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1 Introduction

In Hobbs (1983) (henceforth, ITQ) and Hobbs (1985) (OP) I developed the
outlines of an approach to semantic representation in which the logical form
of an English sentence is a flat (i.e., scope-free) conjunction of existentially
quantified, positive literals, with roughly one literal per morpheme. In this
representation scheme the logical form of a sentence is vague with respect to
quantifier-scoping decisions, and further information about scoping relations
is encoded in the form of further existentially quantified positive literals. In
the DIALOGIC system for syntactic analysis, developed in the early and
middle 1980s, translations into such a logical form were implemented for a
great majority of English syntactic constructions, and this system was used
successfully in a number of applications. In Hobbs et al. (1993) (IA) my
colleagues and I developed an approach to the interpretation of discourse
in which to interpret a text is to find the least-cost abductive proof of the
logical forms of the sentences of the text, essentially by back-chaining on
mostly Horn-clause axioms in the knowledge base and making assumptions
when necessary.

One shortcoming of the proposal advanced in ITQ was in the treatment
of monotone decreasing quantifiers, such as “few” and “no” (cf. Barwise and
Cooper, 1981). A monotone increasing quantifier, like “most”, is “monotone
increasing” beacuse when the predicate in the body of the quantified expres-
sion is made less restrictive, the truth value is preserved. Thus,

Most men work hard.

entails



(1) Most men work,

By contrast, for monotone decreasing quantifiers, when the predicate in the
body of the quantified expression is made less restrictive, the truth value
is not necessarily preserved. Quite the opposite. It is preserved when the
body is made more restrictive.

(2) Few men work.

entails
Few men work hard.

Since “r works hard” entails “xr works”, a flat, scope-free representation for
“few men work hard” runs into problems, because it would seem to allow
the incorrect inference “few men work”.

In ITQ I suggested very briefly a logical form for such sentences in which
the quantifier “few” is translated into a predicate that means “all but a few”
and the predication of the body of the quantified expression is negated.
Thus, sentence (2) would be interpreted as if it were

All but a few men don’t work.

This solves the entailment problem. “x doesn’t work” entails “x doesn’t
work hard.” Thus, “Few men work” would be equivalent to “all but a few
men don’t work”, which entails “all but a few men don’t work hard,” which
would be equivalent to “few men work hard.” This approach is similar to
that of van Eijck (1983).

However, this is not a felicitous solution, since the negation of the main
verb makes the compositional semantics of the quantifier nonlocal, in that
information from the noun phrase other than its referent is required in the
interpretation of the rest of the sentence.

In this paper, I use the insights afforded by IA to propose a different
analysis of monotone decreasing quantifiers, one in which the right interpre-
tation arises from a combination of a single rule for interpreting quantifiers,
both monotone increasing and monotone decreasing, and the pragmatic pro-
cess of specializing or strengthening interpretations that is the basis of the
abduction approach. Along the way I redo or repair several other features
of the I'TQ approach that were infelicitous or incorrect in the original, and



I mention in passing the scope-neutral representation of functional depen-
dencies among quantified variables that this approach makes possible. The
result is a picture wherein syntactic analysis and semantic translation yields
a representation that makes fewer distinctions than we might wish, but is
strictly locally compositional, and strengthening to the desired representa-
tion is done by pragmatic processes that already have such strengthening as
their task.

2 Background

The IA approach may be thought of as dividing the interpretation of a
sentence into a “compositional semantic” phase, in which the explicit content
of the sentence is represented in a logical notation (referred to here as the
logical form), and a “pragmatic” phase that inferentially determines the
contextually appropriate specific information that the speaker intended to
convey (although, in fact, both phases use the same abductive inferential
mechanism and can intermix freely). The compositional semantic phase is
strictly local, in the sense that the interpretation of noun phrases does not
require information from elsewhere in the sentence, and the only information
about a noun phrase that is used in the semantic interpretation of the rest
of the sentence is a variable indicating its referent.

Using as the logical form of a sentence a flat conjunction of existen-
tially quantified positive literals becomes possible through an approach to
representation called “ontological promiscuity”, in which there is extensive
reification of such things as eventualities, possible and even impossible in-
dividuals, sets, typical elements of sets, and so on. The introduction of
eventualities is a key move. In addition to having predications of the form

work(J)
saying that John works, we also have predications of the form
work!(E, J)

saying that E is the eventuality of John’s working. This eventuality may or
may not obtain in the real world. If it does, this is just another one of its
properties, expressed by

Rexists(E)



Existential quantification in this approach is over a Platonic universe of
possible (or impossible) individuals, that may or may not exist in the real
world.

The relationship between primed and unprimed predicates is captured
by the following axiom schema:

(3) (Va)lp(xz) = Fe)[p'(e,x) A Rexists(e)]]

That is, p is true of x if and only if there is an eventuality e that is the
eventuality of p being true of z and e exists in the real world. In fact,
whenever in this paper the notation p(x) is used, it should be viewed as an
abbreviation for the right side of the biconditional.

Those desiring to use model theory to strengthen their intuitions about
eventualities can think of the denotation of E in p/(E,X) as the ordered
triple of the intension of p, the denotation of X, and an integer serving as
an index. The function of the index is to allow multiple events with the same
predicates and arguments. There will normally be many events of John’s
working.

The approach to quantifiers taken in ITQ and the present paper is mo-
tivated by two considerations. The first is the desire to treat quantifiers
in the same way that every other morpheme in the language is treated, in
accordance with a principle that might be stated

All morphemes are created equal.

Every morpheme in English conveys information, and this information can
be encoded in the form of a proposition consisting of a predicate applied to
one or more arguments. One aim of IT(Q and the present paper is to show
this is as possible for quantifiers as it is for every other morpheme.

Another consequence of this principle, by the way, is that in the OP
approach virtually every morpheme has a corresponding eventuality, even
conjunctions. Thus,

John works and George sleeps.
has the logical form

(Fe, e1,ez)[Rexists(e) A and (e,eq,e2) A work!(eq,J)
A sleep'(e2, G)]



That is, the eventuality e that both e; and es hold holds where e; is John’s
working and ey is George’s sleeping. It will be convenient in this paper
to use the abbreviation e;&es to stand for the eventuality e such that
and' (e, e, ez).

The second consideration motivating the approach to quantifiers is the
need for scope-neutral representation of quantifiers. The sentence

In most democratic countries most politicians can fool most of
the people on almost every issue most of the time.

has 120 readings. Moreover, they are distinct, in that for any two readings
one can find a model under which one is true and the other isn’t. Yet
when people hear this sentence, they have the impression they understand
it. They do not compute the 120 possible readings and then choose the best
among them. Rather, they use world knowledge to constrain some of the
dependencies among quantified expressions and leave other dependencies
unresolved. For example, for me, the sets of politicians and the sets of
people depend on the country, but I have no view on whether or not the
politicians outscope the people. A representation is needed that allows this
underspecification of meaning.

In brief, the approach to quantifiers advocated in ITQ consisted of four
elements:

1. Sets are individuals. Quantifiers are relations between sets.

2. Sets have typical elements. Ordinary elements inherit the properties
of typical elements.

3. Functional dependencies are expressed as relations between typical
elements.

4. Disambiguating scope is done by learning functional dependencies.

The first two elements of this approach are discussed in some detail here.
The last two are orthogonal to our present purposes and are discussed only
briefly below, but they are one of the foci of ITQ.

To begin with, if we accept sets as first-class objects, then a determiner
like “most” can be viewed as expressing a relation between sets. The expres-
sion most(sa, $1) says that set sy is a subset of s consisting of more than
half the elements of s;. Then sentence (1) can be represented as follows:

(4)  (Fs)[most(s,{x | man(z)}) A Vy)ly € s D work(y)]]



That is, there is a set s that is most of the set of all men (i.e., it is a subset
with more than half the elements), and for every entity y in s, y works.

We can unwind this into a flat notation by introducing two new predi-
cates. The first is typelt, and it takes two arguments—a typical element of
a set and the set itself. The expression

typelt(y, s)

says that y is the typical element of the set s. The precise nature of typical
elements is discussed in Section 3, but for now they can be viewed as a
kind of reified, universally quantified variable. (McCarthy (1977) suggests
a similar approach.) I will write about typical elements as though each set
had a unique typical element, although this property will not be required
(except once) in this paper. The principal property that typical elements
should have is that their properties should be inherited by the ordinary
elements of the set. A first cut at expressing this property is the following
axiom schema:

(5)  (Va,s)[typelt(z,s)
D [p(z) = (Vy)ly € s O py)l]

That is, if z is the typical element of set s, then p is true of z if and only if
p is true of every ordinary element y of s.
Two obvious problems with this rule are as follows:

1. Because of the Law of the Excluded Middle, it would seem that for any
predicate p, either p(z) or —p(x) would be true of the typical element
x. Then by (5), the elements of s could not differ on any properties.
They all would inherit either p or —p from x.

2. There is a question as to whether the typical element of a set is itself
an element of the set. Both choices seem to lead to difficulties.

The solution to these problems is described briefly in Section 3 and at
length in ITQ.

There is another problem that was not dealt with in ITQ. The statement
of this rule is not quite right because of the flat notation we are using, and
it must be complicated somewhat, as described in Section 4 below.

The fact that sets have typical elements is captured by the axiom

(Vs)[set(s) D (Fz)typelt(x,s)]



The second new predicate, dset, is more specific than typelt in that it
relates not only a set and its typical element, but also its defining condi-
tion. It takes three arguments—a set, its typical element, and the defining
condition of the set. The expression

dset(s,x,e)

says that s is a defined set whose typical element is x and whose defining
condition is the eventuality e. If e is, for example, the eventuality of x’s
being a man

man’ (e, x)

then s is a defined set whose typical element is x and whose defining con-
dition is the eventuality e of x’s being a man, or the set of men. Thus, the
expression

(6) (s, x,e)dset(s,z,e) N man'(e,x)

is equivalent to the more conventional expression

(1) (3s)s = {x [ man(z)}

The principal property we need for the predicate dset is expressed, at a
first cut, in the following axiom schema:

(8)  (Vs)[[(Fx,e)dset(s,x,e) A p'(e,x)]
= (Vy)lves = p)ll

That is, s is the defined set whose typical element is x and whose defining
condition is the eventuality e of p being true of z if and only if for all y,
y is in the set if and only if p is true of y. Again, this encoding will have
to be revised in Sections 3 and 4, but modulo this revision, Axiom Schema
(8) implies the equivalence of (6) and (7), since the left side of the outer
biconditional in (8) is equivalent to (7).

The relation between the predicates dset and typelt is expressed in the
following axiom:

(9) (Vs,z,e)[dset(s,xz,e) D typelt(z,s)]



If s is the defined set whose typical element is z and whose defining condition
is the eventuality e, then x is the typical element of s. The predicate dset
is thus a specialization of the predicate typelt, a fact that will play an
important role in the treatment of monotone decreasing quantifiers.

There should probably not be a rule of the form

(Y, s)[typelt(z,s) D (Fe)dset(s,x,e)]

since this would entail that every set is definable by some eventuality. This
strikes me as an undesirable property. Some linguistically described sets,
such as the set referred to by “all men”, have natural defining properties.
Others, such as the set referred to by “many men”, do not, but they are sets
nevertheless. In any case, we will not need this property.

The predicates corresponding to quantifiers, such as most and few, will
be viewed as expressing relations (e.g., comparing cardinalities) between two
sets. The principal properties of specific quantifiers can be stated as axioms.
For example, one property of “few” and “most” is that they pick out subsets:

(10)  (Vs1,82)[most(s2,s1) D subset(sa,s1)]
(11)  (Vs1,82)[few(s2,s1) D subset(ss,s1)]

The monotone increasing and monotone decreasing properties can also be
expressed as axioms:

(12)  (Vs1,s2)most(sa, s1) A subset(sa,s) A subset(s,s1)
D most(s, s1)

(13)  (Vs1,s2)few(sa, s1) A subset(s,s2) A —null(s)
D few(s, s1)

That is, if s9 is most of s7 and s; is a subset of s which in turn is a subset
of s1, then s is also most of s;. This is the monotone increasing property.
If s9 constitutes few members of s1, then so does a non-null subset s of s5.
This is the monotone decreasing property.

Further axioms specify that the arguments of subset are both sets.

(V 81, 82)subset(sz, s1) D set(sy)
(V 51, s2)subset(s2, 1) D set(sa)

With this machinery, we can now rewrite logical form (4) as follows:



(14) (I s2,s1,z,e,x,y)[most(sa,s1) A dset(si,z,e)
Aman'(e,x) A typelt(y,s2) N work(y)]

That is, there is a set s; defined by the property e of its typical element x
being a man, there is a set so which is most of s; and has y as its typical
element, and y works. Accepting Axiom Schemas (5) and (8) as written, it
is straightforward to show that (14) is equivalent to (4).

Although this property will not be required in this paper, it is easy to
see that distinct sets must have distinct typical elements.

It is easy to see how a logical form like (14) could be generated compo-
sitionally in a strictly local fashion. The common noun “men” introduces a
set, its typical element, and its defining property, generating the conjuncts
dset(s1,x,e) A man'(e,z). The determiner “most” introduces another set
and its typical element, along with the conjuncts most(sq, s1) A typelt(y, s2).
The latter typical element becomes the logical subject of the predication of
the main verb, which generates the conjunct work(y).

The logical form for

Most men like several women.
is

(I s, 81, 2,€,2,9, 2, $3)[most(sa, s1) N dset(si,x,e)
Aman'(e,x) N typelt(y,ss) A like(y,z) A several(ss)
Atypelt(z, s3) N woman(z)]

That is, there is a set s; defined by the property e of its typical element x
being a man, there is a set so which is most of s; and has y as its typical
element, and y likes z, where z is the typical element of a set sz, z is a
woman, and s3 has several members.

This is a scope-neutral representation. In the course of further process-
ing, we may discover that sg is an actual set of several women, corresponding
to wide scope for “several”, or we may discover that sz is functionally de-
pendent upon so, in which case s3 is the typical element of a set of sets of
women, one for each man in so, corresponding to the narrow scope.

This treatment of functional dependencies is elaborated on in ITQ, and
is similar to the ordering constraints of Allen (1987) and Poesio (1991).

Section 3, sketchily, and Section 4, more thoroughly, discuss two compli-
cations that arise in this approach. The aim of the complications, however,
is to bring us back to the original simplicity of notation.



3 The Nature of Typical Elements

There are three ways one might try to view typical elements:

1. The typical element of a set is one of the ordinary elements, but we
will never know which one, so that anything we learn about it will be
true of all.

2. The typical element is not an element of the set, and only special kinds
of predicates are true of typical elements.

3. The typical element is not an element of the set, and ordinary predi-
cates are true of them, except in set-theoretic axioms, which must be
formulated carefully.

The first alternative is similar to the stance one takes toward instantia-
tions of universally quantified variables in proofs. In proving (Vz € s)p(z),
one might consider an element a of s and show p(a) while relying only on
properties of a that are true for all elements of s. This alternative seems
dangerous, however. The set consisting of John and George would have
as its typical element either John or George, so by the desired properties
(5) and (8), any property one has the other has too. The variable a in
the proof is used only in a very limited context and in a very constrained
way, whereas we want typical elements to exist in a persistent fashion in the
Platonic universe and sometimes in the real world as well.

The second approach was taken in ITQ. The problem that arises when
the typical element is assumed to be something other than an element of a
set is that if the property p in Axiom Schema (5) is taken to be A\z[x & s],
then we can conclude that none of the members of the set are members of the
set. I worked around this difficulty in ITQ by introducing a complex scheme
of indexing predicates according to the kinds of arguments they would take.
Essentially, for every predicate p, there was a basic level predicate pg that
applied to ordinary individuals that are not typical elements, and a number
of other predicates ps; that applied to the typical element of set s. More
precisely, if x is the typical element of s, then ps(x) was defined to be true
if and only if p(y) was true for every y in s, and otherwise p, was equivalent
to po.

Axiom (5) can then be stated

(Vz, s)[typelt(zx, s)
D [ps(x) = (Vy)ly €05 D po(y)]l]

10



This solves the first difficulty with formulation (5). It is true that either
ps(z) or =(ps)(z) holds, but this does not imply that all elements of s have
all the same properties. That would hold only if either ps(z) or (—p)s(x)
were true, but this is not what the Law of the Excluded Middle entails. The
difference is the same as the difference between having negation outscope
universal quantification and having universal quantification outscope nega-
tion.

The second difficulty with formulation (5) is solved as well. Suppose z is
the typical element of s. We can simply stipulate that = €y s, and since this
is a basic level rather than an indexed predicate, no consequences follow for
real elements. To determine whether x €, s is true, by the indexed version
of Axiom (5), we have to ask whether

Vy)y €0 s D y €p 9]

and this of course is trivially true. So x €, s is true.

This solution is inconvenient, however, because it forces us to carry
around complex indices in many contexts where they are irrelevant to the
content being expressed. For example, the axiom

(Va)[man(z) D person(x)]

is true regardless of whether z is an ordinary individual or a typical element
of a set. If all the members of a set are men, they are all persons. We
would not like to have to specify indices in such axioms, and most axioms
are exactly of this nature.

The primary place where the indices must be attended to is in set theo-
retic axioms. If x is the typical element of s, then x ¢y s but « €5 s. Thus,
axioms that depend crucially on whether an entity is or is not in a set must
be stated in terms of indexed predicates.

This leads to the third alternative, which we will adopt. We can avoid
the complexity of indices by considering a bit how they are actually used in
discourse processing. One must reintroduce the unindexed predicate p to use
in the logical form of sentences, before interpretation, that is, before quan-
tifier scope ambiguities are resolved. The relation between the indexed and
unindexed predicates can be expressed, inter alia, by the following axiom
schemas:

()]

(V)[po(z) > p
) 2 p()]

(Vs,z)[ps(z

11



That is, the indexed predicates are specializations or strengthenings of the
unindexed predicates, and in the course of discourse interpretation by ab-
duction, one of the things that happens is that, as the existentially quan-
tified variables are resolved to ordinary entities or to typical elements, the
predicates that apply to them are specialized to the corresponding indexed
predicate.

In this context of use, the indexing of the predicate is uniquely deter-
mined by the nature of its arguments. This would hold if constraints such
as the following were stipulated:

(Va,s)[p(x) A typelt(x,s)
2 [ps(x) A =po(x) A (Vs1)ls1 # s D —psy ()]]]

That is, if p is true of the typical element x of a set s, then the specialization
ps of p is true of x, and no other indexing of p is true of x.

A more thorough development of this idea depends on a treatment of
functional dependencies, and therefore is beyond the scope of this paper.

It is worth noting that the consistency of the formulation I have given
of typical elements can be demonstrated by taking as a model one in which
the denotation of the typical element of a set is the set itself. In this case,
typelt is simply identity. However, I wish to admit as well interpretations
in which the set and its typical element are distinct, since there are a num-
ber of contexts in which this distinction is a useful one to make, including
representing the difference between collective and distributive readings.

For the remainder of this paper, only the unindexed predicates are used.

4 Substitution

As noted above, there is a problem with the statement of Axiom Schemas
(5) and (8) that arises because what in more conventional logical notations
is represented via embedding gets strung out in the OP notation. Consider

John believes men work.
The logical form of this sentence is

(15) (Fe1,m, s, ez)believe(J, e1) A work!(eg,m)
Adset(s,m,e2) A man'(e2,m)

12



That is, John believes the eventuality e; to obtain where e; is the eventuality
of m working, where m is the typical element of a set s whose defining
property is the eventuality es of m’s being a man.

Suppose John believes George is a man and thus in the set s. We would
like to conclude that John believes George works. But this does not follow
from Axiom Schemas (5) and (8). The entity m is the typical element of s,
John believes m works, and so John should believe that George works. The
predication p(x) in Axiom (5) would have to be “John believes m works”.
If p is restricted to be an atomic predicate, this won’t do, because “John
believes m works” is not represented by an atomic predicate. Suppose p
can be an arbitrary lambda expression. Then given that m is the typical
element of s, Axiom (5) implies that any property of m must also hold of
G, specifically, for the property

Ambelieve(J,e1) N work'(e1,m)]
Thus it would follow from (15) that
believe(J,e1) N work!(e1, Q)

But this is the wrong result. The problem is that e; is the eventuality of
men working, not the distinct eventuality of George’s working. If Sam is
also a man, then this approach leads to e;’s also being the eventuality of
Sam’s working.

To get around this difficulty, we can introduce a predicate Subst that ex-
presses substitution relations among expressions directly. In a way, it mimics
in the flat notation what substitution does in conventional notations, and
one may thus suspect it is just a formal trick. However, I think that sub-
stitution itself is one particular formalization of an intuitive, commonsense
concept—that of “playing the same role”. Subst(a,e1,b,e2) can be read as
saying that a plays the same role in e; that b plays in eg. (Subst differs
from “playing the same role” in one aspect noted below.) Viewing it in this
way, one need feel no compunction about applying the predicate to entities
other than reified, universally quantified variables or typical elements. For
example, if

work!(ea, G) N\ work/(es, S)
then

Subst(G, ez, S, e3)

13



since George plays the same role in George’s working that Sam plays in
Sam’s working.

Subst turns out to be a useful concept in discourse interpretation wher-
ever the similarity of two entities must be established.

In conventional notations, the first important property of substitution is
the following:

p(tl, N ,tn)‘g = p(tl‘g, N ,tn‘g)

That is, the substitution of a predicate applied to a number of terms is the
predicate applied to the substitution of the terms.

We can remain maximally noncommittal about the identity conditions
among eventualities if we translate this schema into the following four axiom
schemas, where p is now restricted to atomic predicates.

(16) (Va,b,eq,e9,...,u;,...)[Subst(a,eq,b,es)
Ap'(er, ... U, ...)
D 3., )P (ea, 00,0
A ... N Subst(a,u;,b,v;) A ...

This says that if a plays the same role in e; that b plays in eg, p is the
predicate of e1, and the arguments of e are u;, then eg also is an eventuality
with predicate p and arguments v; where a plays the same role in each u; that
b plays in the corresponding v;. This allows us to proceed in substitution
from predications to their arguments.

(17)  (Va,b,eq, ..., uiv5y..)[... A Subst(a,u;, b,v;) A ...
Ap'(ery. .. ug,...)
D (Fea)[p'(e2y ..., viy...) A Subst(a,eq,b,es)]]

This says that if e; is an eventuality with predicate p and arguments u;,
where a plays the same role in each u; that b plays in a corresponding v;,
then there is an eventuality es whose predicate is p and whose arguments
are v; and a plays the same role in e; that b plays in ey. This allows us to
proceed from arguments to predications involving the arguments.

Two more axiom schemas are required because eventualities are not nec-
essarily uniquely determined by their predicates and arguments. p'(Ej, X)
and p/(E9, X) can both be true without E; being identical to Fs. Axiom
Schemas (16) and (17) guarantee a “substitution” eventuality of the right

14



structure. The next two axiom schemas say that an eventuality is of the
right structure if and only if it is a substitution eventuality.

(18) (Va,b,eq,e9,...,u;,v;,...)[Subst(a,ey,b,e)
Ap'(ery. .. ug,...)
D [p’(eg,...,vi,...)
= ... A Subst(a,u;,b,v;) A ...]]

This says that if a plays the same role in e; that b plays in eg, p is the
predicate of e1, and the arguments of e are u;, then eg also is an eventuality
with predicate p and arguments v; if and only if a plays the same role in
each u; that b plays in the corresponding v;.

(19) (Va,b,eq,ea,...,uj,v5,..)[... A Subst(a,u;,b,v;) A ...

Ap'(er, ... U,y ...)
D [p'(e2,...,vi,...) = Subst(a,er,b,e)]]

This says that if e; is an eventuality with predicate p and arguments wu;,
where a plays the same role in each u; that b plays in a corresponding v;,
then the eventuality ey has predicate p and arguments v; if and only if a
plays the same role in e; that b plays in es.

The next two axioms enable substitution to bottom out.

(20) (Ya,b)Subst(a,a,b,b)

That is, a plays the same role in a that b plays in b.
(21) (Ya,b,c)—eventuality(c) N c# a D Subst(a,c,b,c)

That is, if ¢ is not an eventuality and not equal to a, then a plays the same
role in ¢ that b plays in c.

Notice that Axiom (21) allows ¢ to be b. Substituting b for a in b results
in b. This is the one asymmetry in the Subst predicate, and the reason
that Subst is really more like substitution than like playing the same role.
This asymmetry will allow us to draw from the fact that everyone in a set
including John likes John the conclusion that John likes himself. That is,
from typelt(z,s), p(z,y), and y € s, we can conclude p(y,y). The one con-
straint on Swubst is that the first and fourth arguments cannot be the same.
Substitution for the first argument would have eliminated such occurrences.

15



(22) (Ya,b,ti,ta)[a #b A Subst(a,ti,b,t2) D a # to]

That is, substituting b for a will never result in a.
Axiom Schemas (5) and (8) can now be recast as Axioms (23) and (24),
respectively.

(23) (Y, s,e)[typelt(x, s)
D [(Fer)[Subst(z,e,x,e1) N Rexists(ey)]
= (Vy)ly € s D (Fea)[Subst(x,e,y,e2)
A Rezists(ez)]]]]

This property is now expressed as an axiom rather than an axiom schema.
The explicit specification of the structure p’(e, z) has been eliminated here.
Instead, the eventuality e represents that pattern and the predicate Subst
is used to stipulate that other eventualities exhibit the same pattern. This
axiom says that if e is such a pattern and x is the typical element of s, then
there is a really existing eventuality e; exhibiting that pattern if and only
if for every ordinary element of s, there is a corresponding eventuality e
exhibiting the same pattern that really exists.

Suppose, in (23), that z is the typical element of s. If e is not an even-
tuality, then it is either x or something else. If it is x, then e = e; = x
and ey = y, so the axiom is valid. If it is something else, then e = e; = e,
and the axiom is valid. Suppose e is an eventuality and p'(e,z) holds.
Then p(z) is equivalent to (Je1)p’(e1,2) A Rexists(er), which is equiva-
lent to (3 e1)Subst(x,e,x,e1) N Rexists(er). Similarly, p(y) is equivalent to
(Fea)Subst(z,e,y,e2) N Rexists(ez). Thus, Axiom (23) captures the intent
of Axiom (5).

Replacing Axiom (8) is Axiom (24):

(24) (Vs,z,e)[eventuality(e)
O [(Fer)ldset(s,x,e1) N Subst(x,e,x,e1)]
= (Vy)ly € s = (Feg)[Subst(x,e,y,e2)
A Rexists(ez)]]]]

That is, if e is an eventuality (representing a pattern expressed in terms of
the typical element x of a set s), then there is an eventuality e; of the same
pattern that is the defining eventuality for s if and only if for every ordinary
element y of s there is a corresponding eventuality ey of the same pattern
that really exists. Here it is necessary to express the constraint that e be an
eventuality, because the third argument of dset must be an eventuality.
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Let us return to (15). If dset(s, m, ez) and man'(ez, m) hold and George
is a man, then we have

man(G) = man'(es, G) N Rexists(es) (by 3)
= Subst(m,ea,G,e3) N Rexists(es) (by 19)
=Ges (by 24)

Suppose Rexists(eg), believe'(eg, J,e1), and work’(e;,m) all hold. Since
typelt(m, s) holds, and letting e and e; in (23) both be eq, there is, by (23),
an e4 such that

Subst(m, e, G,eq) N Rexists(es)
By (16) there is an e5 such that

believe (eq, J,e5) A Subst(m,e1,G,eq) N Rexists(es)
By (19),

believe (eq, J,e5) N work(es,G) A Rexists(ey)
By (3),

believe(J,e5) N work! (es, Q)

That is, John believes George works. (I ignore here the problem of what
inferences it is legitimate to draw inside belief contexts. Think of this ex-
pression as saying that, merely by virtue of the fact that George is a man,
John believes George, whoever he may be, works.)

5 Monotone Decreasing Quantifiers

Virtually every utterance describes a situation in a more general fashion
than the speaker actually means to convey. If I say, “I went to Tokyo,” you
are likely to interpret this as saying that I flew to Tokyo, even though I did
not specify the means of transportation, and I would expect you to interpret
it in this way. Indexicality is one example of this phenomenon. If I say “He
went to Tokyo,” I am saying that a male person went to Tokyo, but my
listener will generally use contextual information to arrive at a more specific
interpretation. This observation is at the core of the IA framework. To
interpret a sentence is to find the “best” proof of its logical form, together
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with the selectional constraints that predicates impose on their arguments,
allowing for coercions to handle metonymy, making assumptions where nec-
essary. In brief, we must find the best set of specific facts and assumptions
that imply the generalities conveyed explicitly by the utterance.

The parts of the logical form that we are able to prove constitute the
given information that provides the referential anchor for the sentence. The
assumptions that we must make in order to interpret a sentence constitute
the new information; this is what the sentence is asserting. Typically, infor-
mation in the main verb is what is asserted, and information that is gram-
matically subordinated is given, or presupposed. But this is not necessarily
the case. In

An innocent man was convicted today.

the listener may already know that someone was convicted, and the new,
asserted information is that the man was innocent. Similarly, in

I have a sore throat.

you know I have a throat. The new information is that it is sore. Reinter-
preting what is asserted by the sentence will be a key move in dealing with
monotone decreasing quantifiers.

The solution to the problem of monotone decreasing quantifiers that I
propose consists of three steps.

1. We first generate the logical form of the sentence exactly as we would
for other quantifiers. For sentence (2), the logical form would be analogous
to (14), namely,

(25)  (Is1,892,m,y,e1,e) few(sa, s1) A dset(sy,z,eq)
Aman'(e1,z) A typelt(y,s2) A work(ez,y)
A Rexist(es)

That is, there is a set s; defined by the property e of its typical element
x being a man, there is a set s which is few of s; and has y as its typical
element, and the eventuality e of y’s working exists in the real world. Note
that all of this is true, as far as it goes; there is a set consisting of few men,
and the members of this set work. It just doesn’t go far enough, because it
does not rule out a much larger set.

2. The next step is to specialize or strengthen the predication typelt(y, s2)
to the more specific dset(sq,y, ea&es), by back-chaining on Axiom (9), and
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instantiating the defining eventuality to the conjunction of the two eventu-
alities we see in the sentence, or rather, in place of the eventuality e; the
“substitution” eventuality es such that

Subst(x,e1,y,e3)

That is, we have further specified the set so to be not just some subset
of s1 that has few elements, but the subset defined by the conjunction of
conditions ez and ey, where

man’(es,y) N work!(ea,y)

which, by (24), is the set of men who work.

It is Axiom (9) that places this interpretation in the space of possible
interpretations, but nothing so far guarantees that this is the interpretation
that will be selected. I would like to suggest one way this could happen,
without, however, denying other possible accounts.

To promote this particular strengthening, we can associate as a selec-
tional constraint on the arguments of few the requirement that its first
argument be a set with a defining property.

(26) few(sa,s1): (Jy,e)dset(s2,y,e)

This requirement then becomes something that has to be proven in addition
to the logical form to arrive at an interpretation. It forces us to look for
an eventuality e that defines the set so. The three most readily available
eventualities are those explicit in the sentence itself—e; (or rather, e3), es
and the conjunction of the two. e3 (being a man) is impossible as a defining
condition for sy since it is the defining condition for si, of which ss is a
proper subset. ey (working) is also impossible as a defining condition, since
the members of so are men, and more than just men work. That leaves the
conjunction es&egz. The set s is the set of men who work.

3. The proposition few(ss,s1) is taken to be the assertion of the sen-
tence, rather than work(y). That is, the sentence would be interpreted as
saying

The men who work are few.

Increasing the plausibility of this part of the analysis is the fact that it
is hard to unstress the word “few” when it is functioning as a monotone
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decreasing quantifier, and high stress is an indication that the information
conveyed by the morpheme is new.

To demonstrate that this approach goes through, under this formulation,
I need to show that from “Few men work” we can indeed conclude “Few men
work hard,” (assuming anyone works hard) once these two sentences have
been interpreted as in Steps 1-3, and assuming, for the sake of this paper,
that we have an axiom

(27)  (Yx)work-hard(z) D work(x)

The logical form of “Few men work”, generated in Step 1, is given in
(25). By Step 2, typelt(y, s2) is strengthened to dset(sq,y,es&es). Since
this sentence is the premise, we assume the strengthened logical form is all
true.

The logical form of the sentence “Few men work hard” is

(351,84, 2,2,e1,e4) few(sy, $1) N dset(sy,x,eq)
Aman'(e1,z) A typelt(z,sq) N work-hard (ey, z)
A Rexist(ey)

By Step 2, we strengthen typelt(z, s4) to dset(sy, z,es&eys), where
Subst(z,e1,z,es5).

Step 3 tells us that what is asserted is few(sy, s1), while the rest is pre-
supposed. Thus, we assume the rest is true, and we must demonstrate
few(syq, s1)-

The conclusion few(sq, s1) will follow from Axiom (13) if we can demon-
strate few(sg, s1) and subset(sy, s2). But few(ss, s1) is part of the premise
assumed above. To demonstrate that subset(sy, s2) holds, we need to show
that any member v of s4 is also a member of s3. We do this in three
steps. First we show, using the premises dset(sy, 2, e5&ey), man'(es, z) and
work-hard' (ey, z), together with a rightward use of the inner biconditional
in Axiom (24), that any member v of s4 is a man and works hard. We
then use Axiom (27) to conclude that v works. We then use Axiom (24) in
a leftward direction to show that v is in the set s5. This establishes that
the monotone decreasing property of the word “few” is preserved in this
formulation.

It would be good if the predicate few used in “Few men work” captured
the same notion of few-ness that is expressed in “A few men work.” I will
only sketch a possible account in which this would be the case. Consider
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A few men work.

The word “a” expresses a relationship between the entity referred to by the
noun phrase and the description it provides; it says roughly that the entity
is not uniquely identifiable in context solely on the basis of that description.
The logical form of this sentence would be almost the same as (25). But
we need first to introduce the eventuality eg corresponding to the few-ness
relation between s, and s;—few'(eg, s2,51). Then to express the relation
conveyed by the determiner “a” we add the predication a(y, eq&es), saying
that y is not uniquely identifiable in context on the basis of the properties eq
and e3. If we were to proceed in Step 2 as before and specialize typelt(y, s2)
to dset(sa,y, ea&es), then we would have a contradiction, for the properties
eo and ez would uniquely identify y as the typical element of the set defined
by these properties (assuming sets have a unique typical element). The word
“a” thus blocks this strengthening of “few”, the eventuality e in (26) remains
unresolved, and we are left with only the few relation between the sets so
and s7.

It is often argued that one way of drawing the line between compositional
semantics (Step 1) and pragmatics (Step 2) is to say that the results of
compositional semantics are not defeasible whereas the results of pragmatics
are. This would appear to be an argument against the approach suggested
here, since the interpretation of “Few men work” as “The men who work
are few” does not seem to be defeasible. But another force that strongly
constrains likely interpretations is conventionalization. The IA account of
discourse comprehension traces out a space of possible interpretations and
provides a graded mechanism for choosing among them, given a context. But
conventionalization picks out among the possible interpretations a particular
interpretation of a given word, phrase, or grammatical structure. It collapses
the space of possible interpretations to only the conventional interpretation.
It thus eliminates the defeasibility one ordinarily associates with pragmatic
processing.

An example of this, unrelated to quantifiers, involves “let’s”. This is a
contraction of “let us”. But the sentence “Let us go” could be said by two
victims to a kidnapper, whereas the sentence “Let’s go” would not be. The
general meaning of “Let us go”—

Don’t cause us not to go.
is, for the contraction, conventionally specialized to

Don’t cause us (inclusive) not to go by not going yourself.
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The favored interpretations of “few men” and “a few men” are no doubt
conventionalized, even though they can be derived de novo according to the
accounts given above.

“Only” could be viewed as a determiner, and as such it would be mono-
tone decreasing. Its interpretation would be derived very much as that of
“few”, but differing in one crucial respect.

“Only” is indeed monotone decreasing, since “Only men work” entails
“Only men work hard.” But unlike “few” it is not conservative. The con-
servativity property can be illustrated as follows: The sentence “Few men
are men who work” entails “Few men work,” and “few” is hence conserva-
tive. By contrast, “Only men are men who work” does not entail “Only
men work.” In fact, the first is tautologically true, and the second is false.
“Only” is hence nonconservative (cf. van Benthem, 1983). This means the
process of interpreting “only” must differ at some point from the process of
interpreting “few”. In fact, it differs in Step 2.

The logical form of “Only men work” would parallel (25).

(Is1,52,3,y, €1, €2)only(s2, s1) A dset(s1,x,e1)
Aman'(e1,z) A typelt(y,s2) A work(ez,y)
A Rezist(ez)

Under this analysis, as before, “only” will be taken to express a relation
between a set ss and the set s; of all men, and the noun phrase “only men”
will be taken to refer to the set sy in the sense that it is the members of sg
who work. Thus, Step 1 in the analysis of “only” does not differ from Step
1 in the analysis of “few”.

In Step 2, however, the set ss is not specialized to the set of men who
work. Rather it is specialized to the set of workers. That is, typelt(y, s2) is
strengthened to dset(sa,y,es). The relation that only expresses between s,
and s is then simply the subset relation. The set of workers is a subset of
the set of men. That is, only men work.

Step 3 is the same as for “few”. The predication only(ss,s1) is picked
as the assertion of the sentence. That is, “Only men work” is interpreted
as though it were “The set of workers is a subset of the set of men,” or “All
workers are men.”

This is a limited account of the interpretation of “only” as a determiner.
In fact, a proper account would encompass adverbial uses as well. My real
view is that only is a predicate of three arguments—an entity or eventuality
x, a scale s that has x as its lowest element, and a property that is true of
x but not of the other, higher elements of s. In “John only walked”, x is
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John’s walking, s is a scale of actions ordered, say, by energy requirements,
and the property is the property of having John as an agent. When used
as a determiner, x is the entity or set referred to by the NP, s is the set of
subsets containing x and ordered by inclusion, and the property is the main
predication of the sentence. In “Only men work”, x is a set of men, s is
the set of subsets of the relevant entities containing x, and the property is
working. The sentence says that the members of x work, but the members
of no larger set in s works. This implies that the workers are a subset of all
men, the meaning of “only” assumed in the account above.

6 Conclusion

The interpretation of quantifiers is a complex area of semantics, and one’s
simple, elegant notions of how the information in sentences can be rep-
resented run up against difficulties as soon as quantifiers are considered.
Everyone who examines quantifiers is obliged to introduce substantial com-
plexities into their logical notations to accommodate them. My approach
has been no exception. The appeal to eventualities in Section 2, the in-
dexing of Section 3, and the treatment of substitution of Section 4 are all
examples of these complexities. But whereas in most approaches to seman-
tics, the logical notation remains complex, the whole aim of my detour into
the complexities was to regain the original simplicity and elegance, and I
believe this has been achieved. The logical form of a sentence is still an
existentially quantified conjunction of atomic predications, roughly one for
each morpheme in the sentence. Once such a logical form has been gen-
erated for the sentence, only one interpretation process is needed, namely,
the abductive process of determining the facts and assumptions that will
provide the most economic proof of that logical form.
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