A+B is 1+ 3 = 4, and the largest possible value
of A+B is 3+ 9 = 12. In general, the sum A+B can thus take any value from
the interval [4; 12]. So, it could happen that the sum is in the granule [3; 9], but
it could also happen that the sum is in the granule [9; 27].

If we want the granulation to be useful, we must assign a certain granule to
the sum A + B. Since in reality, the value A + B may belong to two di�erent
granules, no matter which of the two granules we assign, there is always a
probability that this assignment is erroneous. We would like to select q for
which this error probability is the smallest possible.

In order to formulate this question in precise terms, we must describe the
corresponding probabilities. A natural way to describe them is as follows: If
all we know about A is that A belongs to a granule ai = [ai; ai+1], then it is
reasonable to consider all the values from this granule to be equally probable,
i.e., to assume that we have a uniform distribution on the interval ai = [ai; ai+1].
Similarly, If all we know about B is that B belongs to a granule aj = [aj; aj+1],
then it is reasonable to consider all the values from this granule to be equally
probable, i.e., to assume that we have a uniform distribution on the interval
aj = [aj; aj+1]. Since we have no information about the possible dependence
between A and B, it is natural to assume that A and B are independent random
variables. We are now ready for the formal de�nitions.

3.2 Formalization and the main result

Let a0 > 0 and q � 2 be real numbers, and let ak
def
= a0 � qk and ai

def
= [ai; ai+1].

De�nition 2. For every three integers i, j, and k, we can de�ne P (ai+aj 2 ak)
as the probability that Ai + Aj 2 ak, where Ai is uniformly distributed on the

interval ai, Aj is uniformly distributed on the interval aj , and Ai and Aj are

independent.

If, as a result of adding ai and aj , we select the granule ak, then the probability
that this assignment is erroneous (i.e., that the actual value of Ai+Aj is not in
ak) is equal to 1�P (ai+ aj 2 ak). For every i and j, we want to minimize this
error, so we select the value k for which this error probability is the smallest:

De�nition 3. For every two integers i and j, we de�ne the sum ai + aj of

granules ai and aj as a granule ak for which the error probability

1 � P (ai + aj 2 ak) is the smallest possible. The error probability Eij related

to this addition is then de�ned as this smallest probability, i.e., as

Eij
def
= min

k
(1� P (ai + aj 2 ak)):
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Theorem 2.

� When q � p
2 + 1(� 2:41), then:

� ai + ai = ai+1, and

� ai + aj = amax(i;j) for i 6= j.

� When 2 � q <
p
2 + 1, then:

� ai + ai = ai+1;

� ai + ai+1 = ai+1 + ai = ai+2; and

� ai + aj = amax(i;j) for ji� jj � 2.

It is worth mentioning that for every q, thus de�ned addition of granules is
commutative but not associative. Indeed:

� For q � p
2 + 1, we have:

� (a0 + a0) + a1 = a1 + a1 = a2, while

� a0 + (a0 + a1) = a0 + a1 = a1 6= a2.

� For q <
p
2 + 1, we have:

� (a0 + a0) + a2 = a1 + a2 = a3, while

� a0 + (a0 + a2) = a0 + a2 = a2 6= a3.

Which q is the best? As a measure of quality of a given granulation, it is natural
to take the worst-case error probability, i.e., the error probability corresponding
to the worst-case pair (i; j) (i.e., to the pair with the largest Eij):

De�nition 4.

� By an error probability of a granulation, we mean the value

E(q)
def
= max

i;j
Eij:

� The granulation with the smallest possible error probability is called op-

timal.

Theorem 3. The granulation is optimal when q satis�es the equation

q3 � 5q2 + 4q + 1 = 0;

i.e., when q � 3:9.

In short, here also q 2 [3; 4] is the optimal granulation scale.
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4 Proofs

4.1 Proof of Theorem 1

1. Let us �rst prove that for every interval Ii = [ai � 3�i; ai + 3�i] from an
optimal granulation, ai = 6�i.

Indeed, since all the intervals Ii must be reliably non-negative, we can conclude
that ai � 6�i � 0, hence ai � 6�i. So, to complete this part of the proof, it is
suÆcient to show that we cannot have ai > 6�i. We will prove this by showing
that if ai > 6�i, then the corresponding granulation can be improved.

Indeed, in this case, we can take �0i = ai=6 > �i, and consider a wider
interval I0i = [ai � 3�0i; ai + 3�0i] � Ii. Due to our choice of �0i, this new interval
is also reliably non-negative. Therefore, if we replace the interval Ii by I0i, we
still get a granulation, and Ii � I 0i, Ii 6= I0i . Thus, the original granulation can
be improved.

So, if the granulation is optimal (i.e., cannot be improved), we have ai = 6�i.

2. Let us now prove that for every interval Ii = [a�i ; a
+
i ] from an optimal

granulation, a+i = 3a�i .

Indeed, from Part 1 of this proof, we can conclude that for an arbitrary interval
Ii = [a�i ; a

+
i ] = [ai � 3�i; ai + 3�i] from the optimal granulation, we have

3�i = 0:5 � ai, hence a�i = ai � 3�i = 0:5 � ai and a+i = ai+ 3�i = 1:5 � ai. Thus,
a+i = 3a�i .

3. Let us now show that if two intervals from an optimal granulation intersect,
then this intersection can only consist of a single point.

To prove this, we will show that if two intervals Ii = [a�i ; a
+
i ] and Ij = [a�j ; a

+
j ]

have a more extensive intersection, then the granulation can be improved. With-
out losing generality, we can assume that a�i � a�j .

We already know that since both Ii and Ij are intervals from an optimal
granulation, we have a+i = 3a�i and a+j = 3a�j . Since a� � a�j , we thus

conclude that a+i = 3a�i � 3a�j = a+j .

The fact that the intervals Ii = [a�i ; 3a
�

i ] and Ij = [a�j ; 3a
�

j ] have an in-

tersection means that a�j � 3a�; the fact that this intersection is not simply a

single point means that a�j < 3a�i . In this case, Ii [ Ij = [a�i ; 3a
�

j ].
Let us show that we can improve the granulation if we replace Ii by itself

I 0i = Ii and Ij by I 0j = [3a�i ; 9a
�

i ]. Indeed, both new intervals are reliably non-

negative, and the new union I 0i [ I0j = [a�i ; 9a
�

i ] is a strict superset of the old

one { because a�j < 3a�i hence 3a�j < 9a�i .

4. So, in an optimal granulation, every interval must be of the type [a; 3a], these
intervals must cover the entire real axis, and they cannot intersect in more than
one point. Thus, right after each interval [ai; 3ai], there should be the next
interval [ai+1; 3ai+1], so we should have ai+1 = 3ai.
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Thus, we get the description from the formulation of the theorem.

5. One can also easily prove that the granulation in which Ii = [ai; ai+1] with
ai+1 = 3ai cannot be improved and is thus optimal. The theorem is proven.

4.2 Proof of Theorem 2

In this proof, we will �nd the values of P (ai+ aj 2 ak) for di�erent i, j, and k,
and then �nd, for each i and j, the value k for which the corresponding error
1� P (ai + aj 2 ak) is the smallest possible.

1. Let us start by computing the probabilities P (ai + ai 2 ak) corresponding
to i = j.

In this case, both Ai and Aj are uniformly distributed on the interval [a0 �qi; a0 �
qi+1]. Possible pairs (Ai; Aj) are therefore uniformly distributed on the square
[a0 � qi; a0 � qi+1]� [a0 � qi; a0 � qi+1].

� The smallest possible value of Ai + Aj is 2a0 � qi which (due to the as-
sumption q � 2) belongs to the granule [a0 � qi; a0 � qi+1].

� The largest possible value of Ai +Aj is equal to 2a0 � qi+1. Due to q � 2,
we have a0 � qi+1 < 2a0 � qi+1 � a0 � qi+2, hence this value belongs to the
next granule [a0 � qi+1; a0 � qi+2].

So, the sum Ai + Ai spreads over two di�erent granules: ai and ai+1. Thus, of
all possible probabilities P (ai+ai 2 ak), only the values corresponding to k = i
and k = i+ 1 are di�erent from 0.

Since the pair (Ai; Aj) is uniformly distributed on the square, the probability
P (ai + ai 2 ai) is equal to the ratio between the area covered by the points
for which the sum belongs to ai and the area of the entire square. This ratio
does not change when we \rescale" the units by dividing both coordinates by
a constant a0 � qi. After this division, the square takes the form [1; q]� [1; q],
and the pairs (x; y) in which we are interested are determined by the inequality
x+ y � q. Thus, P (ai + ai 2 ai) is equal to the ratio Si=S, where:

� S = (q � 1)2 is the area of the square, and

� Si is the area of the set of all points from this square for which x+ y � q.

One can easily see that the set Si is a right triangle with sides [1; q�1] of length
q � 2. Thus, the area Si of this triangle is equal to (q � 2)2=2, and the desired
probability is equal to

P (ai + ai 2 ai) =
Si

S
=

(q � 2)2

2(q � 1)2:
(1)

Since the sum Ai + Ai can only belong to two possible granules ai and ai+1,
we have P (ai + ai 2 ai) + P (ai + ai 2 ai+1) = 1, so P (ai + ai 2 ai+1) =
1� P (ai + ai 2 ai). Therefore:
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� For k = i, the probability of error is equal to 1� P (ai + ai 2 ai).

� For k = i+ 1, the probability of error is equal to 1� P (ai + ai 2 ai+1) =
P (ai + ai 2 ai).

The triangle Si is smaller than the half of the square, hence P (ai + ai 2 ai) <
1=2, and so P (ai + ai 2 ai+1) = 1 � P (ai + ai 2 ai) > 1=2 > P (ai + ai 2 ai).
So, for i = j, the error 1� P (ai + ai 2 ak) is the smallest when k = i + 1. For
this k, the error probability is equal to

Eii = P (ai + ai 2 ai) =
(q � 2)2

2(q � 1)2
: (2)

2. Let us now �nd the values P (ai + aj 2 ak) for i 6= j.

Without losing generality, it is suÆcient to consider only the case when i < j.
Here:

� Ai 2 [a0 � qi; a0 � qi+1],
� Aj 2 [a0 � qj; a0 � qj+1], and
� the sum Ai +Aj takes values from a0 � (qi + qj) to a0 � (qi+1 + qj+1).

The smallest possible value a0 �(qi+qj) of the sum Ai+Aj is greater than a0 �qj
but is (due to i � j) smaller than 2a0 � qj and hence (due to q � 2) smaller than
a0 � qj+1. Thus, this value belongs to the granule aj = [a0 � qj ; a0 � qj+1].

Similarly, the largest possible value a0 � (qi+1 + qj+1) of the sum Ai + Aj

belongs to the next granule aj+1 = [a0 � qj+1; a0 � qj+2]. Thus, out of all possible
probabilities P (ai + aj 2 ak), only the values corresponding to k = j and
k = j + 1 are di�erent from 0.

Similarly to the case i = j, the probabilityP (ai+aj 2 aj) is equal to the ratio
of the two areas. Again, we can \rescale" both coordinates by dividing them
by a0 � qi, after which we get the following simpli�ed geometric representation
of the ratio P (ai + aj 2 aj) as Sj=S, where:

� S is the total area of the rectangle [1; q]� [qd; qd+1] (where d
def
= j � i),

i.e., the value S = (q � 1) � (qd+1 � qd) = qd � (q � 1)2; and

� Sj is the total area of the set Sj of all the points (x; y) from this rectangle
for which x+ y � qd+1.

The set Sj is bounded, from above, for x = 1, by the point y = qd+1 � 1, and
for x = q, by the point y = qd+1 � q. Thus, this set Sj consists of two subsets:

� a rectangle [1; q]� [qd; qd+1 � q] of area (q � 1) � (qd+1 � qd � q) and

� a right triangle with sides [1; q] and [qd+1 � 1; qd+1 � q] of lengths equal
to q � 1 { whose area is equal to (q � 1)2=2.
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Hence,

Sj = (q � 1) � (qd+1 � qd � q) +
(q � 1)2

2
= qq � (q � 1)2 � (q � 1) � q + 1

2
: (3)

3. We are now going to show that for d � 2, the area Sj is larger than a half of
S; then, similarly to the case i = j, we will be able to conclude that ai+aj = aj .

To prove this, it is suÆcient to prove that the area of the complement Sj+1 to
Sj is not larger than one half of area of the the entire rectangle. The area Sj+1

of this complement is equal to

Sj+1 = (q � 1) � q + 1

2
;

so this area does not exceed the half of S = qd � (q � 1)2 is and only if

(q � 1) � q + 1

2
� qd � (q � 1)2

2
:

Dividing both sides of this inequality by (q�1)=2, we get a (simpli�ed) equivalent
inequality

q + 1 � qd � (q � 1): (4)

Since q � 2 and d � 2, we have 1 � qd�1, and q � qd�1, hence 1 + q � 2qd�1 �
q � qd�1 = qd. We also have q � 1 � 1, hence q + 1 � qd � qd � (q � 1), i.e., we
have the desired inequality (4). Thus, for jj� ij = d � 2, we have k = max(i; j).
For this case,

Eij =
Sj+1

S
=

q + 1

2qd � (q � 1)
: (5)

4. For j � i = 1, the inequality Sj+1 � S=2 is equivalent to

(q � 1) � q + 1

2
� q � (q � 1)2

2
;

i.e., to q + 1 � q2 � q, or to q2 � 2q � 1 � 0. The corresponding equation
q2� 2q� 1 = 0 has two roots q = 1�p2, so for q � 2, the desired inequality is
equivalent to q � p

2 + 1. So:

� For q � p
2+1, the sum ai+ai+1 is equal to ai+1, and the corresponding

probability error is equal to

Ei;i+1 =
q + 1

2q � (q � 1)
: (6)
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� For q <
p
2+1, the sum ai+ai+1 is equal to ai+2, and the corresponding

probability error is equal to

Ei;i+1 = 1� q + 1

2q � (q � 1)
: (7)

The theorem is proven.

4.3 Proof of Theorem 3

In the proof of Theorem 2, we have already found the error probabilities Eij

corresponding to di�erent values i, j, and q. Let us use these probabilities to
�nd the optimal q. Since the formulas for Eij were di�erent for q �

p
2+1 and

for q <
p
2 + 1, we will consider these two cases separately.

Let us start with q � p
2 + 1. In this case, due to the formulas (2), (5), and

(6), the error probability is equal to:

E(q) = max

�
(q � 2)2

2(q � 1)2
;

q + 1

2q � (q � 1)
;

q + 1

2q2 � (q � 1)
; : : : ;

q + 1

2qd � (q � 1)
; : : :

�
: (8)

Since q � 1, we have

q + 1

2q � (q � 1)
� q + 1

2q2 � (q � 1)
� : : : � q + 1

2qd � (q � 1)
� : : : ;

and thus, to �nd the maximum, it is suÆcient to consider only the �rst two
terms:

E(q) = max(E1(q); E2(q)); (9a)

where

E1(q)
def
=

(q � 2)2

2(q � 1)2
; (9b)

E2(q)
def
=

q + 1

2q � (q � 1)
: (9c)

Let us show that E1(q) is an increasing function of q, while E2(q) is decreasing.

� The expression E1(q) can be represented as

E1(q) =
1

2
�
�
1� 1

q � 1

�2

:

When q increases (q "), q � 1 also increases (q � 1 "), hence

1

q � 1
#; 1� 1

q � 1
"; E1(q) =

1

2
�
�
1� 1

q � 1

�2

" :
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� Similarly, if we divide both numerator and denominator of the expression
E2(q) by q, we get the equivalent expression

E2(q) =
1 + 1=q

2(q � 1)
:

When q ", we have 1=q #, hence 1 + 1=q #. On the other hand, we have
2(q � 1) ", so E2(q) is the result of dividing a decreasing function by an
increasing one { hence itself decreasing.

Since E1(q) " and E2(q) #, we have E1(q)� E2(q) ".
� For q =

p
2 + 1, we have

E1(q) =
3

4
� 1

2
�
p
2; E2(q) =

3

2
+
p
2;

so E1(q)� E2(q) < 0.

� When q ! 1, we have E1(q) ! 1=2, while E2(q) ! 0, hence for suÆ-
ciently large q, we get E1(q)� E2(q) > 0.

A continuous increasing functionE1(q)�E2(q) goes from a negative to a positive
value, so it must attain the value 0 at some point q0. Let us show that on the
set [

p
2 + 1;1), the minimum of E(q) is attained for q = q0. Indeed:

� For q = q0, we have E1(q0) = E2(q0) hence

E(q0) = max(E1(q0); E2(q0)) = E1(q0) = E2(q0):

� For q < q0, we have E1(q) < E2(q), hence

E(q) = max(E1(q); E2(q)) = E2(q):

Since the function E2(q) is decreasing and q < q0, we have E2(q) > E2(q0),
so E(q) > E(q0).

� Similarly, for q < q0, we have E1(q) > E2(q), hence

E(q) = max(E1(q); E2(q)) = E1(q):

Since the function E1(q) is increasing and q > q0, we have E1(q) > E1(q0),
so E(q) > E(q0).

Thus, among all values q 2 [
p
2 + 1;1], the smallest possible value E(q) is

attained when E1(q) = E2(q), i.e., when

(q � 2)2

2(q � 1)2
=

q + 1

2q � (q � 1)
:
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Multiplying both sides of this equation by 2q � (q � 1)2, we get the equivalent
equation q � (q�2)2 = q2�1. Opening the parentheses and moving all the terms
to one side, we get the desired equation from the formulation of Theorem 3.

For this value q, we have E(q) � 0:21: To complete the proof, we must show
that for q 2 [1;

p
2 + 1], the value of E(q) is larger than 0.21. Indeed, for these

q, we have

E(q) = max

�
(q � 2)2

2(q � 1)2
; 1� q + 1

2q � (q � 1)
;

q + 1

2q2 � (q � 1)
; : : : ;

q + 1

2qd � (q � 1)
; : : :

�
;

hence

E(q) � 1� q + 1

2q � (q � 1)
: (10)

We already know that when q ", we have
q + 1

2q � (q � 1)
#; hence 1� q + 1

2q � (q � 1)
"

thence, for q � 2:

1� q + 1

2q � (q � 1)
� 1� 2 + 1

2 � 2 � (2� 1)
= 0:25:

So, from (10), we conclude that E(q) � 0:25 > 0:21: The theorem is proven.

Conclusions

When people make crude estimates, they feel comfortable choosing between al-
ternatives which di�er by half-order of magnitude (e.g., were there 100, 300, or
1,000 people in the crowd), and less comfortable making a choice on a more
detailed scale (like 100 or 110 or 120) or on a more spacious scale (like 100
or 1,000). We has shown that for two natural models of choosing granularity
in commonsense estimates, in the optimal granularity, the next estimate is 3-4
times larger than the previous one. Thus, we explain the commonsense granu-
larity.
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