E

TR AR RO T

ST T

‘ARTIFICIAL INTELLIGENCE 287

Making Computational Sense of Montague’s
Intensional Logic

Jerry R. Hobbs'
Department of Computer Sciences, City College, CUNY

Stanley J. Rosenschein®

Courant Institute of Mathematical Sciences, New York University

Recommended by D. E. Walker

ABSTRACT

Montague's difficudt notation and complex model theory have tended to obscure potential insights for
the computer scientist studying Natural Language. Despite his strict insistence on an abstract model-
theoretic interpretation for his formalism, we feel that Montague’s work can be related to procedural
semantics in a fairly direct way. A simplified version of Montague’s formalism is presented, and its
key concepts are explicated in terms of computational analogues. Several examples are presented
within Montague’s formalism but with a view toward developing a procedural interpretation. We
provide a natural translation from intensional logic into Lise. This allows one to express the com-
position of meaning in much the wav Montague does, using subtle patterns of functional application
to distribute the meanings of individual words throughout a sentence. The paper discusses some of the
insights this research has yielded on knowledge representation and suggests some new ways of looking
at intensionality, context, and expectation.

1. Introduction
With the goal of bridging the gap between linguistics and logic, the logician
Richard Montague developed an apparatus for describing the syntax and semantics
of English. Using a categorial grammar and the language of intensional logic, he
gave a mathematically precise account of a small but semantically interesting
fragment of English. A worker in natural language processing is likely to find his
first encounter with Montague’s work a rather unsatisfactory experience. He finds
that English sentences are supposed to acquire meaning by being mapped into a
universe of possible worlds, of infinite sets and functionals of functions on these
sets. He finds, for example, the word “‘be” defined as a functional mapping a
! Jerry R. Hobbs, presently at SRI International, Menlo_Park, California.

2 Stanley J. Rosenschein, presently at Technion—Israel Institute of Technology, Technion City,
Haifa, Israel.

Artificial Intelligence 9 (1978), 287306
Copyright © 1978 by North-Holland Publishing Company

RAN Jo R HOBBS AND S, J. ROSENSCHLIN

function from possible worlds and poiats in time into entities and a function from
possible: worlds and points in time into functionals from functions from possible
worlds and points in time into functionals from functions from possible worlds
and points in time into entities into.truth values into truth values into truth values.3
It is difficult for him to see how such a representation can help with any of the
problems he faces, either linguistic problems, such as devising representations for
context and expectation and algorithms for finding aatecedents of pronouns and
resolving ambiguities, or task problems, such as question-answering and converting
natural language input into the directed behavior of some device. In short, he
questions its relevance to someone whose work and theory must be grounded in
the need to produce working computer programs.

In this paper, we suggest that despite Montague’s difficult notation and the
complex model-theoretic interpretation for his formalism, there are many potential
insights in Montague for the computational linguist. This is not to imply that
natural language processing systems should be based on Montague’s formalism.
For one thing, Montague is primarily concerned with the assignment of truth
values to simple declarative seatences, which is only one of the many activities
language users ordinarily perform. Nevertheless, Montague’s method, involving
subtle patterns of functional application, suggests an interesting way of distributing
meanings of individual words throughout a sentence. We show how this method
can be used computationally by relating Montague’s work to procedural semantics
in a fairly direct way. In addition, we indicate how the method might be extended
to handle certain aspects of context.

Much work has been done on Montague grammar and on relating intensional
logic to the semantics of English. We will not review this literature here. Rather,
we will take Montague [9] as the key paper and representative of the approach. In
this paper he treats a subset of English which includes simple quantification and
some intensional verbs. Many linguists are currently working on extending this
subset. Additional material can be found in 1o}, {1z}

Montague’s method for assigning meanings to English sentences involves three
distinct phases. An English string is assigned a syntactic analysis with respect to a
categorial grammar. This is translated into an expression in the language of
intensional logic. Finally, this expression undergoes model-theoretic interpretation.

Montague’s language of intensional logic is a typed lambda calculus. In this
language he constructs a generally complex formula representing a pattern of
composition and application of functions, ultimately derived from the basic terms
of the language, such terms as man, seek, run, etc. The meanings of surface words
are taken to be very abstract functions, which take as arguments other such
functions. Things “work out”, so that the function assigned as the meaning of a
declarative sentence evaluates at a possible world and point in time to true or false.
Part of the attraction of Montague’s treatment lies in the way he manages to mesh

2 This sentence parses unambiguously.

ftr

v

&

§
¥
F
3

PR

e

o

P AANPIN

¥

R s P T R TTV AR X

SR T et aER

L

ATFEEY

e

oy

-t

. e NN I
MAKING COMPUTATIONAL SENSE OF MONTAGULE S INTENSIONAL LOGIC 8y

a complex system of meaning assignments in a mz\thematAically precise way so that
the meanings do work out, with the exact details illuminating some classic probler.ns
of semamigS, including intensional predicates and referential and nonreferential
terms. ' « ‘ .

The goal of any semantic theory is to express English strings in terms of an
antecedently understood metalanguage [12]. The metalanguage O€ set theory has
been a favorite choice this century. Meanings for Montague are ul.tlmately a.bstract
set-theoretic constructs, in the tradition of Tarskian model-theoretic semantics [14].
But while these constructs may be antecedently understood by humans, they
certainly are not antecedently understood by computers, and Montague makes no
claim for their being computable in any sense.

To make sense to the computational linguist, somethin.g must be reduged to
implementable procedures. The meaning of an expression is then the t'Je'havnorhof
the procedure it is transformed into. Thus, while he .often ‘uses‘fo.rmdhsnTS t .at
look very mucli like those of the logician, the computatxonal lmguust is aﬂer a quite
different type of semantic theory, one which is ultimately machine-theoretic rather
than model-theoretic in its orientation (see also Davies and Isard [1], Isard [4] and
Joshi and Weischedel [6]). » ‘

What guidelines, then, can Montague, the model-theorist, give the con?puta-
tional linguist in the task of working out the details of a prgcedura! semantics for
natural language? While it is true that Montague's semanuc.c.onstructs generally
involve infinite sets and functions on them, failing computabll.lty on most c.:o.unts,
Montague has made a significant contribution to the 'co'mputagon'a! semanticist by
showing possible formats for the representation of meanings of individual words and

mechanisms for the combination of meanings which are con_suderably more elegant
than most computational alternatives now in use. By replacing the bottom layer of
Montague's model-theoretic edifice with an appropriate §et of procedures, we hope to
prcserv:: computability while still maintaining the basic framework pf Montague
grammar. We hope to convey those aspects of Montag.ue grammar which should be
of interest 1o the artificial intelligence researcher working on knowledge representa-

1 the computational linguist in particular. .

“OI“n: gg::ltit)on 2 we gif')e an outline of the main featur:es o.f Moptaguefs formalnsm.
fn addition we suggest ways in which a computer scientist might thxnk‘Qf 1t's kely
concepts. Section 3 gives several Montaguc—sfyle cxamples toggtthe‘r with simple
procedural, or machine-theoretic, interpretauons:. Se.ctxgn 4 .descnbes‘vt'he very
little that needs to be done to Montague's expressions in mten‘sanal logic in orfier
that they be directly interpretable as expresstons in an.ex.ls.tmg pr?gra{nrr;;:g
language, Lisp, augmented by a small suitabl_e set of pn‘mmve fum.ttop‘s. is
result then demonstrates that the rather extensive reseqrch in Montague gramgmr
is quite compatible with research in procedural semantics (e.g. [161, [15]). Eurt ler-
more, Montague’s very fruitful approach to thé problem of structuring functiona ~—1
and by extension, procedural—knowledge indicates how the method of procedura

290
J. R. HOBBS AND S. J. ROSENSCHELN
semantics car shi ed in jus
semar mka? t})e sharpened in just that respect which has caused it most to con
: the ad hoc character of its definitions. In Section 5 we speculat o
ate on

Wi i~ht t I‘S p])l)l()i}(1 may ”][‘() v nio t} e t f te d N
h l o h a 3 W o . Xt ¢ - X . l 3
vhat 1€ nature of context an € [)C(,hll on,

2. Montague’s Formalism

] I i (234 l o
‘(PO ition \\l” ‘O”O\\/ tﬁd‘ t Of NIO“{'IOUC [9 Ind use “]e more Standd[d fcatul o
1S € S >

()f hIS notation but \Vl” 21ve on those IL: neces ry “)I the exar ll)]’ mn ths
1V IV h
s ruies cessa h
t 2 €S
papeL A 16“’ Iulf:S are ddded to hd“dle one &(dlnple)

]hC (dte‘lolld] grammar use « = =
a d ‘k)r syntactic (ln'ﬂySIS 01 I:n"][sh strings consists of

OTL 1 gHs l(l « d rases ma &] a riies I Cor n
‘CatLI} ries mto ‘\hlch I:n ’h h wordas an ph S y fl l nd [} 1" fO O nbl m:,
\OldS and pll!ﬂSCs Of various categories into Iarge[ph!asCS and bentCnLLS. l hL

categor ics Wl[h L\&ﬂlpkb o1 w ld‘ [)(Sic e Ple S1ons thd[bLlO“é fo thL”l are
N f O S (Or a
f N X SS10) 3

Truth values: i
e lues: t (no basic expressions)
es: 2 (i i

s e {no basic expressions)

Intransitive verbs: Iv: rise, trot

Terms: ine

e ms T: ninety, he,

Transitive verbs: TV: seek

Com ases:

Lo mo.n noun phrases: CN: man, frog, horse, temperature
\?rblfllsi IAV: rapidly

Attributive adjectives: Adj: slow.*

] l]rdSLS Of “ < =
1€ VArious cateoorie S mMa I) l) 1 l 31 it ()t l)JSlC U([)ICbSlOllb b [!K«
' o y ¢ DU p (020 3
fC”O\'“l: lu"'b (”loxphOlOrl"dl h“(-[K--; are l-«noxed)- y

(1) (Article + Common Nou ‘ 1s 1
; n Phrase). If { is in cate 4 (
Fon A om ! ¢ 151 category CN, then F(0), F,(C
2{0) are in category T, where Fy(J) = every 0, F(0) = the {, F,(0) ==0(£52 '
.) . ~ - - -
(2) (Subject + Verb Phrase). If « is in category T and ¢ is in category [V, then

Fi(2, &) is in category r, where F,(« 8) = o :

(3) (Transitive Verb + Object). If & i
O ject). If 3 is of category TV ¢ ? oo
£5(0, f) 1s of category 1V, where Fy(5, ff) = O}fk ¥ TV and ffof category 7, then

the(i) ;Vzrb Pl_lrascj!—Adverbia!). If 3 1s of category 1AV and f of category 1V
/ 7(« , B is ‘ot category 1V, where F,(3, 8) = 5. (Note: this is bl“y T
syntactic rule which reverses the order of the elements.) e e onh

(5) (Attributive Adjectiv ~
Adjective+Common Noun). If § is of .

Oy . e . . ¢ category Adi g Vo

category CN, then Fj(3, f3) is of category CN, where F3(9, f) f ‘5;/; s and fi of

P . .
) Thp category 1s not in Montague [9].
This rule is not in Montague [9].

x,

SgRE

S R BRI TR B e DI

AT R B e B e

.

R R I ok 58

;
:
i
:
B3
2.- .
*
¥
E
i
g
£
%
5
1
H
§

A I 1t

MAKING COMPUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC - 291

(6) (Conjunction). If ¢, ¥ are of category t, then so is Fy(,) where Fg(d,) =

¢ and .

(7) (Quantification). If « is of ca
IV and contains he,, then Fio, (2) is of the same cat
Fio J(2% ¢) = ¢, where ' is like ¢ except that the first occurre
replaced by a.

Rules (1)—(3), (5) and (6)
can be implemented by simple transformations.

This completes our discussion of the syntactic ru

of intensional logic.
The basic types of Montague’s intensional logic are as follows:

tegory T and not he,; and ¢ is of category £ or
egory as ¢, where
nce of he, has been

are just phrase structure rules, while rules (4) and)

les. We now present the language

t = truth values;

e = entities;

s = possible world-point in time pairs.

ill be called a point of reference.

if and b are types, then {a, b) is the type
Expressions in intensional logic may be
pe and from other expressions by
temporal and modal operators,
For example, if u is a variable and

A possible world-point in time pair w
Higher types are built up as follows:
consisting of all functions from a to b.
built up from constants and variables of each ty
means of logical connectives, quantification,
functional application, and lambda abstraction.
x and f are expressions of the appropriate type, then
av ff, (Vwz, Og Jux,)
are also expressions. In addition, if 2 is an expression of type a, then ~ o (called the
intension of %) is an expression of type {s, a). If « is an expression of type (s, @)
then ~ « (called the extension of x) is an expression of type a. The extension operator
~ applies a function whose domain is points of reference to the current point of
reference. The intension operator ~ applied to an expression creates a function
whose domain is points of reference and whose value at each point of reference is
the expression. (To reduce parenthesizing, we assume ~ and ~ apply to the smallest
meaningful expression to their immediate tight.)

The types do not occur arbitrarily in the analysis of English. Certain types turn
out to be the most useful, and for these key types it is worthwhile developing our
intuitions by describing computational analogues. For this purpose, let us assume
that a point of reference corresponds to a possible state of the machine at a

ar moment in time. Then the extension of an expression %, &, may be
respect to the current state of the

hand, represents an object which
achine will return the value of o
nd some necessary

particul
viewed as the evaluation of that expression with
machine. The intension of %, ~, on the other
when evaluated with respect to any state of the m
in the current state. In Section 4 these notions will be refined, a

elaboration will be presented.

The type e may be viewed as the set of constants of the “data type” availableina

Yy

o Rs J. R, HOBBS AND S0 J. ROSENSCHEIN

computer program, e.g. numbers. Type (s, ¢} is the set of functions from points of
reference to entities. When evaluated, they give an object of type e, a constant.
Thus, as a first approximation, we may view an object of type (s, ¢> as a simple
tariable. It associates a constant with any current state of the machine. In par-
ticular, the parameter of a procedure which evaluates to a constant is of type
(s, e>. This initial intuition is useful, but it will have to be modified somewhat in
Section 4 below. In addition the first example of Section 3 views objects of type
(s, ¢ in a slightly different light.

An object of type ((s, &, 13 maps a variable into a truth value and thus may be
thought of as a call-by-name procedure of one argument which returns a truth
value. (This will hereafter be called simply " a procedure ”.) An object of type
$s,{{s, e), 1), for any current state of the machine evaluates to a procedure, and
thus may be thought of as a procedure name. Such a name may be attached to the
same procedure throughout the operation of a program, or it may change. An
object of type (s, ({5, e, 13>, t) maps procedure names into truth values and may
be thought of as a call-by-name functional. Objects of type s, {5, {8, €, 13D, 1D
are variables ranging over functionals, hence functional names.

Predicate modifiers like the English word “rapidly” are realized as higher
functionals of type {{s, (s, e>, 155, <5, ¢, 1)), which map procedure names (e.g.
the procedural interpretation of “walks”) into procedures (e.g. the procedure for
“walks rapidly”). Transitive verbs such as “seek” and “be” are realized as objects
of type {({s,<{<s, {5, €D, 1D, 153,45, €3, t>>. This is a higher functional taking
two arguments—the first a functional name representing the direct object of the
verb, the second a simple variable representing the subject of the verb.

In what follows, x, y, z will be used as variables ranging over objects of type
(s, ¢y, simple variables; P, O, R over objects of type (s, ({5, &>, 1D, procedure
names; and # over functional names of type s, {5, {{s, €D, 1D, 15D,

The rules for translation from syntactic representations to expressions in
intensional logic are as follows:

(1) The English words “man™, “frog”, “‘horse”, “temperature”, “‘rise”, and
“trot” are mapped into MAN, FROG, HORSE, TEMPERATURE, RISE, and TROT, re-
spectively, where these are objects of type {(s,ep, t). For Montague they are
functions, i.e. sets of ordered pairs; we may view them as the procedures in a
compiuter program which recognize or define the propecties of “man”, “frog”,
ete. “Slow™ and “‘rapidly” map into sLow and RAPID, respectively, which are of
type {{s, {{s, €, 1)), (s, e, 1D). “Seek” maps into SeeK, of type

s, K8 KKy €0, 130, 100, (s, €, 1)),

(2) *“Be” maps into the expression APIXT P T =)l
(3) “Ninety” is mapped into AP[TP("n)] where n is an entity of type e.

(4) “‘he;” is mapped into 2P[7P(x))] where x, is the ith variable of type s, ed.
In the remaining rules, « signifies the translation of « under the rules.

LA Ay

ENS HC Y
MAKING COMPUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC >
"(5) Every {: Fo({) is mapped into AP[(Vx) (x> VPUQ]"P "
the {: F,()is mapped into AP[(3y) (VX) ({'(x) & x =) ONls
a {: F,({) 1s mapped into ')
AP[(Ax) ({'(x) & P()]

(6) F. (3, B) is mapped into &'("f),
F4(5, p) is mapped into 8'("f"),
F,(5, B) is mapped into 3'("f"),
Fi(3, B) is mapped into &'("). v
, . L & p.
(7) Fg(x, B) is mapped into]
(8) Fio. n(2, ¢)is mapped into «’(TAx,¢") if x is of category T and ¢ ofcateCOTy t.f
Fo (2, 8) is mapped into Ap{«'("Ax,[0'(3)D] if x is of category T and 0 0
10, n\M

category IV. . . . ional
Thus. most concatenations of words in English are translated into fun
’ -

applications in intensional logi o ‘ ions
pli)'!ontavue presents a standard model-theorcetic interpretation for the expr

i ils i atic Al be
of intensional logic. We will not outline the details, for our interpretattons \leims
quite ditferent. yObjects in intensional logic will be interpreted as con ,

i ina rogram.
procedures, and functionals in a computer prog

3. Examples
3.1. Consider the sentence . o
The temperature is ninety and the temperature rises.
This sentence has been of interest [9] becagse if “be” is viewed as equality an
therefore as a symmetric and transitive relation,
Ninety rises
follows. The syntactic representation is) -
Fy(F(F (temperature), Fs(be, ninety)), F,(F (temperature), rise)). 2)
The translation rules map this into the expression
AP[(3y1) ((Vx,) (TEMPERATURE(x,) <> X, =¥ :?c POyl
(CA2ix TP Ayl X = Ty (CAQ0T 00 mY) o 5
& R[(Ty) ((¥x3) (TEMPERATURE(X3) <> X3 = J3) & R(y;))](. RISE). ‘)
This expression can be simplified by symbglical!y apgiying fur:cflon_j ;OI:,ht:;
arguments in the order indicated by (2) and using the equivalence ~ "o = «.
first conjunct, replacing 2 by its value yields 5
AP[(3y,) ((Yx,) (TEMPERATURE(X) ‘”"vxx =y) & Py
CAx[2007 @M (CAyo["xz2 = 7 yaDD-

294 J. R. HOBBS AND S. J. ROSENSCHEIN

Replacing @ by its value gives

AP[(Fy) ((Yx,) (TEMPERATURE(X,) > X,
(CAxalarf " = T3]).
Replacing ', by its value yields

¥ & TPy)]

i

AP[(3y1) ((Vx,) (TEMPERATURE(X,) « X,

1) & TPy)]
(Cix{"x, = n).

Replacing P by its value yields
3y (V) (TEMPERATURE(X,) & X, = p,) & ixy["x, = n} ().
Replacing x, by its value results in
(3¥) ((Vx)) (TEMPERATURE(Y,) & X, = 1)) & "y, =). 4
(5) results from function application in the second conjunct:
(303) ((V3) (TEMPERATURE(Y ;) <> x5 = 3,) & RISE(Y3)). 3)
The conjunction of (4) and (5) reduccs (because of the uniqueness of y) to
(39) ((Vx) (TEMPLRATURE(Y) > X =) & "y = n & RISE(})). (6)

For our interpretation of (6) we will imagine a system in which the temperature
is measured and recorded on a graph whose horizontal axis is time. The set of
possible worlds is the set of all possible graphs. Here it is most convenient to think
of v not as a one-argument function from points of reference to numbers bug asa
two-argument function from possible worlds and points in time into numbers.

Particularized to one possible world, it is then a function from points in time into
numbers. The part of (6),

(31) ((V.x) (TEMPLRATURE(X) > x = 1)+ -),
simply accesses the unique temperature checking function. The expression

y=un

evaluates the function at the current time and returns Trut if and only if the value
is 90. The predicate riSE computes the left derivative of the function yat the current
time; it returns TRUC if that value is positive, FALSE otherwise.

In a sense, this example runs counter to the intuition developed in the previous
section about the nature of objects of type ¢, ¢), such as y, as simple variables, for
here it is used as a function from times into numbers. However, a simple variable
itself may be viewed as a function from points in time into the set of values it takes
on at those given times. The difference is that in a computer program, one is not
able to access previous values of a variable once the value has been changed, as we
would have to access previous values of y in this example to compute its left
derivative.

ey,

I
£
E
¥

MAKING COMPUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC 2935

3.2. Consider the sentence
Every man seeks a frog.

By usual accounts it is three-ways ambiguou_s—thefc are t%’lé inten.sioruu renc‘i‘mgig
which every man is seeking something whlch sut{sﬁcs his own. 1magjc' of fmb,
(reading 1), and the two extensional readings in which egch man is seeking his'own
particular real frog (reading 2) and all men are looking for the same real frog
(reading 3). .

Montague gives the following syntactic representations:

F(Fo(man), Fy(seek, Fy{frog)) (reading 1) 7
F(Fo(man), Fyo, o(Fa(frog), Fs(seek, he,))) (reading 2) 8)
Fo. o Fa(frog), Fu(Fo(man), Fs(seck, heo))) (reading 3))

(7) translates into) |
AP((Vx,) (MaN(x,) D TP)] (CseEr(TAQ[(Er) (FROG(31) &~ QL))
which simplifics to
(Vx,) (Man(x,) o seex(T20[3y0) (FrOG() & 7 Q0) (v1)- (10)
Thus the existence of the frog y, is within the scope of SEFfK.‘Thc funct%on
A0[(3yy) (FROG(3y) & 7 Q0)] will be applied to its argument within the functfon
S.EEK.—}‘l stands’for the object and @ will ultimately be replaced by the fur.lcnon
which expresses the core of the meaning of “seek”, in the same way as in the
previous example containing the transitive verb “be”, Q was replaced by
oTxy = T ya)
(8) translates into
AP[(Yx,) (MaN(x,) 2 Y P(x) (T Ax[A0[(3x) (FrOG(y) & o0yl
(" AxofsEEr(TAR[T R(x0)]) (x2)DD),
which reduces to ,
(Vx,) (Man(x) 2 (@y,) (FROG(y))
& Axo[SEER(TAR[T R(xo)]) (x)] (31))- (b
(9) translates into)
20[Ar,) (FROG(1) & 7 Oy] (T Ax[AP[(¥x,) (MAN(x,) > 7Py)]
("seer(TAR[T R(xo)D)D)
which simplifies to
@y,) (FROG(y;) & (V) (MaN(x) 2 SEEK(TAR[TR(ID (¥1))- (12)
In Montague’s treatment, sentences like “John is a man” are also syntact:c.all‘y
three-ways ;mbiguous, the three readings paralleling (7), (8), and (9). This is
because in the syntactic analysis, common nouns (category CN), verb phrases vy,
and sentences (1) can all be quantified into. But semantically they all collapse to the

~) JoRHOBBS AND S, J. ROSENSCHEIN

same expression in intensional logic. *“Be” is defined in such a way as to allow the
existential quantifier to pass beyond its scope. Also “John™ introduces no universal
quantifier to block the existential’s passage to the outside. The sentence “Every
man is a King™ has two readings in the semantics of Montague grammar—one in
which every man is a différent king and one in which every man is the same king.

No difference shows up in Montague’s exposition between intensional verbs like
“seek™ and nonintensional verbs like “see”. It is the responsibility of the one who
defines these verbs to construct them in such a way that “see™ allows the existential
to pass out of its scope-and *‘seek™ does not. Montague has given no guidance in
the latter task. We will offer a suggestion as to how this migcht be done.

The verb “seek”™ could be lexically decomposed into the conjunction of two
components: a mental component which states among other things that if £ seeks
a frog then A4 wants to have a frog; and an operational component which states
that if A seeks a frog then if 4 is near a frog, he takes the frog.® We will confine
ourselves to the operational component and shiow that it can be used to exhibit the
distinction between the three readings of the verb “seek™ by transforming it into
scope distinctions of logical operators like the conditional and negation.

This definition of *‘seek™ can be captured within Montague's framework by
adding to the translation rules, paralleling rule 2 which defines “be™, the rule

(2') “'seek™ maps into the expression

AP [~ TP (T Iy NEAR(Y S, 1)) & ~TAKE(X,, 1)L (13)

The expression for the object of “seek™, which in the intensional reading contains
an existential quantifier, replaces 2. The negation will then be outside and the
propositions NEAR(X,, 3,) and ~TAKE(X,, ;) within the scope of the exjstential
quantifier. The negation sign to the left of # in (13) prevents the passage of the
existential quantifier to the left. It is one of the beauties of Montague’s approach
that the meaning of a word can be distributed in this fashion. (10) becomes
(Vx) (MAN(x)) D 2[5~ TP Ara[NEAR(xXS, 1)) & ~TAKE(x,, 1))
(C2Q1E1) (FrROG(1,) & 7 O(r DD (x,))
or
(V) (MAN(Y) > (V) (FROG(1,) D (NEAR(xy, 1)) D TAKE(x,, p,)))). (14
Applying (13) to (11) yields
(Vx,) (MAN(x) > (3p,) (FROG(3,) & (NEAR(Xy, ¥1) © TAKE(x,, 3,)))).
Applying (13) to (12) yields ,.
(3ry) (FROG(y) & (Vv)) (Man(x)) o (NEAR(x,, y;) 2 TAKE(X, ¥))).
The three readings are then distinguished by three different quantifier structures.

¢ Dowty {2] has proposed similar lexical decompositions and in fact Montague has used a
lexical decomposition of sorts by including a meaning postulate reducing “‘be” 10 an expression
involving equality.

[rieoueay

RIS EOUN o RPN f 4 A0 MR Y g

MAKING COMPUTATIONAL SENSE OF MONTAGUL'S INTENSIONAL LOGIC C 29

For our model we can now imagine a data base which contains a number o
entities and a number of properties associated with these entities. In particular, i
records the species of each entity and for each relevant moment in time, the
locations of the entities and the facts about possession of one entity by another
Typical items in the data base might be

(Max X1)
(FROG X2)
(AT X1 (54 40) 1846)
(AT Y1 (55 39) 1846)
(HAVE X1 Y1 1847).

A possible world for this example is a possible set of such entities and properties.
The most naive interpretation of the existential quantifier is a procedure whick
searches through the entities until it finds one with the required properties. The
corresponding interpretation of the universal quantifier is a procedure which
searches through all the entities to verify that all have the required properties.
NEAR is defined in terms of distance. TAKE checks for a change from nonpossession
to possession.

Although definition (13) distinguishes between the several readings, it has the
disadvantage that in our model we cannot determine the truth or falsity of “Every
man seeks a frog™ except after the fact, and then (unreliably) only if the seeking
was successful. For example, if several men took distinct frogs after being near
others, it must be reading 2, in which each man is looking for his own particular
real frog. However, if only one man came near a frog and he took it, any of the
three readings may apply. In addition, each man may have his own, possibly
erroneous, image of a frog, and if there were no such thing as frogs, the expression
(14) would always be vacuously true. We cannot hope to resolve these difficulties
in general without modeling mental states,

Definition (13) could profit from the nicety of a time condition stating that the
nearness was true just before the taking occurred. But these changes would greatly
complicate the exposition at the expense of clarity.

3.3. Let us now consider the sentence

A slow horse trots rapidly,”
with the syntactic structure
F(F\(Fi{slow, horse)), F,(rapidly, trot)).
This translates into , '
AP[(3x) (SLOW("HORSE) (x) & ~P(x))] (" RAPID("TROT)),

which simplifies to
(3x) (sLow(" HORSE) (x) & RAPID(- TROT) (x)).

298 J. R. HOBBS AND S. J. ROSENSCHEIN

In a procedural interpretation, sLow and rRapip must be defined as higher
functionals which in a sense modify the definitions of the functions HORSE and
TrROT. There are several ways one can imagine this happening. The method we
present, while unorthodox for pure lambda calculus in that it involves capturing
free variables, is commonplace in programming languages, such as rise, which are
based on lambda calculus. In effect, this section anticipates the treatment given to
such variables in LisP examples to be presented below.

Suppose we are given an entity called a “scale™ which, for simplicity, we can
think of as an ordered pair {lo-point, hi-point). Assume in addition that we are
given two function names, Lo and i, which are initially bound to the functions
which map a scale into its lo-point and hi-point respectively. We may then visualize
the outlines of a HORSE function as ‘

HORSE = Ax[/(- - - gallopspeed * - +)
[- - (speed(x) > ro(gallopspeed))
& (speed(x) < ui(gallopspeed))
S < 20,35 > -)
Gallopspeed may be taken to be the default speed scale for Horse. A lambda
application within the definition of Howrst binds gallopspeed to a particular scale
to which the functions Lo and ui are applied. The verb TroOT is handled similarly:
TROT = Jx[A(- - - speedscale - - +)
' [- - - (speed(y) > ro(speedscale))
& (speed(x) < Hi(speedscale))
](< 14,26 >)]
Now we can examine the roles of sLow and rRAPID as mappings from intensions
of objects like Horst and TROT to objects representing a slow horse and a rapid
trotting respectively. sLow can be defined as follows:
stow = A P[Al x [TP(N)]]
(7 scale [Lo(scale) + (Hi(scale)-Lo(scale))/ 3]

Simitarly:
RAPID = A P[ALo[Z v [P(W)]]
(4 scale [ru(scale) — (1mi(scale)-Lofscale))/3])].
That is, SLOW redefines HI to return a lower upper limit on a speed scale, and rapiD

redefines LO to return a higher lower limit. Now the meaning of “The slow horse
trots rapidly” can be seen to reduce to

3) [- - (speed (x) > 20) & (speed {v) < 25)
- - - (speed,(x) > 22) & (speed,(x) < 26) - - -] e
The subscripted function names, speed, and speed,, had their origin within the

scope of HORSE and TROT respectively and hence may refer to the same or different
speed functions. [t is seen from the final reduction that although sLow and rapid

e T

.

e e

At b b 0

MAKING COMPUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC 299

have opposite effects, the local nature of the scopes of Hl and LO allow the correct
meaning composition to be obtained.

4. Correspondences with LISP

4.1

The fact that Montague chose a lambda calculus for the language of his intensi'onal
logic immediately suggests the programming language LISP as the c'omputatu?nal
anvaloaue. In this section we show how Montague’s intcn~sxonal logic expressions
can b; translated almost directly into LISP expressions which can pe evgluatefi, or
executed, in some environment to yield a result. Our analqg\{e of mten'sxon will t.>e
the procedures. Points of reference will be incorporatgd within the envxronmfffu in
which the procedures are executed, and the results will correspor‘]d\to_ extensions.
Some difficulties naturally arise in precisely those places -whcre an infinite 'comp‘uta-
tion scems to be implied by Montague's formalism, as in tf?e mter‘pretanon of the
universal quantifier over all possible worlds, a clearl_y infinite set m mc‘),st mode_ls.
Our approach has been to replace infinite constructions, usually “sets”, by ﬁmte
ones, such as “*procedures”, without destroying the overa.ll f.ramcwork of fm?cuonal
composition and application as the basic method for building up the meaning ofa
sentence. o . '

Before proceeding, we would like to stress t_he d\§t|nctloq bit'ween 'mtfffISlon z?nd
description. “*Description” refers to a linguistic object, ‘whllc. intension’ refers to
a function. Different descriptions may have the same intension. le.CWISC we dx§-
tinguish between a LISP function, which is only applied, f'md its va‘nous‘syn‘\bohc
representations as s-expressions. There has been confusion on this point in the
natural language processing literature. ‘

In the next few paragraphs we presenta brief discussion of the relevant features
of Lisp. Those who desire a fuller treatment may consult McCarthy et gl. {71

Following McCarthy et al. {7} we view the LISP interpreter as consisting of two
mutually recursive meta-functions: apply and eval. The tjuncno‘n apply [f;‘x;a]
returns the result of applying function f to arguments' X i enwrogment a; eval
[e; a) evaluates expression ¢ in environment . The gouon.of an er_\vxrom‘nent was
originally realized concretely as the a-list, which pairs variables wu‘h their values.
Thg substitution semantics of the lambda calculus are captured in LIsP not by
direct substitution into evaluated expressions but ratll?r by tf}e creation of a new
environment which differs from that specified by a in precisely those binding!
which define the substitution. o

This method of *“deferred” substitution gives rise to anoma'hes in the case o
functional arguments containing free variables. if the same yana.ble.s are reboun«
within the function calling the functional argument, the initial bm.dmg of the fre
variable may be overridden. These anomalies are corrected by allowmg'for closures
i.e. functions with frozen environments, to be created by eval and applied by apply

22

300

This is done classically through the use of the operator FUNCTION which creates a
closure or FUNARG [7], [11]. Furthermore, it is convenient to assume that the
interpreter is such that eval [(LAMBDA - - -); a} is equivalent to eval [(FUNCTION

(LamBDA - - -)); a]; thatis, a LAMBDA expression evaluates to its closure (see also[13])

The simplest way to exhibit Montague's formalism in LISP is to identify a point
-of reference with a binding environment, or a-list, with respect to which an ex-
pression 18 evaluated. Then we let eral [e; a} correspond to the model-theoretic
interpretation of an expression e with respect to a point of reference. In this view,
the expression ~x corresponds to (LIST (QUOTE QUOTE)). [t gives an object to which
can be applied the operator ~ (corresponding to EvaL, the object language invoca-

tion of the meta-function eval) which in turn yields an object of the same type as «.
The first few translation rules are:

(1) =, a constant

(2) «, a variable of type (s, b) for any b
(3) "a

) T«

~(QUOTE a),

-»(éuorc %),

= (LIST(QUOTE QUOTE) %),
—{EVAL %).

In rule (2) the variable must be quoted if the calling function is to be given the
option of evaluating or not evaluating the variable. As a first approximation it is
useful to look at intension and extension as “QUOTE the value” and “‘gvar”,
respectively, to make firm some of our intuitions about these concepts, which
behave formally in much the same way. For example, the identity

[nterpretation-of[” ~«} = Interpretation-off«]

is preserved in the translation: '

eval[(EVAL{LIST(QUOTE QUOTE)%)); a] = evalfx; a)

for all x and for all a.7

As appealing as this analogy is, however, it is desirable to treat intension and
extension in another way, relating reference points to environment indirectly. We
may assume there is a variable named * to the value of which intensions are applied
to produce the corresponding extensions. We need place no restrictions on what *
can be bound to. For example it could be an arbitrarily complex object corre-
sponding to a model of a possible world, implemented as a data base, a list of
functions, or any other suitable structure. For brevity we will call the data type of
* “s-list”, after the 5™ in Montague's hierarchy of types.

Now rules (1)-(4) are replaced by rules (la)--(da):

{(Ia) %, a constant — (QUOTE x),

(2a) =z, a variable — g,

7 There is a certain clumsiness in rules (1)-(3). This results from the need for EvaL to serve a

double role: modeling the extension operator and implementing the substitution semantics of
LISP.

J.‘ R. HOBBS AND S. J. ROSENSCHEIN

DAY MR VPN TS AR A T AL AR R, T

'S INTENSION 5 301
MAKING COMPUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC

L (INT*), where
INT* = (LaMBDA(G) -
(LamBDA(¥) G)),

(3a) "x

(da) ~x

- (!X *)-

Note that here too ~ "« has the same interpretation as «, L.€.

eval[(NT* %) *); a] = eval[({(LaMBDA(G) (LamBDA(Y) G)) %) *); 4]
eval[x; al.

i

i for el approach:
The remaining translation rules are the same for either app

(5) iux - (Lamspa(U)),
6) «(p) — (xh),

(7) 2= B — (EQUALF o f),
@®) ~¢ — (NOT¢),

O ¢&y — (:\Nr?bt!:/)l/f),

0 v iy = (ORQY),
S ii 3)) o xz — (mmxs}(p),

2) b > — (FEPH),
85; (E';)uqb ’ — gFORfO{i(E {range of u) (LAMX%D:\(U)),
(14) Yup — (FORarL(range of i) (LaMBDA(U) ¢)),
(15) Op — (NEC(QUOTE ¢)),
(16) W¢ — (FUTURE(QUOTE),
(17) Hp — (PAST(QUOTE §)).

The functions NOT, AND, OR, IMPLIES, afmd IFF are Se'lf'exp;a{m;:g(;f;[; o roRALL
In rules (13) and (14), a naive extcnsu{onal reduction o l-oofl; R
would be a procedure in which the expression us<.:d for the rar:ige uould aciualy
evaluate to a finite list. The predicate which is the. schzc‘:ond z;r% ment would be
applied to the members of the list. In t;le mo:z zizh;i:(;?;;e (a:;\;nxems fronat
. P . cum
arr‘r?oiio“}liso?)l; rfg:slcr:;:){grrs!?ﬁ;ngSLeLt,S,ft)reerf:r;\ple, would then seek to prove that
~ : . . ~
if an element is in the range, tlzie ;})}redlcatfe rxlscttir;:rfg(rj il:::;lcerrln;zis for cquaity of
e (7) we could have used the Lisp 1u QUAL W st I :
syxlx:lb;l;:c (eyzpressions‘ This would have captured eq.uaht)l{ ?fnc;:t;:rf;i:;r;dcsgug;
lues. It would not work for higher types, howe»ﬂ'er, Slfl‘Ce d smc' ny can be
- Uw.-. by many distinct symbolic expressions. For this reason \»e‘hd\.e postulate
ft)::rcf;sciitoyr r:(;UiLF which would seek to prove the equality of higher-type argu-
i guments. ,
melmsr’ulcers ((j;:;;i‘(%(;rsthoefrsg;cs‘:)rlertazlt the proposition ¢ is quoted is that Mo(x;tagueoj
fonr’:lal statement of the interpretation of the moda’l agd tense;icg)s;dtg;st r;)te;e? !
call for the application of a function to an evaluated propos ,

1 licitd
“directs a different evaluation to take place. In Lisp, evaluation must be exp y

blocked, hence the QUOTE. Note that rule (6) does call fqr evaluation.

<

302
J. R. HOBBS AND S. J. ROSENSCHEIN

. Ihe pI\OCCdmC NEC must ShOW thdt lht} plOpOSlthll (fb IS true ‘0[a” posslblt
. Vv l d tion N Haoie I
&()IldS A naive extensiona redquctio ll]\e thdl for FORALL, 1s not a*al b!
NEC—we cannot L)C!L [h[OU"} l p Si -1151s -{15t < we [O"
gan a l OS blc ad I or s I l
N 1sts. l lelt‘ol must use
thL SCCOHd [”ethOd. NEC must Sh()W tha[thc set ()f COr I <
onstraints \\thCh deﬁne ‘h >
pObblb‘C W Oi]db u“dLI COnSldeld O lmp Y t pl()p()S![lOn (b. I Or lh(‘
tion l lhc truth Of hC
Optﬂ ators FUTURE dlld PAST n ax -
C l imagme inter pl etaty o] bO(h o
one ¢cou d tions babed n p
ﬂleolcuc llltlllods a”d on EX(CnSlOllal ICduCtl()ll. Of

All of this highlights the need for a deeper treatment of infinite objects
4.2

I“ thlb Sectl’ n we Sh‘d l]C—(! the example > \
)) 0O l O h XE p! O‘ SL IiOI’l 34], ShO WV ltS ternSl’lﬁon intO
) . . l } , . . .
a. 1 ISl pillui~ld.“l,‘ d“d plLSCllt a posslb <, t XOULh O\rLlSlnlphﬁLd, C()Illpuldlloniil

Let us suppose tl slati ' (il
se the t H - erature” i i
, etus rjp N ranslation of “temperature™ is the function TeMP which takes
p ure as its argument and checks whether it is a known *

ChCCking“ temperature-

procedure. By the rules given i i
¢ given in Section 4.1 for translating i
the temperature™ becomes: siating into e,

(LAMBDA(P)
(FORSOME entity-concepts
(LaMBDA(Y)
(FORALL entity-concepts
{(LAMBDA(X) '
(AND(IFF(TEMP X) (EQUAL X Y))
(2% YN,
We can define e as follows:
BE = (LAMBDA(P)
(LAMBDA(X) (P %) (INT*(LAMBDA(})
o (EQUAL{XY *) (Y * .
Similarly, NINETY can be defined I
NINETY = (LAMBDA(Q) ((Q *) (INT* 90))).
Thus, “be ninety™ becomes '

(BE(NT*(FUNCTION NINETY))),
which reduces to
(FUNARG
{(LAMBDACY) (P *) OINT*(LAMBDA(OU . x *
()¢ (LAMBDACY) (EQUAL(X *) (Y *))))))
(LAMBDA(*) G)
((G - (FUNARG
(LAMBDA(Q) ((Q *) (INT* 90)))
NIL)))).

o

“r e

e R R

REST T

-

MAKING COMPUTATIONAL SENSE OF MONTAGUE’S INTENSIONAL LOGIC S

If THE were defined in a manner similar to BE and NINETY, then the cumbersor
lambda expressions could be replaced by their atomic designators. In this case, t
form actually eval-ed is:

((THE(FUNCTION TEMP)) (INT*{BE(INT*(FUNCTION NINETY)))))-

The result of applying the translation of “the temperature” to the intension
the translation of “be ninety™ (as required by the semantic rules) will be T just
case there is one temperature-reading function and that function applied to t
current * returns 90; otherwise the result will be NIL.

5. Context and Expectation

Much has been written about the role of context in the interpretation of wo
and sentences. Frequently the context is specified by a natural language descr
tion of any circumstances, whether mental, textual, or environmental, wh
impinge upon the meaning of the item in question in any way. However, it
desirable to replace this by something more precise. One possibility is to vi
context as the state which the initial conditions and previous text have left
text processor in. Thus a text would serve as a context for a sentence exactly
the extent that the state of the processor was altered during the interpretation
the previous text.

Section 4 suggests a very concise description of the state of a processor in wh
the a-list plays a prominent role. A complete state description would cont
control information as well, but for simplicity we will concentrate on the a-!
By employing techniques of dynamically binding variables to valid funct
specifications, we can circumvent the use of special, very complex data structt
and still satisfy the dictum that knowledge *““comes in large chunks”.

Among the proposals for handling contextual effects is Minsky's [8] notior
“frames”. A frame is a large, complex data structure, possibly with procedt
attached, which expresses the normally true general knowledge about stereoty
situations. When a frame is accessed, subscquent processing becomes a matte
filling the slots and noting the exceptions. The claimed strengths of the fra
approach include the existence of default values for unspecified arguments and
view of expectation as the ability to access pre-stored relevant pieces of knowle
efficiently. However, since frames as they have been used are amalgams of ¢
structures and arbitrary procedures, the problems of representation become hea
involved with issues of encoding. Furthermore, it is unclear how one gets inl
frame, whether one can be in more than one frame at a time, how one gets ou
a frame, how two or more frames can be merged to understand novel texts
situations, etc. In short, these are structures for which there is no well underst
interpreter.

By using Montague’s functional approach to full advantage one can preserve
spirit of “frames” while overcoming these deficiencies. The key is to thinl

RIVEN J.oR.HOBBS AND S, J. ROSENSCHEL

knowledge as residing in functions, each of which embodies a “core meaning” of a
word (or concept) embedded in a meaningful pattern of function applications, both
referring to the surrounding binding environment. In this view, the “large chunks
of knowledge™ are accessed because when a function is apphed, it in turn calls other
functions. The way that functions communicate is by binding and evaluating
variables. Context is the set of active bindings, and the contextual effects of one
function on another are expressed in the ways variables are shared by the functions.
Context is changed when the bindings are updated by the application of a lambda
expression to its arguments. The effect of updating the binding of a function on the
interpretation of another function may be great or small, depending on how central
or pervasive the first function is in the body of the second. This appears to us as
plausible and as rich a method for context switching with selective override and
default as any that have been proposed. The method is both subtle and fluid. The
effects can be made abrupt or slight. The creation of new context goes on all the
time without the nced for any special context-switching mechanism.
In order to be more concrete, let us consider the following sentences:
John approached Minneapolis. (16)
John approached maturity. (17
In (16) “approach” is to be interpreted as motion along a scale of physical distances,
in (17) a scale of development toward realization of some set of properties. In
JackendofI's [5] formalism “approach™ in (16) 1s in the positional mode, in (17) in
the identificational mode. Which scale or mode is relevant depends on the rest of
the sentence, in particular on the direct object.
With Montague-style patterns of functional application, we can definc the words
“approach™, “maturity”, and “*Minneapolis™ in the following way: ;
approach = A2[x[72(72z[(3w)) (3w,)
(golx, w,, w,, Scale) ,
& exceed(iws, wy, Scale) & uy(Scale) = ~z)D]].
maturity = AQ[Scale[” (" mi(Scale))] (erowth-scale)],
Minneapolis = 20[toc(Q(” Minn)) ("~ Minn)]. (13)
In the definition for “approach”, “go(x, w,, w1, Scale)” says that x goes from 1,
0w, on Scale; “exceed(iv,, w,, Scale)” says that w, is closer to the high end of
Scale than w, is; “Hi(Scale) = Yz says that the high end of Scale is “z. In the
definition for “maturity™, “iScale[- - -] (growth-scale)” will bind Scale to growth-
scale within “approach™ when “approach™ is applied to “maturity”. The core of
“maturity” is 1(Scale); it seems appropriate to define maturity as the final point
along u scale of maturation rather than as an arbitrary individual representing
“perfect maturity”. The expression “approach maturity” reduces to

Ax[(3wy) (3ws) (go(x, wy, wa, growth-scale) & exceed(iv,, w,, growth-scale)
& n(growth-scale) = Hi(growth-scale))].

i

Saderen s, e

Ay

MARING COMPUTATIONAL SINSE OF MONTAGUE'S INTENSIONAL LOGIC 305

In the definition of “Minneapolis™, “Minn™ is an entity corresponding to the
individual Minneapolis. “*LoC™ is an operator whose effect is to bring in bindings
which are appropriate by virtue of Minneapolis being a location. It is one device
for encoding the “is-a™ or superset relation within the functional approach. Loc
is defined

LOC = icore[iz[~Scale[core] (distance-scale-toward(z))]].
When it is applied within (18), ,

Minneapolis = AQ[/Scale[” ("~ Minn)] (distance-scale-toward(™ Minn))]
results. Thus, Scale is bound to distance-scale-toward(”Minn). ‘“Approach
Minneapolis™ reduces to

Ax[(@w)) 3wy) (2olx, wy, w,, distance-scale-toward(”™ Minn))
& exceed(r,, w,, distance-scale-toward(” Minn))
& mi(distance-scale-toward(” Minn)) = Minn)].

Here contextual knowledge is brought to bear indirectly by the binding patterns,

and the verb “‘approach” need not even check whether its object is a physical

location or an attributed state. o

The frames approach is oriented toward using knowledge of the situation de-
scribed in the text, and it seems to be rather weak in utilizing the structure of the
text itself. This may be remedied by adopting an approach closer to the one we
have described. ‘ .

One of the strengths of Montague’s approach is his way of attaching meaning to
the intermediate results, to sentence fragments. For example,

The old overstuffed chair in a dark corner of the room (19)

at the same time creates an image and leaves the reader with a sense of expectation.
In Montague's approach, the image is captured by the “core meaning” of the
function corresponding to (19), and the sense of expectation lies in the fact that the
function has not yet been applied to its argument. ‘

This view of expectation as a function waiting for its argument is adequa{e
within the boundaries of a sentence. But since each sentence is of type ¢, ther‘e is
no function which is still waiting for its argument intcrscmentially. We might
postulate that an effect of a sentence with respect to the entire text is totset up a
“megafunction” which gets applied to the similar megastructures resulting from
othe; sentences in the text in much the same way as an English word sets up a
function which gets applied to the other words in the sentence. For e.xample., a
sentence which describes a change of state might be viewed as a functlon' which
takes sentence arguments of a certain type. Sentences are of this type.lf they
presuppose or assert the final state of the change. This is a very sugges.nve way
of looking at the notion of expectation. Whether it is a fruitful way remains to be
seen.

300 J.R. HHOBBS AND S. J. ROSENSCHEIN

ACKNOWLEDGMENTS

We are iq(iliebtcd to Ralph Grishman and Richard Smaby for their valuable suggestions. This work
was partially supported by ONR Grant INO0OI+-75-C-0571 and CUNY E Hl S
Program Grants Nos. 11233 and 11655, eulty Researeh Award

REFERENCES

1. Davies, D.AJ. M. and Isard, S. D., Utterances as programs, in: B. Meltzer and D. Michie

eds., Machine Intelligence 7, New York (1972). ’

. '])?xvty, David R., Montague Grammar and the Lexical Decomposition of Causative Verbs»

; in: Barbara H. Partce, ed., Montague Grammar (Academic Press, New York, 1976).

. Hobbs, Jerry, ‘A model for natural language semantics, part I: the model, Yale University
Department of Computer Science Rescarch Report No. 36 (November 1974).

;. ;sa;\d, itc{{;h;}n, D., What would you have done if . . 2 Theoretical Linguistics 1 (3) (1874).

- Jackendofl. Ray, Toward an explanatory semantic represe i inguisti iry
(Winter 1976) Su150 Y representation, Linguistic Inguiry 7 (1)

6. Joshi, A K. and \’Ycischcdcl, R. M., Some frills for the l;]OdHl tic-tac-toe of Davies and Isard
semam.xgs»of predicate complement constructions, Proc. Third International Joint Conference
on Artificial Intelligence, Stanford, CA (1973).

;. M.cCarlhy, John, et a‘l., LISP 1.5 Programmer’s Manual (M.LT. Press, Cambridge, MA, 1965).

- Minsky, Marvin, A framework for representing knowledge, in: Patrick H. Winston, ed., The
Psychology of Computer Vision (McGraw-Hill, New York, 1975).

9. Mér’ltaguc, Richard, The proper treatment of quantification in ordinary English, Approactes
to Natural Ltll({/lla_fje" Proceedings of the 1970 §. tanford Workshop on Grammar and Semantics,
Dordrecht (D. Reidel Publishing Company, 1973).

10. Mo'ntaguc. chhard. I_:ormal Philosophy (Sclected Papers of Richard Montague, ed. and-wi(h
2:;17;ntroducxson by Richmond Thomason) (Yale University Press, New Haven and London

B) ’ ’
i1 M.oscs. Joel, The funciion of FUNCTION in Lise, Al Memo No. 199 (M.1.T. Al Lab., Gam-
bridge, MA, July 1970). ‘ ’

12. Partee, Barbara Hall, ed., Montague Grammar (Academic Press, New York, 1976).

13. Sussman, Gerald, and Steele, Guy, scueme: An interpreter for extended lambda calculus,
_AI M%‘mo No. 349 (M.I.T. Al Lab., Cambridge, MA, December 1975).

14, Farskx.j.Alfrcd, Der Wahrheitsbegrifl in dem formalisierten Sprachen, Studia Philosophica Y
(1936) 261-105. Translated as: The concept of truth in formalized languages, Logic, Semantics
Metamathematics, Oxford (1956). ’

15. \\Cmograd,‘TAcrry, Understanding Natural Language (Academic Press, New York, 1972).

16. W oods_, William, Procedural semantics for a question-answering machine, Proc. AFIPS 1968
gag.;um! Computer Conference 33 (1968) 457-471 (Thompson Book Company, Washington

1]

Reccived December 1976 revised version received October 1977

ONRMIALRIN 5 b R B (g Ay 30

ARTIFICIAL INTELLIGENCE 307

Speech Understanding Systems’

Report of A Steering Committee

M. F. Medress (Acting Chairman), Sperry Univac

F. S. Cooper, Haskins Laboratories

J. W. Forgie, M.LT. Lincoln Laboratory

C. C. Green, Stanford University

D. H. Klatt, Massachusetts Institute of Technology
M. H. O'Malley, University of California at Berkeley
E. P. Neuburg, National Security Agency

A. Newell, Carnegic-Mellon University

D. R. Reddy, Carnegie—Mellon University

B. Ritea, System Development Corporation

J. E. Shoup-Hummel, Speech Communications Research Laboratory
D. E. Walker, Stanford Research Institute

W. A. Woods, Bolt Beranck and Newman Inc.

Postscript to “‘Speech Understanding Systems”’

In 1973 North-Hoelland published under the aegis of this Journal a monograph with
the above title. This was an account of an interdisciplinary project to demonstrate
the feasibility of programming a computer “‘to understand” connected speech,
sponsored by the United States Advanced Research Projects Agency. Readers of
the Journal may now be interested in the following summary of the results of the
five years work on this project, which has been submitted by the Steering Committee

of the project.

ABSTRACT

A five-year interdisciplinary effort by speech scientists and computer scientists has demonstrated
the feasibility of programuming a computer system to “understand” connected speech, i.e., translate
it into operational form and respond accordingly. An operational system (HARPY) accepts speech
Sfrom five speakers, interprets a 1000-word vocabulary, and attains 91 percent sentence accuracy.
This Steering Committee summary report describes the project history, problem, goals, and results.

*Reprinted from the SIGART Newsletter, no. 62, pp. 4-8, April 1977, of the Special Interest
Group on Artificial Intelligence of the Association for Computing Machinery. This is a report of
the Steering Committee for the DOD Advanced Research Project Agency’s Speech Understanding
Systems Program following the operational demonstration of the HARPY system in August 1976,
Address correspondence to Mark F. Medress, Sperry Univac Defense Systems, Speech Com-
munications Research Dept., M.S. UOP!6, Univac Park, P.O. Box 3525, St. Paul, Minn. 55165;
(612) 456-~2430.)

Artificial Intelligence 9 (1978), 307-316
Copyright © 1978 by North-Holland Publishing Company

