
A Temporal Aggregates Ontology in OWL for the Semantic Web

Feng Pan

Information Sciences Institute
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292
pan@isi.edu

Abstract

In this paper we describe our approach for representing
temporal aggregates in OWL, as an extension to the initial
version of the OWL-Time, a temporal ontology for
describing the temporal content of Web pages and the
temporal properties of Web services. We represent the
temporal aggregates ontology in both first-order logic
axioms and OWL encodings. We also present several
examples in detail to show how our ontology can be used to
represent complex multiple-layered and conditional
temporal aggregates for the Semantic Web.

1. Introduction
Temporal information is everywhere on the Web,
especially in the Web services (Dumas et al. 2001;
McIlraith et al. 2001; Medjahed et al. 2003), such as
temporal availability of services (e.g., “an advertised
service is available from 01/01/2004 to 01/15/2005”
(Dumas et al. 2001)), temporal constraints on the user’s
preferences (e.g., “I would prefer driving over flying if the
driving time to my destination is less than three hours.”
(McIlraith et al. 2001); “I would like to receive this book
by next Monday.”), temporal information in service
description (e.g., rental dates of car rental services; order
dates, process time, and delivery dates of book-selling
services (Pan and Hobbs 2004)), and so on.
 In response to this need, in conjunction with OWL-S
(OWL-S Coalition 2004), a temporal ontology, OWL-Time
(Hobbs and Pan 2004) (formerly DAML-Time), has been
developed for describing the temporal content of Web
pages and the temporal properties of Web services, as
required for Semantic Web (Berners-Lee et al. 2001)
applications. Its development is being informed by
temporal ontologies developed at a number of sites and is
intended to capture the essential features of all of them and
make them and their associated resources easily available
to a large group of Web developers and users.
 OWL-Time is currently used in the OWL-S process file
for the definitions of the class “Process” and
“ControlConstruct”, and the property “timeout” and
“timeoutAbsolute”. As shown in (Pan and Hobbs 2004), it

Compilation copyright © 2005, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

can also be used to define service input parameters (e.g.,
the departure time for air ticketing services), output
parameters (e.g., the process time for book-selling
services), and conditional output parameters (e.g., delivery
duration for book-selling services, depending on the type
of shipping methods the user selects).
 The initial version of the OWL-Time includes the
topological aspects of time, measures of duration, and the
clock and calendar information. We have now extended it
to cover temporal aggregates as well, and this paper
describes that work.
 Temporal aggregates are aggregates/collections of
temporal entities, for instance, “every 3rd Monday in
2001”, and “4 consecutive Sundays”. Such information is
very common on the Web, for example, in Web services
you may have “the customer service is available from 8am
to 5pm EST every working day between 01/01/2004 to
01/15/2005 (Dumas et al. 2001)”; “send me the closing
price of IBM, every 7 days after it exceeds $100, as long as
it remains above $100 (Motakis and Zaniolo 1997)”.
 This paper more focuses on the OWL (McGuinness and
Harmelen 2003) encodings of the temporal aggregate
ontology1. The complete first-order logic (FOL)
axiomatization of the ontology can be found in (Pan and
Hobbs 2005). However, for most of the predicate
definitions and the examples, both FOL axioms and the
corresponding OWL encodings are shown together. In fact,
we can see the two representations are very consistent and
it’s straightforward to map from the OWL encodings back
to the FOL axioms so that it can access the full ontology of
time for temporal reasoning.
 In Section 2 and 3 we first describe some basics of
OWL-Time, including the topological temporal relations,
and the calendar and clock information. Here we only
present those parts that are essential for our treatment of
temporal aggregates. The full definitions of OWL-Time
can be found in (Hobbs and Pan 2004). The temporal
aggregates ontology, especially its OWL encodings, is
described in detail in Section 4, and examples are shown in
Section 5 to illustrate how our ontology can be used to
represent temporal aggregates information, including
complex multiple-layered and conditional temporal
aggregates, in FOL and OWL.

1 For the complete OWL encodings of the temporal aggregates ontology,
see http://www.isi.edu/~pan/damltime/TemporalAggregates.owl

2. Topological Temporal Relations
The most basic temporal concepts in the ontology are
Instant, Interval, Instant Event, and Interval Event. Instants
are, intuitively, point-like in that they have no interior
points, and intervals are, intuitively, things with extent.
Instant events are events that are instantaneous, for
example, the arrival of a package, and interval events are
events that span some time interval, for example, a meeting
from 2pm to 3pm.
 Besides these four basic temporal concepts, there are
five other more general temporal concepts/classes:
Temporal Thing, Temporal Entity, Instant Thing, Interval
Thing, and Event. The subclass hierarchy of these
temporal concepts/classes is shown in the Figure 1. The
arcs denote the (super) class has only those subclasses, for
example, Instant Thing has only two subclasses: Instant
and Instant Event.

Figure1: Subclass hierarchy of temporal concepts

Their FOL axiom definitions and the corresponding OWL
encodings are straightforward. For example, Temporal
Entity has only two subclasses: Interval and Instant, and
this is defined in FOL and OWL as:

FOL:
 TemporalEntity(T) ≡ Interval(T) ∨ Instant(T)

OWL:
 <owl:Class rdf:ID="Instant">
 <rdfs:subClassOf rdf:resource="#TemporalEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="Interval">
 <rdfs:subClassOf rdf:resource="#TemporalEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="TemporalEntity">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Instant" />
 <owl:Class rdf:about="#Interval" />
 </owl:unionOf>
 </owl:Class>

begins and ends are relations between instant things and

temporal things, and the beginnings and ends of temporal
entities, if they exist, are unique. In some approach to
infinite intervals, a positively infinite interval has no end,

and a negatively infinite interval has no beginning. Hence,
we use the relations begins and ends in the ontology,
rather than defining functions beginning-of and end-of,
since the functions would not be total. begins is defined
as:

FOL:
 begins(t,T) ⊃ InstantThing(t) ∧ TemporalThing(T)

OWL:
 <owl:ObjectProperty rdf:ID="begins">
 <rdf:type rdf:resource="&owl;FunctionalProperty" />
 <rdfs:domain rdf:resource="#TemporalThing" />
 <rdfs:range rdf:resource="#InstantThing" />
 </owl:ObjectProperty>

 inside is a relation between an instant thing and an
interval thing, and it is not intended to include beginnings
and ends of intervals.
 The relations between intervals defined in Allen’s
temporal interval calculus (Allen 1984) and temporal
durations are also defined in OWL-Time.

3. Clock and Calendar
Calendar intervals are described with the predicate calInt:
 calInt(y,n,u,x)
 This says that y is the nth calendar interval of type u in x.
For example, the proposition calInt (12Mar
2002,12,*Day*,Mar2002) holds. Here u is one of the
calendar units *Day*, *Week*, *Month*, and *Year*.
 Clock intervals, weeks, days of the week, months, and
years are also defined (Hobbs and Pan 2004).
 Standard notation for date lists the year, month, day, and
time zone. It is useful to define a predication for this:
(Dates of intervals can be defined similarly)

dateOf(t,y,m,d,z)
 ≡ (∃d 1 ,m 1 ,y 1 ,e) [beginsOrIn(t,d 1)
 ∧ calInt(d 1 ,d,*Day*,m 1) ∧ calInt(m 1 ,m,*Month*,y 1)
 ∧ calInt(y 1 ,y,*Year*,e) ∧ CE(z) = e]

3.1 Calendar-Clock Description
To express calInt(y,n,u,x) and clockInt(y,n,u, x)
directly in OWL is inconvenient since x is itself a clock or
calendar interval that requires description. So we defined a
calendar-clock description in OWL for specifying the
calendar and clock information for a calendar-clock
interval, a subclass of Interval.

A calendar-clock description has the following
properties/fields: unit type, year, month, week, day, day of
week, day of year, hour, minute, second, and time zone:

<owl:Class rdf:ID="CalendarClockDescription">
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#unitType" />
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>

Instant Interval Instant Event Interval Event

Instant Thing Interval Thing

Event Temporal Entity

Temporal Thing

 </owl:Restriction>
 </owl:subClassOf>
 ...
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#timeZone" />
 <owl:maxCardinality
 rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:maxCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 </owl:Class>

The property unitType specifies the temporal unit type

of the calendar-clock description, and its domain is
TemporalUnit:

 <owl:Class rdf:ID="TemporalUnit">
 <owl:oneOf rdf:parseType="Collection">
 <TemporalUnit rdf:about="#unitSecond" />
 <TemporalUnit rdf:about="#unitMinute" />
 <TemporalUnit rdf:about="#unitHour" />
 <TemporalUnit rdf:about="#unitDay" />
 <TemporalUnit rdf:about="#unitWeek" />
 <TemporalUnit rdf:about="#unitMonth" />
 <TemporalUnit rdf:about="#unitYear" />
 </owl:oneOf>
 </owl:Class>

For example, the temporal unit type of 10:30 is minute

(unitMinute), and the temporal unit type of March 20,
2003 is day (unitDay). The unit type is required. With a
given temporal unit type, all the fields/properties for
smaller units will be ignored. For instance, if the temporal
unit type is day (unitDay), the values of the field/property
hour, minute, and second, if present, will be ignored.

Since calendar-clock description is for describing
calendar-clock intervals, we defined a property, called
calendarClockDescriptionOf with CalendarClock-

Description as the range, for calendar-clock intervals:

 <owl:ObjectProperty rdf:ID="calendarClockDescriptionOf">
 <rdfs:domain rdf:resource="#CalendarClockInterval" />
 <rdfs:range rdf:resource="#CalendarClockDescription" />
 </owl:ObjectProperty>

In order to specify that an instant thing is in a calendar-

clock interval, an inCalendarClock property/ relation is
defined similarly to calendarClock-DescriptionOf as
follows:

 <owl:ObjectProperty rdf:ID="inCalendarClock">
 <rdfs:domain rdf:resource="#InstantThing" />
 <rdfs:range rdf:resource="#CalendarClockDescription" />
 </owl:ObjectProperty>

With this inCalendarClock relation, we can say that an

instant thing is at a specific calendar-clock time. For
example, the beginning of a meeting, which is an instant, is
at 6:00pm which is actually in a calendar-clock interval of
[6:00:00, 6:01:00).

We also defined in OWL two simpler relations,
calendarClockDescriptionDatatype and inCalen-

darClockDatatype. The only difference between these two
relations and the above calendarClock-DescriptionOf
and inCalendarClock relations is their ranges: these two
simpler relations use the XSD dateTime as their ranges,
while the above uses CalendarClockDescription:

 <owl:DatatypeProperty
 rdf:ID="calendarClockDescriptionDataType">
 <rdfs:domain rdf:resource="#IntervalThing" />
 <rdfs:range rdf:resource="&xsd;dateTime" />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="inCalendarClockDataType">
 <rdfs:domain rdf:resource="#InstantThing" />
 <rdfs:range rdf:resource="&xsd;dateTime" />
 </owl:DatatypeProperty>

It’s much simpler to use the XSD dateTime, however, the
advantage of using Calendar-ClockDescription is that it
can express more information than dateTime, such as
"week", "day of week" and "day of year". Moreover, each
field of CalendarClockDescription is separate so that it's
easier to extract the value of some fields for the later use
and easier to reason about.

4. Temporal Aggregates Ontology
The predicate everynthp says that a temporal sequence s
consists of every nth element of the temporal sequence s0
for which property p is true (see (Pan and Hobbs 2005) for
its definition axiom):
 everynthp(s,s0,p,n)

 For example, everynthp(s,s0,Monday1,2) defines a
temporal sequence s of “every other Monday”.
 The context temporal sequence s0 is useful not only to
constrain s in a particular segment of time, but also to
express complex multiple-layered temporal aggregates. For
example, “every 3rd Monday in every July in every other
year” can be split into three (primitive) temporal
sequences: “every 3rd Monday” (s1), “every July” (s2), and
“every other year” (s3), and s1 is in the context of s2 which
is in the context of s3. Such examples will be illustrated in
detail in the next section.
 In fact, the property p is not limited only to simple
temporal properties. In theory it can be any temporal
properties. For example, in conditional temporal
aggregates “every 3rd rainy day that’s not a holiday”, p is
the unary predicate name representing “rainy day that’s not
a holiday”.
 The concept of granularity in (Bettini et al. 2002)
corresponds to the temporal sequence concept in our
terminology. All of the examples they give are uniform
temporal sequences. For example, their "hour" granularity
within an interval T is the set s such that
everynthp(s,T,hr1,1), where hr1 is to hr as Monday1 is

to Monday (see (Pan and Hobbs 2005) for the definition of
Monday and Monday1).
 In order to map easily between OWL-Time and
iCalendar (Dawson and Stenerson 1998), we have
introduced the predicate byTulistRecurs which is a
special predicate for handling temporal aggregates that
only involve temporal units (see (Pan and Hobbs 2005) for
its definition axiom):
 byTulistRecurs (s,ls,s’,tu,tu’)

 It says that a temporal sequence s consists of a list (ls) of
elements with temporal unit tu of the temporal sequence s’
whose temporal unit is tu’. For example, byTulistRecurs
(s,{1, 5, 20},s’,*Week*,*Year*) defines a temporal
sequence s of “every 1st, 5th and 20th weeks of a sequence
(s’) of years”.

4.1. Temporal Sequences and Their Members
In order to encode the temporal aggregates ontology in
OWL, we first defined temporal sequence. It has only one
optional property hasMemeber which maps from a temporal
sequence to any temporal thing. A temporal sequence can
have no (empty sequence) or many members:

 <owl:Class rdf:ID="TemporalSeq">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasMember" />
 <owl:minCardinality
 rdf:datatype="&xsd;nonNegativeInteger">0
 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasMember">
 <rdfs:domain rdf:resource="#TemporalSeq" />
 <rdfs:range rdf:resource="#TemporalThing" />
 </owl:ObjectProperty>

 Since we also want to have a backward link pointing
from the temporal sequence member to its associated
sequence, a TemporalSeqMember class is defined. It’s a
subclass of Temporal Thing, and has a required pair of
properties: isMemberOf and hasPosition, so that it can not
only point back to the associated sequence but also locate
itself in the sequence:

 <owl:Class rdf:ID="TemporalSeqMember">
 <rdfs:subClassOf rdf:resource="#TemporalThing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isMemberOf" />
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasPosition" />
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>

 </rdfs:subClassOf>
 </owl:Class>

 <owl:ObjectProperty rdf:ID="isMemberOf">
 <rdfs:domain rdf:resource="#TemporalSeqMember" />
 <rdfs:range rdf:resource="#TemporalSeq" />
 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="hasPosition">
 <rdfs:range rdf:resource="&xsd;integer" />
 </owl:DatatypeProperty>

 Since hasPosition is also used for other classes, as will
see later, it only has a range of intergers.
 For a temporal sequence member that is associated
with multiple sequences, multiple instances of
TemporalSeqMember must be defined. The reason for
defining it in this way is that for a given temporal sequence
member instance, it will only have one pair of isMemberOf
and hasPosition values, so that it’s not confusing which
hasPosition value should be paired with which
isMemberOf value. Moreover, different temporal sequences
may apply different attributes to their members.

4.2. Temporal Aggregate Description
The most important class in the OWL encodings of the
temporal aggregates ontology is the temporal aggregate
description class. Analogous to the calendar-clock
description, it specifies the temporal aggregate description
for temporal sequences, and it’s associated with the
temporal sequence class by hasTemporalAggregate-
Description property.
 The temporal aggregate description has the following
fields/properties: hasStart, hasEnd, hasContext-
TemporalSeq, hasithTemporalUnit, hasTemporalUnit,
hasContextTemporalUnit, hasPosition, hasGap, and
hasCount:

 <owl:Class rdf:ID="TemporalAggregateDescription">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasStart" />
 <owl:maxCardinality
 rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 ...
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasCount" />
 <owl:maxCardinality
 rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:ObjectProperty
 rdf:ID="hasTemporalAggregateDescription">
 <rdfs:domain rdf:resource="#TemporalSeq" />
 <rdfs:range rdf:resource="#TemporalAggregateDescription" />
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasStart">
 <rdfs:domain rdf:resource="#TemporalAggregateDescription" />
 <rdfs:range rdf:resource="#InstantThing" />
 </owl:ObjectProperty>

 The optional properties hasStart and hasEnd map from
the temporal aggregate description to the instant thing,
specifying the start and the end instants of a temporal
sequence. The calendar and clock properties described in
Section 3 can then be used to specify the start and the end
times or dates the instants are in.

<owl:ObjectProperty rdf:ID="hasContextTemporalSeq">
 <rdfs:domain rdf:resource="#TemporalAggregateDescription" />
 <rdfs:range rdf:resource="#TemporalSeq" />
 </owl:ObjectProperty>

 The optional property hasContextTemporalSeq maps
from the temporal aggregate description to the temporal
sequence, specifying the context (super) temporal sequence
of a given (sub) temporal sequence.
 It corresponds to s0 in everynthp(s,s0,p,n) and s’ in
byTulistRecurs(s,ls,s’,tu,tu’). When it’s not present,
context-free temporal aggregates (e.g. “every Monday”)
can be represented.

 <owl:DatatypeProperty rdf:ID="hasithTemporalUnit">
 <rdfs:domain rdf:resource="#TemporalAggregateDescription" />
 <rdfs:range rdf:resource="&xsd;positiveInteger" />
 </owl:DatatypeProperty>

 The required property hasithTemporalUnit maps from
the temporal aggregate description to positive integers,
specifying the ith temporal unit elements in the temporal
sequence.
 It corresponds to ls in byTulistRecurs(s,ls,s’,
tu,tu’). Thus it’s very possible to have many such
property values for a given temporal sequence. For
example, “every 3rd Monday, Tuesday, and Friday” (such
examples will be illustrated in detail in the next section).

 <owl:ObjectProperty rdf:ID="hasTemporalUnit">
 <rdfs:domain rdf:resource="#TemporalAggregateDescription" />
 <rdfs:range rdf:resource="#TemporalUnit" />
 </owl:ObjectProperty>
 </owl:ObjectProperty>

 The required properties hasTemporalUnit and the
optional hasContextTemporalUnit map from the temporal
aggregate description to the temporal unit, as defined in
Section 3.1. They specify the temporal unit of the given
temporal sequence and the context temporal sequence
respectively. They correspond to tu and tu’ in
byTulistRecurs(s,ls,s’,tu,tu’).
 The context temporal unit is associated with the context
temporal sequence property. Thus if the context temporal
sequence is not present, so is the context temporal unit, but
not vice versa, since it’s possible that the temporal unit of
the context temporal sequence is unknown or not relevant.

 <owl:DatatypeProperty rdf:ID="hasPosition">
 <rdfs:range rdf:resource="&xsd;integer" />
 </owl:DatatypeProperty>

 The optional property hasPosition is a shared property
with the TemporalSeqMember class. It specifies the position
of the element in the temporal sequence. For example, “the
first two Tuesdays in every May” would have hasPosition
value of 2. It’s also possible to have negative positions. For
example, “the last Thursday in every November” would
have hasPosition value of -1.
 If this property value is not present, all the positions will
be included in the temporal sequence. For example, “the
Thursday in every November” includes all the Thursdays
in every November, while “the last Thursday in every
November” only includes the last Thursday in every
November.

 <owl:DatatypeProperty rdf:ID="hasGap">
 <rdfs:domain rdf:resource="#TemporalAggregateDescription" />
 <rdfs:range rdf:resource="&xsd;positiveInteger" />
 </owl:DatatypeProperty>

 The optional property hasGap maps from the temporal
aggregate description to positive integers, specifying the
gap between the elements in the temporal sequence. If it’s
not present, the default value of 1 will be used, for
example, as in “every Monday”.
 It corresponds to n in everynthp(s,s0,p,n). For
example, “every 3rd Monday” would have hasGap value of
3.

 <owl:DatatypeProperty rdf:ID="hasCount">
 <rdfs:domain rdf:resource="#TemporalAggregateDescription" />
 <rdfs:range rdf:resource="&xsd;positiveInteger" />
 </owl:DatatypeProperty>

 The optional property hasCount maps from the temporal
aggregate description to positive integers, specifying the
cardinality or the size of the temporal sequence. For
example, “four consecutive Sundays” would have
hasCount value of 4.

5. Temporal Aggregates Examples
In this section, we will demonstrate how our temporal
aggregates ontology can be used to represent different
kinds of temporal aggregates examples in both FOL
axioms and OWL encodings, including complex multiple-
layered temporal aggregates and conditional temporal
aggregates.

• Every other Monday in every 3rd month.

FOL:
 (∃ s,s1,s2) [everynthp(s2,s1,Month1,3)
 ∧ everynthp(s,s2,Monday1,2)]

 where (∀ m) [Month1(m) ≡ (∃ n,x) [calInt(m,n,*Month*,x)]]

 (∀ d) [Monday1(d) ≡ (∃ w) [Monday(d,w)2]]

OWL:
 <time-entry:TemporalSeq rdf:ID="tseq">

<time-entry:hasTemporalAggregateDescription
 rdf:resource="#everyOtherMondayEvery3rdMonth" />

 </time-entry:TemporalSeq>

 <time-entry:TemporalSeq rdf:ID="tseq-every3rdMonth">

<time-entry:hasTemporalAggregateDescription
 rdf:resource="#every3rdMonth" />

 </time-entry:TemporalSeq>

 <time-entry:TemporalAggregateDescription
 rdf:ID="every3rdMonth">

<time-entry:hasTemporalUnit
 rdf:resource="&time-entry;unitMonth" />
<time-entry:hasGap rdf:datatype="&xsd;positiveInteger">3

 </time-entry:TemporalAggregateDescription>

 <time-entry:TemporalAggregateDescription
 rdf:ID="everyOtherMondayEvery3rdMonth">

<time-entry:hasContextTemporalSeq
 rdf:resource="#tseq-every3rdMonth" />
<time-entry:hasithTemporalUnit
 rdf:datatype="&xsd;positiveInteger">1
</time-entry:hasithTemporalUnit>
<time-entry:hasTemporalUnit
 rdf:resource="&time-entry;unitDay" />
<time-entry:hasContextTemporalUnit
 rdf:resource="&time-entry;unitMonth" />
<time-entry:hasGap rdf:datatype="&xsd;positiveInteger">2
</time-entry:hasGap>

 </time-entry:TemporalAggregateDescription>

 The FOL axiom defines s as the set corresponding to the
given temporal aggregate. The first part of the axiom
defines s2 as the set corresponding to “every 3rd month”,
and it serves as the context temporal sequence for the
desired temporal sequence s.
 The OWL encodings show how hasContext-
TemproalSeq is used to represent a two-layered temporal
sequence (“every other Monday” in “every 3rd month”),
and how hasGap is used to represent “every other” (with a
gap of 2) and “every 3rd” (with a gap of 3).
 In order to define a temporal sequence (i.e., tseq) for the
given temporal aggregate, we need to first define a
temporal description for that (i.e.,
everyOtherMondayEvery3rdMonth). To represent this two-
layered temporal sequence, we first define the outer layer
temporal sequence (i.e., “every 3rd month”), and it serves
as the context temporal sequence for the inner layer
temporal sequence (i.e., “every other Monday”).
 The same such embedding structure for multiple-layered
temporal sequences is shown consistently in the above
representations in both FOL axioms and OWL encodings.

• Every other week on Monday, Wednesday and Friday

until December 24, 1997, but starting on Tuesday,
September 2, 1997.3

2 It says d is the Monday of the week w, see (Hobbs and Pan 2004) for its
definition.
3 This example is taken from iCalendar RFC 2445 page 120.

FOL:
 (∃ s,s’,T,t1,t2) [everynthp(s’,{T},Week1,2)
 ∧ byTulistRecurs(s,{1, 3, 5},s’,*Day*,*Week*)
 ∧ begins(t1,T) ∧ ends(t2,T) ∧ dateOf(t1,1997,9,2)
 ∧ dateOf(t2,1997,12,24)]

 where (∀ w) [Week1(w) ≡ (∃ n,x) [calInt(w,n,*Week*,x)]]

OWL:
 <time-entry:TemporalSeq rdf:ID="tseq">

<time-entry:hasTemporalAggregateDescription
 rdf:resource="#MWFeveryOtherWeek" />

 </time-entry:TemporalSeq>

 <time-entry:TemporalSeq rdf:ID="tseq-everyOtherWeek">

<time-entry:hasTemporalAggregateDescription
 rdf:resource="#everyOtherWeek" />

 </time-entry:TemporalSeq>

 <time-entry:TemporalAggregateDescription
 rdf:ID="everyOtherWeek">

<time-entry:hasTemporalUnit
 rdf:resource="&time-entry;unitWeek" />
<time-entry:hasGap rdf:datatype="&xsd;positiveInteger">2
</time-entry:hasGap>

 </time-entry:TemporalAggregateDescription>

 <time-entry:TemporalAggregateDescription
 rdf:ID="MWFeveryOtherWeek">
 <time-entry:hasStart rdf:resource="#tseqStart" />
 <time-entry:hasEnd rdf:resource="#tseqUntil" />

<time-entry:hasContextTemporalSeq
 rdf:resource="#tseq-everyOtherWeek" />
<time-entry:hasithTemporalUnit
 rdf:datatype="&xsd;positiveInteger">1
</time-entry:hasithTemporalUnit>
<time-entry:hasithTemporalUnit
 rdf:datatype="&xsd;positiveInteger">3
</time-entry:hasithTemporalUnit>
<time-entry:hasithTemporalUnit
 rdf:datatype="&xsd;positiveInteger">5
</time-entry:hasithTemporalUnit>
<time-entry:hasTemporalUnit
 rdf:resource="&time-entry;unitDay" />
<time-entry:hasContextTemporalUnit
 rdf:resource="&time-entry;unitWeek" />

 </time-entry:TemporalAggregateDescription>

 <time-entry:Instant rdf:ID="tseqStart">

<time-entry:inCalendarClock
 rdf:resource="#tseqStartDescription" />

 </time-entry:Instant>

 <time-entry:Instant rdf:ID="tseqUntil">

<time-entry:inCalendarClockDataType
 rdf:datatype="&xsd;dateTime">1997-12-24
</time-entry:inCalendarClockDataType>

 </time-entry:Instant>

 <time-entry:CalendarClockDescription
 rdf:ID="tseqStartDescription">
 <time-entry:unitType rdf:resource="&time-entry;unitDay" />

<time-entry:year rdf:datatype="&xsd;gYear">1997
</time-entry:year>
<time-entry:month rdf:datatype="&xsd;gMonth">9
</time-entry:month>

 <time-entry:day rdf:datatype="&xsd;gDay">2</time-entry:day>
<time-entry:dayOfWeekField
 rdf:datatype="&xsd;nonNegativeInteger">2

 </time-entry:dayOfWeekField>
 </time-entry:CalendarClockDescription>

 The FOL axiom defines s as the set corresponding to the
given temporal aggregate. The first part of the axiom
defines s’ as the set corresponding to “every other week”,
and it serves as the context temporal sequence for the
desired temporal sequence s. Predicates begins and ends
are used to represent the start and the end times of the
given temporal aggregate.
 Besides what is shown in the first example, the OWL
encodings for this one show how hasithTemporalUnit is
used to represent a list of temporal elements in the
temporal sequence (i.e., “on Monday, Wednesday, and
Friday”), and how hasStart and hasEnd are used and
combined with the calendar and clock representations to
represent the start and end dates of the given temporal
aggregate.
 This example also shows the tradeoffs of using XSD
dateTime and the CalendarClockDescription class
defined in OWL-Time, as mentioned in Section 3. In this
example, the end date is represented using XSD dateTime,
while the start date is represented using the
CalendarClockDescription class. As we can see, XSD
dateTime is simpler, but there’s some information it cannot
represent, for example, the start date is Tuesday, and this is
the reason why CalendarClock-Description class (with
dayOfWeekField property) is used for the start date. In fact,
CalendarClock-Description class can also represent
other information that XSD dateTime cannot, such as
“week” and “day of year”. Moreover, each field of the
class is separate so that it’s easier to extract the values of
some fields for the later use and easier to reason about.

• Every Monday that's a holiday.

FOL:

(∃ s,s0) [everyp(s,s0,HolidayMonday)]

 where (∀ d) [HolidayMonday(d)
 ≡ (∃ w) [Monday(d,w)] ∧ holiday(d)4]

OWL:
 <EveryHolidayMonday rdf:ID="tseq" />

 <owl:Class rdf:ID="EveryHolidayMonday">
 <rdfs:subClassOf rdf:resource="&time-entry;TemporalSeq"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasMember" />
 <owl:allValuesFrom
 rdf:resource="#EveryHolidayMondayMember" />
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:ID="EveryHolidayMondayMember">

<rdfs:subClassOf
 rdf:resource="&time-entry;TemporalSeqMember"/>

 <rdfs:subClassOf rdf:resource="&time-entry;Holiday"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isMemberOf" />

4 It says d is a Holiday, see (Hobbs and Pan 2004) for its definition.

 <owl:allValuesFrom rdf:resource="#EveryMonday" />
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:ID="EveryMonday">
 <rdfs:subClassOf rdf:resource="&time-entry;TemporalSeq"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
 rdf:resource="#hasTemporalAggregateDescription" />
 <owl:hasValue rdf:resource="#everyMonday" />
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <time-entry:TemporalAggregateDescription
 rdf:ID="everyMonday">

<time-entry:hasithTemporalUnit
 rdf:datatype="&xsd;positiveInteger">1
</time-entry:hasithTemporalUnit>
<time-entry:hasTemporalUnit
 rdf:resource="&time-entry;unitDay" />

 </time-entry:TemporalAggregateDescription>

 This example shows an important advantage of using
our temporal aggregates ontology. It can represent
conditional temporal aggregates which is hard or
impossible in some other representations. For example,
there is no way in iCalendar to express such conditional
temporal aggregates or any temporal aggregates that are
not in a form of standard temporal units, such as
“holidays”, “voting dates”, “days with classes”, “months
starting with a Monday”, and so on.
 As we can see, the FOL axiom is much simpler than the
corresponding OWL encodings. It defines s as the set
corresponding to the given temporal aggregate, and a new
predicate (i.e., HolidayMonday) for this conditional
temporal aggregate.
 The OWL encodings show how this kind of conditional
temporal aggregates can be defined in our representation in
OWL.
 The most important class in this example is the
EveryHolidayMondayMember class which defines a class
for the members of the desired temporal sequence class
(i.e., EveryHolidayMonday). This class is both a temporal
sequence member and a holiday, and its associated
temporal sequence class must be “every Monday” (i.e.,
EveryMonday class).
 The desired temporal sequence is an instance of the
EveryHolidayMonday class whose members are only from
the EveryHolidayMondayMember class.

6. Conclusion
 In this paper, we have described our work of
representing temporal aggregates in OWL-Time. The
ontology was represented in both first-order logic axioms
and OWL encodings. Examples have also been shown to
illustrate how our ontology can be used to represent
temporal aggregates information in FOL and OWL for the
Semantic Web.

Acknowledgements
This work was supported by the Advanced Research and
Development Activity (ARDA) under DOD/DOI/ARDA
Contract No. NBCHC040027. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the ARDA or the Department of Interior.

7. References
Allen, J.F, 1984. Towards a general theory of action and
time. Artificial Intelligence 23, pp. 123-154.

Berners-Lee, T.; Hendler, J.; and Lassila, O, 2001. The
Semantic Web. Scientific American, 284(5):34–43.

Bettini, C., Wang, S. X. and Jajodia, S., 2002. Solving
multi-granularity temporal constraint networks, Artificial
Intelligence, vol. 140, pp. 107-152.

Dawson, F. and Stenerson, D, 1998. Internet Calendaring
and Scheduling Core Object Specification (iCalendar),
RFC2445, Internet Society.

Dumas, M., J. O’Sullivan, M. Heravizadeh, D. Edmond,
and A. Hofstede, 2001. Towards a semantic framework for
service description. In Proceedings of the IFIP Conference
on Database Semantics, Hong Kong.

Hobbs, J. R. and Pan, F, 2004. An Ontology of Time for
the Semantic Web. ACM Transactions on Asian Language
Processing (TALIP) Vol. 3, No. 1, pp. 66-85.

McGuinness, D. L. and Harmelen, F. v, 2003. OWL Web
Ontology Language Overview. World Wide Web
Consortium (W3C) Candidate Recommendation.

McIlraith, S. A., Son, T. C. and Zeng, 2001. H. Semantic
Web Services. IEEE Intelligent Systems 16(2):46–53.

Medjahed, B., Bouguettaya, A. and Elmagarmid, A, 2003.
Composing Web Services on the Semantic Web. The Very
Large Data Base Journal, Special Issue on the Semantic
Web,Springer Verlag, 12(4).

Motakis, I. and C. Zaniolo, 1997. Temporal Aggregation in
Active Databases Rules. In International Conference. on
the Management of Data, May.

OWL-S Coalition, 2004. OWL-S 1.1 Release.
(http://www.daml.org/services/owl-s/1.1/)

Pan, F. and Hobbs, J. R., 2004. Time in OWL-S. In
Proceedings of the AAAI Spring Symposium on Semantic
Web Services, Stanford University, CA.

Pan, F. and Hobbs, J. R., 2005. Temporal Aggregates in
OWL-Time. In Proceedings of the 18th International
Florida Artificial Intelligence Research Society
Conference (FLAIRS), Clearwater Beach, Florida, pp. 560-
565, AAAI Press.

