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Abstract 
In this paper, we describe our approach for representing 
temporal aggregates in OWL-Time, and a systematic way of 
mapping iCalendar recurrence sets to OWL-Time temporal 
sequences. We present several examples of natural language 
expressions for temporal aggregates and how they would be 
represented in OWL-Time; some examples can be described 
in both iCalendar and OWL-Time, while others can only be 
represented in OWL-Time. We also illustrate how we can 
translate from a natural language sentence to our 
representation.  

Introduction   
Natural language texts involve many expressions for 
temporal aggregates, such as “every Tuesday”, “every 3rd 
Monday in 2001”, “4 consecutive Sundays”, “3 weekdays 
after today”, “the 4th  of 6 days of voting”, and so on. Thus 
it is crucial to have a good ontology of temporal aggregates 
to represent these expressions. 
 OWL-Time (formerly DAML-Time, Hobbs and Pan 
2004) is an ontology of temporal concepts for describing 
the temporal content of Web pages and the temporal 
properties of Web services. The initial version of the 
ontology axiomatized the topological aspects of time, 
measures of duration, and the clock and calendar. We have 
now extended it to cover temporal aggregates as well, and 
this paper describes that work.  
 The representation proposed in this paper is useful for 
many natural language processing tasks, such as 
information retrieval and question answering. For example, 
a question answering system may have in its knowledge 
base that “Bob and Mary had meetings on every 3rd 
Mondays in 2004 except holidays.” and we needs a 
temporal aggregates ontology to reason and answer 
questions like “how many meetings did Bob and Mary 
have in 2004?” 
 In Section 2 we introduce the basic temporal concepts 
and parts of the full OWL-Time ontology that are essential 
for our treatment of temporal aggregates. In Section 3 we 
describe our general approach to temporal aggregates that 
is intended to handle any collection of temporal entities, 
regardless of how they are described. An important special 
case is temporal aggregates consisting of clock and 
calendar temporal entities, like calendar months. iCalendar 
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(Dawson and Stenerson 1998) is a popular framework for 
describing these, and in Section 4 we show how iCalendar 
can be embedded in OWL-Time. In Section 5 we present 
several examples of natural language expressions for 
temporal aggregates and how they would be represented in 
OWL-Time. Some can be described in both iCalendar and 
OWL-Time, while others can only be represented in OWL-
Time. We also demonstrate how we can translate from a 
natural language sentence to our representation. 

OWL-Time Basics 
The full definitions of OWL-Time can be found in (Hobbs 
and Pan, 2004). Here we present those parts that are 
essential for our treatment of temporal aggregates. In an 
extension of the time ontology, we also allow temporal 
predicates to apply directly to events, should the user wish, 
but here we restrict our treatment to temporal entities. 

Topological Temporal Relations  
There are two subclasses of TemporalEntity: Instant and 
Interval.  
  (∀ T)[TemporalEntity(T) ≡  Interval(T) ∨ Instant(T)] 
Intervals are, intuitively, things with extent and instants 
are, intuitively, point-like in that they have no interior 
points.  
    The predicates “begins” and “ends” are relations 
between instants and temporal entities.  
 begins(t,T) ⊃  Instant(t) ∧ TemporalEntity(T)  
 ends(t,T)  ⊃  Instant(t) ∧ TemporalEntity(T) 
The predicate “inside” is a relation between an instant and 
an interval.  
 inside(t,T)  ⊃  Instant(t) ∧ Interval(T) 
This concept of “inside” is not intended to include 
beginnings and ends of intervals. 
    It will be useful in characterizing clock and calendar 
terms to have a relation between instants and intervals that 
says that the instant is inside or the beginning of the 
interval.  
 (∀ t,T)[beginsOrIn(t,T)  ≡  [begins(t,T)  ∨  inside(t,T)]] 
We can define a proper interval as one whose start and end 
are not identical.  
 (∀ T)ProperInterval(T)  
  ≡  Interval(T) 
   ∧ (∀ t 1 ,t 2 )[begins(t 1 ,T) ∧ ends(t 2 ,T) ⊃ t 1  ≠ t 2 ]] 



There is a “before” relation on temporal entities, which 
gives directionality to time. If temporal entity T 1  is before 
temporal entity T 2 , then the end of T 1  is before the start 
of T 2 . Thus, “before” can be considered to be basic to 
instants and derived for intervals.  
 (∀ T 1 ,T 2 )[before(T 1 ,T 2 ) 
   ≡ (∃ t 1 ,t 2 )[ends(t 1 ,T 1 ) ∧ begins(t 2 ,T 2 ) ∧ before(t 1 ,t 2 )]]  
The relations between intervals defined in Allen’s 
temporal interval calculus (Allen 1984) can be defined in a 
straightforward fashion in terms of “before” and identity 
on the beginning and end points. It is a bit more 
complicated than the reader might at first suspect, since 
allowance has to be made for the possibility of infinite 
intervals. Since one of the intervals could be infinite and 
lack an end point, the relation between the end points has 
to be dependent on their existence. 
 OWL-Time includes axioms defining the interval 
relations “intEquals”, “intBefore”, “intMeets”, 
“intOverlaps”, “intStarts”, “intDuring”, “intFinishes”, and 
their reverse interval relations: “intAfter”, “intMetBy”, 
“intOverlappedBy”, “intStartedBy”, “intContains”, 
“intFinishedBy”. For example, the definition of 
“intEquals” is: 
 (∀ T 1 ,T 2 )[intEquals(T 1 ,T 2 ) 
    ≡ [ProperInterval(T 1 ) ∧ ProperInterval(T 2 )  
      ∧ (∀ t 1 )[begins(t 1 ,T 1 ) ≡ begins(t 1 ,T 2 )]  
      ∧ (∀ t 2 )[ends(t 2 ,T 1 ) ≡ ends(t 2 ,T 2 )]]] 

Clock and Calendar 
A day as a calendar interval begins at and includes 
midnight, and goes until, but does not include, the next 
midnight. This contrasts with a day as a duration which is 
any interval that is 24 hours in length. The day as a 
duration is dealt with in the full OWL-Time ontology; for 
this paper we need only the day as a calendar interval. 
    Including the beginning but not the end of a calendar 
interval in the interval may strike some as arbitrary. But we 
get a cleaner treatment if, for example, all times of the 
form 12:xx am, including 12:00 am, are part of the same 
hour and day, and all times of the form 10:15:xx, including 
10:15:00, are part of the same minute. Clock intervals are 
described with the predicate “clockInt”:  
 clockInt(y,n,u,x) 
This expression says that y is the nth clock interval of type 
u in x. For example, the proposition “clockInt(10:03,3, 
*Minute*,[10:00,11:00])” holds. Here u is a member of the 
set of clock units, that is, one of *Second*, *Minute*, or 
*Hour*. The larger interval x may not line up exactly with 
clock intervals. In this case we take y to be the nth 
complete clock interval of type u in x. In addition, there is 
a calendar unit function with similar structure:  
 calInt(y,n,u,x) 
This says that y is the nth calendar interval of type u in x. 
For example, the proposition “calInt(12Mar2002,12, 
*Day*,Mar2002)” holds. Here u is one of the calendar 
units *Day*, *Week*, *Month*, and *Year*. 

    A distinction is made above between clocks and 
calendars because they differ in how they number their 
unit intervals. The first minute of an hour is labeled with 0; 
for example, the first minute of the hour [10:00,11:00] is 
10:00. The first day of a month is labeled 1; the first day of 
March is March 1. We number minutes for the number just 
completed; we number days for the day we are working 
on. Thus, if the larger unit has N smaller units, the 
argument n in “clockInt” runs from 0 to N-1; whereas, in 
“calInt”, n runs from 1 to N. To state properties true of 
both clock and calendar intervals, we can use the predicate 
“calInt” and relate the two notions with the axiom  
 calInt(y,n,u,x) ≡ clockInt(y,n-1,u,x) 
The names of months can be defined in terms of the 
predicate “calInt”. For example, July is the seventh month 
of a year. 
   July(m,y) ≡ 
     calInt(m,7,*Month*,y) ∧ (∃ n,t) [calInt(y,n,*Year*,t)] 
The top-level time interval (for modern applications) is 
CE(z), which is the Common Era in time zone z. Thus, the 
year 2005 in the Eastern Standard Time Zone is the y such 
that “calInt(y, 2005, *Year*, CE(*EST*))”. 
 A week is any seven consecutive days. A calendar week, 
by contrast, according to a commonly adopted convention, 
starts at midnight, Saturday night, and goes to the next 
midnight, Saturday night. That is, weeks start with Sunday. 
(By contrast, the ISO 8061 standard week starts with 
Monday.) There are 52 weeks in a year, but there are not 
usually 52 calendar weeks in a year. Weeks are 
independent of months and years. However, we can still 
talk about the nth week in some larger period of time, e.g., 
the third week of the month or the fifth week of the 
semester. To say a time interval is a calendar-week, we say 
 calInt(y,n,*Week*,x)  
As it happens, the n and x arguments will often be 
irrelevant when we only want to say that some period is a 
calendar week, and not say which. 
    The day of the week is a calendar interval of type 
*Day*. The nth day-of-the-week in a week is the nth day 
in that interval.  
 dayofweek(y,n,x) ≡  
    calInt(y, n,*Day*,x) ∧  (∃ n1,x1) calInt(x,n,*Week*, x1) 
The days of the week have special names in English, such 
as Sunday, Monday, and so on. For example, Monday is 
defined as follows: 
 dayofweek(y,2,x) ≡ Monday(y,x)  
This says that y is the Monday of week x. 
 The ISO 8061 standard week is related to the traditional 
week as follows: 
 0 < n < 7 ⊃ [isodayofweek (y,n,x) ≡ dayofweek(y,n+1,x)]  
 isodayofweek (y,7,x) ≡ Sunday(y,x) 
    Holidays can also be specified in this ontology. To say 
that July 4 is a holiday one could write 
  (∀ d,m,y)[calInt(d,4,*Day*,m) ∧ July(m,y) ⊃ holiday(d)] 



 Holidays like Easter can be defined in terms of this 
ontology coupled with an ontology of the phases of the 
moon. 
 Standard notation for date lists the year, month, day, and 
time zone. It is useful to define a predication for this.  
 dateOf(t,y,m,d,z) 
    ≡ (∃d 1 ,m 1 ,y 1 ,e) [beginsOrIn(t,d 1 ) 
      ∧ calInt(d 1 ,d,*Day*,m 1 ) ∧ calInt(m 1 ,m,*Month*,y 1 ) 
     ∧ calInt(y 1 ,y,*Year*,e) ∧ CE(z) = e] 
Dates of intervals can be defined similarly. 

Temporal Aggregates 
In this section, we assume the notation of set theory.  Sets 
and elements of sets will be ordinary individuals, and 
relations such as "member" will be relations between such 
individuals. In particular, we will use the relation 
"member" between an element of a set and the set. We will 
use the notation "{x}" for the singleton set containing the 
element x. We will use the function “union” to refer to the 
union operation between two sets. The function "card" will 
map a set into its cardinality. 
 In addition, for convenience, we will make moderate use 
of second-order formulations, and quantify over predicate 
symbols.  This could be eliminated with the use of an 
"apply" predicate and axiom schemas systematically 
relating predicate symbols to corresponding individuals, 
e.g., the axiom schema for unary predicates p, 
    (∀ x)[apply(*p*,x) ≡ p(x)] 
It will be convenient to have a relation "ibefore" that 
generalizes over several interval and instant relations, 
covering both "intBefore" and "intMeets" for proper 
intervals. 
    (∀ T1,T2)[ibefore(T1,T2)  
       ≡ [before(T1,T2) ∨ [ProperInterval(T1)  
     ∧ ProperInterval(T2) ∧ intMeets(T1,T2)]]] 
It will also be useful to have a relation "iinside" that 
generalizes over all temporal entities and aggregates.  We 
first define a predicate "iinside-1" that generalizes over 
instants and intervals and covers "intStarts", "intFinishes" 
and "intEquals" as well as "intDuring" for intervals.   
 A temporal aggregate is first of all a set of temporal 
entities, but it has further structure.  The relation "ibefore" 
imposes a natural order on some sets of temporal entities, 
and we will use the predicate "tseq" to describe those sets. 
    (∀ s)[tseq(s) ≡ (∀ t)[member(t,s) ⊃ TemporalEntity(t)] 
                       ∧  (∀ t1,t2)[member(t1,s) ∧ member(t2,s) 
                            ⊃ [t1 = t2 ∨ ibefore(t1,t2) ∨ ibefore(t2,t1)]]] 
That is, a temporal sequence is a set of temporal entities 
totally ordered by the "ibefore" relation.  A temporal 
sequence has no overlapping temporal entities. 
 It will be useful to have the notion of a temporal 
sequence whose elements all have a property p. 
    (∀ s,p)[tseqp(s,p) ≡ tseq(s) ∧ (∀ t)[member(t,s) ⊃ p(t)]] 
The same temporal aggregate can be broken up into a set 
of intervals in many different ways.   

 A minimal temporal sequence is one whose intervals 
are maximal, so that the number of intervals is minimal.  
We can view a week as a week or as 7 individual 
successive days; the first would be minimal.  We can go 
from a non-minimal to a minimal temporal sequence by 
concatenating intervals that meet.  
    (∀ s)[min-tseq(s)  
       ≡ (∀ t1,t2)[member(t1,s) ∧ member(t2,s) 
       ⊃ [t1 = t2 ∨ (∃ t)[ibefore(t1,t) ∧ ibefore(t,t2) 
    ∧ ~member(t,s)]]]] 
That is, s is a minimal temporal sequence when any two 
distinct intervals in s have a temporal entity not in s 
between them. 
 A temporal sequence s1 is a minimal equivalent temporal 
sequence to temporal sequence s2 if s1 is minimal and 
equivalent to s2. 
    (∀ s1,s2)[min-equiv-tseq(s1,s2) 
    ≡ min-tseq(s1) ∧ tseq(s2)  
     ∧ (∀ t,t2)[TemporalEntity(t) ∧ iinside-1(t,t2)  
     ∧ member(t2,s2) ⊃ (∃ t1)[member(t1,s1) ∧ iinside(t,t1)]]] 
We can now generalize "iinside-1" to the predicate 
"iinside", which covers both temporal entities and temporal 
sequences.  A temporal entity is "iinside" a temporal 
sequence if it is "iinside-1" one of the elements of its 
minimal equivalent temporal sequence. 
    (∀ t,s)[iinside(t,s) 
       ≡ [TemporalEntity(t) ∧ TemporalEntity(s) ∧ iinside-1(t,s)] 
           ∨ [TemporalEntity(t) ∧ tseq(s)  
    ∧ (∃ s1,t1)[min-equiv-tseq(s1,s) ∧ member(t1,s1) 
       ∧ iinside-1(t,t1)]]] 
We can define a notion of "isubset" on the basis of 
"iinside". 
    (∀ s,s0)[isubset(s,s0)  
        ≡ [tseq(s) ∧ tseq(s0) ∧ (∀ t)[member(t,s) ⊃ iinside(t,s0)]]] 
That is, every element of temporal sequence s is inside 
some element of the minimal equivalent temporal sequence 
of s0. 
 We can also define a relation of "idisjoint" between two 
temporal sequences.  
    (∀ s1,s2)[idisjoint(s1,s2)  
              ≡ [tseq(s1) ∧ tseq(s2)  
                    ∧ ~(∃ t,t1,t2)[member(t1,s1) ∧ member(t2,s2) 
                                   ∧ iinside(t,t1) ∧ iinside(t,t2)]]] 
That is, temporal sequences s1 and s2 are disjoint if there 
is no overlap between the elements of one and the elements 
of the other. 
 The last temporal entity in a temporal sequence is the 
one with any of the others "ibefore" it. 
    (∀ t,s)[last(t,s)  
            ≡ [tseq(s) ∧ member(t,s)  
        ∧ (∀ t1)[member(t1,s) ⊃ [t1 = t ∨ ibefore(t1,t)]]]] 
More generally, we can talk about the nth element of 
temporal sequence. 
    (∀ t,s)[nth(t,n,s)  
       ≡ [tseq(s) ∧ member(t,s) ∧ natnum(n)  



  ∧ (∃ s1)[ (∀ t1)[member(t1,s1)  
             ≡ [member(t1,s) ∧ ibefore(t1,t)]] ∧ card(s1) = n-1]]] 
That is, the nth element of a temporal sequence has n-1 
elements before it. 
 The predicate "ngap" will enable us to define 
"everynthp" below. Essentially, we are after the idea of a 
temporal sequence s containing every nth element of s0 for 
which p is true.  The predicate "ngap" holds between two 
elements of s and says that there are n-1 elements between 
them that are in s0 and not in s for which p is true. 
    (∀ t1,t2,s,s0,p,n) [ngap(t1,t2,s,s0,p,n) 
        ≡ [member(t1,s) ∧ member(t2,s) ∧ tseqp(s,p)  
  ∧ tseq(s0) ∧ isubset(s,s0) ∧ natnum(n) 
         ∧ (∃ s1)[card(s1) = n-1 ∧ idisjoint(s,s1) 
           ∧ (∀ t)[member(t,s1)  
               ≡ [iinside(t,s0) ∧ p(t) ∧ ibefore(t1,t) ∧ ibefore(t,t2)]]]]] 
The predicate "everynthp" says that a temporal sequence s 
consists of every nth element of the temporal sequence s0 
for which property p is true.  It will be useful in describing 
temporal aggregates like "every third Monday in 2001". 
   (∀ s,s0,p,n)[everynthp(s,s0,p,n) 
     ≡ [tseqp(s,p) ∧ tseq(s0) ∧ natnum(n) 
   ∧ (∃ t1)[nth(t1,1,s) ∧ ~(∃ t)[iinside(t,s0) ∧ ngap(t,t1,s,s0,p,n)]] 
     ∧ (∃ t2)[last(t2,s) ∧ ~(∃ t)[iinside(t,s0) ∧ ngap(t2,t,s,s0,p,n)]] 
     ∧ (∀ t1)[last(t1,s) ∨ (∃ t2) ngap(t1,t2,s,s0,p,n)]]] 
That is, the first element in s has no p element n elements 
before it in s0, the last element in s has no p element n 
elements after it, and every element but the last has a p 
element n elements after it. 
 The variable for the temporal sequence s0 is, in a sense, 
a context parameter.  When we say "every other Monday", 
we are unlikely to mean every other Monday in the history 
of the Universe.  The parameter s0 constrains us to some 
particular segment of time.  (Of course, that segment could 
in principle be the entire time line.) 
 The definition of "everyp" is simpler. 
    (∀ s,s0,p)[everyp(s,s0,p)   
  ≡ (∀ t)[member(t,s) ≡ [iinside(t,s0) ∧ p(t)]]] 
It is a theorem that every p is equivalant to every first p. 
    (∀ s,s0,p)[everyp(s,s0,p) ≡ everynthp(s,s0,p,1)] 
We could similarly define "every-other-p", but the 
resulting simplification from "everynthp(s,s0,p,2)" would 
not be sufficient to justify it. 

Embedding iCalendar Recurrence Sets in 
OWL-Time 

Internet Calendaring and Scheduling Core Object 
Specification (iCalendar) is a widely supported standard 
for personal data interchange. It provides the definition of 
a common format for openly exchanging calendaring and 
scheduling information across the Internet. The recurrence 
set in iCalendar is the complete set of recurrence instances 
for a calendar component. iCalendar recurrence sets are a 
subset of OWL-Time temporal sequences. 

 We have developed a systematic way of mapping a 
recurrence set in iCalendar to a temporal sequence in 
OWL-Time. Here we demonstrate this on an illustrative 
subset of recurrence sets. 
 As shown in the next section with natural language 
examples, there are cases that can be expressed in OWL-
Time more accurately than in iCalendar, and there are also 
cases that iCalendar can’t express, but OWL-Time can. 
Moreover, embedding recurrence sets in OWL-Time gives 
us access to the full ontology of time for temporal 
reasoning. 
 A recurrence set s is defined by a recurrence rule r. We 
express this as RecurrenceSetRule(s,r). First, we list the 
properties of a recurrence rule r:  
 (∀ r) [rule(r)  
  ⊃ (∃ tu,g) [freq(r)=tu ∧ TemporalUnit(tu) ∧ gap(g,r)]] 
freq(r) corresponds to the FREQ property of recurrence 
rules. Since it is a required property, it is defined as a 
function mapping from a recurrence rule to a temporal 
unit. For example, FREQ = WEEKLY will have a return 
value of temporal unit *Week*. 
 gap(g,r) corresponds to the INTERVAL property of 
recurrence rules; if it is missing, we assume it is given a 
default value of 1 during the translation process from 
iCalendar to OWL-Time. 
  (∀ r) [rule(r)  
  ⊃ (∃ n) [count(n,r) ∧ natnum(n)]  
        ∨ (∃ t,y,mo,d,h,mi,s,z) [until(t,r) 
     ∧ timeOf(t,y,mo,d,h,mi,s,z)]] 
count(n,r) corresponds to the COUNT property of 
recurrence rules. until(t,r) corresponds to the UNTIL 
property of recurrence rules. It is required in iCalendar that 
either UNTIL or COUNT may appear in a recurrence rule, 
but they must not occur in the same rule. 
 Then, we specify the optional properties of a recurrence 
rule as in: 
 (∀ r, ls) [rule(r) ∧ bysecond(ls, r)  
  ⊃ (∀ s) [member(s, ls) ⊃ integer(s) ∧ 0<=s<=59]] 
corresponding to the BYSECOND property of recurrence 
rules. BYMINUTE, BYHOUR, and so on are defined 
similarly. 
 Now we can map from the recurrence set generated by a 
recurrence rule r with either COUNT or UNTIL to a 
temporal sequence s: 
 (∀ r,n,s,g) [RecurrenceSetRule(s,r) ∧ count(n,r) ∧ gap(g,r)  
  ⊃ (∃ s0) [card(s)=n ∧ everynthp(s,s0,map2p(freq(r)),g)]]   

 (∀ r,t,s,g) [RecurrenceSetRule(s,r) ∧ until(t,r) ∧ gap(g,r) 
  ⊃ (∃ t’,s0) [last(t’,s0) ∧ ends(t,t’)  
   ∧ everynthp(s,s0,map2p(freq(r)),g)]] 
“map2p” is a function that maps from temporal units to 
their corresponding unary predicate names. For example, 
map2p(*year*) = year1, where (∀ y) [year1(y) ≡ (∃ n,x) 
[calInt(y,n,*Year*,x)]] 
 iCalendar can express very complicated recurrence sets. 
For example, “The 1st and 2nd hours of the 4th and 5th 
months of every year” will have a recurrence rule in which 



BYHOUR = 1, 2, BYMONTH = 4, 5, and FREQ = 
YEARLY. 
 To formalize this we need recursion through the 
sequence of temporal units (with the predicate 
“everyithtempunit”) and recursion through the list of 
integers associated with each temporal unit (with the 
predicate “byTulistRecurs”). We do the latter first. 
 (∀ s,ls,r,tu,g) [RecurrenceSetRule(s,r) ∧ bytempunit (ls,r,tu) 
   ∧ gap(g,r)  
   ⊃ (∃ s’,s0) [everynthp(s’,s0,map2p(freq(r)),g)  
    ∧ byTulistRecurs(s,ls,s’,tu,freq(r))]] 

 (∀ s,ls,s’,tu,tu’) [byTulistRecurs (s,ls,s’,tu,tu’) ∧ card(ls) > 1 
    ⊃ (∃ s1,ls1,i,si,i) [ls = union({i},ls1) ∧ ~member(i,ls1)  
   ∧ everyithtempunit(si,s’,i,tu,tu’) ∧ s = union(s1,si)  
   ∧ byTulistRecurs(s1,ls1,s’,tu,tu’)]] 
Base case of the recursion: 
 (∀ s,s’,i,tu,tu’) [byTulistRecurs(s,{i},s’,tu,tu’) 
  ⊃ everyithtempunit(s,s’,i,tu,tu’)] 
“bytempunit” is a generalized relation from bysecond, 
byminute, and so on. It is a relation among a recurrence 
rule r, a temporal unit tu, and a list of values associated 
with BYxxx with that temporal unit. For example,  
 (∀ ls,r) [bytempunit(ls,r,*Second*) ≡ bysecond(ls,r)] 
“byTulistRecurs” is a relation among two temporal 
sequences (s, s’), their temporal units (tu, tu’), and a list of 
values associated with tu. 
 “everyithtempunit” is an important relation among two 
temporal sequences (s, s’), their temporal units (tu, tu’), 
and an integer value i. For example, everyithtempunit(s,s’, 
2,*Month*,*Year*) specifies the members of temporal 
sequence s are the every 2nd month, i.e. February, of the 
members (with temporal unit of *Year*) of temporal 
sequence s’. 
 It’s possible to have a gap between FREQ and BYxxx, 
for example, “the 1st two hours in every month”, which can 
be expressed in iCalendar with FREQ = MONTHLY, 
BYHOUR = 1, 2. To paraphrase this sentence, we get “the 
1st two hours of the 1st day of every month”. In order to 
handle this case, we define the predicate 
“everyithtempunit” recursively: 
 (∀ s1,s2,i,tu1,tu2) [everyithtempunit (s1,s2,i,tu1,tu2)  
 ∧ tulevel(tu2) > tulevel(tu1)+1 ∧ tu1 ≠ *Monthday*   
 ∧ tu1 ≠ *Yearday* ∧ tu1 ≠ *Week*   
    ⊃ (∃ s’) [everyithtempunit (s1,s’,i,tu1,level2tu(tulevel(tu2)-1)) 
      ∧ everyithtempunit (s’,s2,1,level2tu(tulevel(tu2)-1),tu2)]] 
Base case: 
 (∀ s1,s2,i,tu1,tu2) [everyithtempunit (s1,s2,i,tu1,tu2)  
 ∧ tulevel(tu2)=tulevel(tu1)+1 ∧ tu1 ≠ *Monthday*  
 ∧ tu1 ≠ *Yearday* ∧ tu1 ≠ *Week*   
        ⊃ (∀ t1) [member(t1,s1) ≡  
    (∃ t2) [member(t2,s2) ∧ iinside-1(t1,t2)  
     ∧ calclockInt(t1,i,tu1,t2)]]] 

 where calclockInt(y,n,u,x) ≡ calInt(y,n,u,x) ∨ clockInt(y,n,u,x) 

“tulevel” is a function mapping from a temporal unit to its 
level value according to a hierarchy. For example, 
tulevel(*second*) = 1, tulevel(*month*) = 5. 
 “level2tu” is an inverse function of “tulevel”. It maps 
from the level value to the associated temporal unit. For 
example, level2tu(1) = *second*, level2tu(5) = *month*. 
 Month days, year days, and weeks are axiomatized 
specially. 
 iCalendar allows one to specify lists of dates/times as 
well, with the attributes RDATE and EXDATE. These are 
translated into simple temporal sequences. A recurrence set 
is generated by generating recurrence sets specified by the 
RRULE and/or RDATE attributes and by the EXRULE 
and/or EXDATE attributes, subtracting the latter from the 
former, and constraining the result by the DTSTART 
attribute. 

Some Natural Language Examples 
In the previous section, we’ve shown how iCalendar 
statements can be systematically mapped to OWL-Time 
predicates; in this section we demonstrate how these 
predicates in OWL-Time can be used to express natural 
language expressions.  
 We will first take an example from iCalendar, and show 
how to express it in OWL-Time. Then we will show an 
example that OWL-Time can do better than iCalendar. 
After showing an example that iCalendar can’t handle, but 
OWL-Time can, we will finally show more natural 
language expressions that can be represented using OWL-
Time predicates. 
 1) “Every other week on Monday, Wednesday and 
Friday until December 24, 1997, but starting on Tuesday, 
September 2, 1997.” (Taken from RFC 2445 page 120.) 
 DTSTART;TZID=US-Eastern:19970902T090000 

RRULE:FREQ=WEEKLY;INTERVAL=2;UNTIL=19971224
T000000Z;WKST=SU;BYDAY=MO,WE,FR 

iCalendar uses “FREQ=WEEKLY;INTERVAL=2” to 
represent “every other week”, and uses “BYDAY=MO, 
WE,FR” to get “every Monday, Wednesday, and Friday”. 
WKST specifies the start of the week, which is Sunday in 
this example. 
 This example can be expressed in OWL-Time as a 
temporal sequence s for which the following is true: 
 (∃ s,s’,T,t1,t2) [everynthp(s’,{T},Week1,2) ∧  
   byTulistRecurs(s,{1, 3, 5},s’,*Day*,*Week*) ∧ begins(t1,T) 
  ∧ ends(t2,T) ∧ dateOf(t1,1997,9,2)  
 ∧ dateOf(t2,1997,12,24)] 

 where (∀ w) [Week1(w) ≡ (∃ n,x) [calInt(w,n,*Week*,x)]] 
s is the desired temporal sequence representing “every 
Monday, Wednesday, and Friday” of s’ which is a 
temporal sequence of “every other week from 09/02/1997 
to 12/24/1997”. 
 
2) “Every 3rd Monday in 2001.” 



This looks like a simple example, but iCalendar can’t 
express it exactly. Though iCalendar can express “the 3rd 
Monday” using BYDAY=3MO, it can’t express “every 3rd 
Monday”. In order to express this phrase in iCalendar, we 
have to paraphrase it first to: “Every 3rd week on Monday 
in 2001”.  
 However, the paraphrased one is not exactly the same as 
the original, since it depends on what the first week is. In 
iCalendar, the first week is defined as the week that 
“contains at least four days in that calendar year”. Based 
on this definition, however, if the first week starts from a 
Tuesday, the first 3rd Monday will be different from the 
first Monday of the 3rd week!  
 In order to express year 2001, in iCalendar it has to 
specify the start date (01/01/2001) using DTSTART and 
the end date (12/31/2001) using UNTIL. Here is how to 
express “Every 3rd week on Monday in 2001” in 
iCalendar: 
 DTSTART;TZID=US-Eastern:20010101T000000 

RRULE:FREQ=WEEKLY;INTERVAL=2;UNTIL=20011231
T000000Z;WKST=SU;BYDAY=MO 

In OWL-Time, this example can be expressed very 
straightforwardly as a temporal sequence s for which the 
following is true: 
   (∃ y,z) [yr(y,2001,CE(z)) ∧ everynthp(s,{y},Monday1,3)] 

  where (∀ d) [Monday1(d) ≡ (∃ w) [Monday(d,w)]] 
3) “Every Monday that’s a holiday.”  
There is no way in iCalendar to express “conditional 
temporal aggregates” or any temporal aggregates that are 
not in a form of standard temporal units, such as 
“holidays”, “voting dates”, “days with classes”, “months 
starting with a Monday”, and so on. 
 OWL-Time, however, can express any kind of temporal 
aggregates, using the argument p in “everynthp(s,s0,p,n)” 
or “everyp(s,s0,p)”. All the conditions and non-temporal-
unit concepts can be captured using this p. 
 For example, we can express “Every Monday that’s a 
holiday” in OWL-Time as a temporal sequence s for which 
the following is true: 
  (∃ s,s0) [everyp(s,s0,HolidayMonday)] 

  where  (∀ d) [HolidayMonday(d)  
      ≡ (∃ w) [Monday(d,w)] ∧ holiday(d)] 
4) More natural language expressions represented in 
OWL-Time are as follows, where s is the set 
corresponding to the noun phrase: 
 
•  “The past three Mondays.” 
  (∃ s,s0,t) [everyp(s,s0,Monday1) ∧ card(s) = 3 ∧ last(t,s0)  
   ∧ ends(nowfn(D),t)] 
In our treatment of temporal deictics, the function “nowfn” 
maps a document d into the instant or interval viewed as 
“now” from the point of view of that document, and D is 
the document this phrase occurs in. 
 
• “Every other Monday in every 4th month in every year.” 

 (∃ s,s1,s2,s0) [everyp(s1,s0,Year1) ∧  
   everynthp(s2,s1,Month1,4) ∧ everynthp(s,s2,Monday1,2)] 

   where  (∀ y) [Year1(y) ≡ (∃ n,x) [calInt(y,n,*Year*,x)]] 
    (∀ m) [Month1(m) ≡ (∃ n,x) [calInt(m,n,*Month*,x)]] 
 
• “Four consecutive Mondays.” 
 (∃ s,s0) [everyp(s,s0,Monday1) ∧  card(s) = 4] 
In order to translate from natural language sentences to our 
representation, we first run a semantic parser to get a 
“surface” logical form from a given sentence. Then we use 
some additional rules to map from the “surface” logical 
form to our domain ontology. For example, given the 
above input sentence, the “surface” logical form would be: 
 (∃ s,d) [plur(d,s) ∧ Monday1(d) ∧ consecutive(s,Monday1) 
      ∧ card(s) = 4] 
“plur” takes as its arguments both a set and a representa-
tive member of the set. “consecutive” takes as its 
arguments both a set and the property of the set, meaning 
that the members of the set are not only consecutive but 
also share a certain property. “card” is a function that 
returns the cardinality/size of the set.  
 Then we map the above “surface” logical form to our 
ontology predicates by applying the following rule:   
 (∀ s,p)consecutive(s, p) ≡ ( ∃ s0) everyp(s,s0,p) 

Conclusion 
In this paper, we have described our work of representing 
temporal aggregates in OWL-Time, and showed how 
iCalendar recurrence sets can be embedded in OWL-Time. 
Examples are also showed to illustrate how it can be used 
to represent natural language expressions for temporal 
aggregates. 
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