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Abstract 
 

In this paper, we present our work on creating a 
complete set of rules for temporal arithmetic mixing 
months and days based on the “history-dependent 
intuition”. Many examples are presented for 
demonstrating how the rules are used and how the 
computations satisfy various desired arithmetic 
properties, such as the subtraction, commutativity and 
associativity properties. A notion of “days lost” (DL) 
is proposed to concisely keep track of the history of the 
temporal arithmetic computation and explain possible 
inconsistencies in terms of different desired properties.  
 
1. Introduction 
 

Temporal arithmetic involves the computation of 
adding durations to dates/times, subtracting durations 
from dates/times, and computing durations between 
date/time pairs. Such arithmetic (sometimes is also 
referred as date arithmetic when only dates are of 
interest) is very useful in many different domains, such 
as artificial intelligence (Bettini et al., 2002), databases 
(Chandra and Segev, 1994), time series management 
systems (Dreyer et al., 1994), agents (Mallya et al., 
2004), and Web services (Pan and Hobbs, 2004). 

As long as we stay within the year-month system or 
the day-hour-minute-second system, temporal 
arithmetic is just arithmetic and requires only a few 
simple axioms or rules to encode. When we mix 
months and days, problems arise. For example, 
consider that January 31, 2006 plus 2 months equals 
March 31, 2006. But if we add the months one at a 
time, we may get a different result: January 31, 2006 
plus one month is February 28, 2006, but February 28, 
2006 plus one month would seem to be March 28, 
2006. If we want to avoid results like this, we need, in 
some sense, to keep track of the history of the 
computation.  

This motivating example is taken from the 
documentation for Java methods add() and roll() of the 
class Calendar1, where they explained the behavior of 
the methods using the above example and claimed that, 
“as most users will intuitively expect”, the final date 
after adding the second month should be March 31, 
2006, not March 28, 2006, and this is what you will 
get when you use the temporal arithmetic methods in 
Java. (In what follows, we will refer to this kind of 
intuition as the “history-dependent intuition”.)   

However, different people may have different 
intuitions regarding how the computation should work. 
Some people may believe adding one month to 
February 28 should always be March 28, no matter 
where February 28 was originally computed from. (In 
what follows, we will refer to this kind of intuition as 
the “history-independent intuition”.) This intuition 
results in much simpler arithmetic rules, where when 
adding durations to dates, simply add each of their 
fields (temporal units) respectively, and handle 
overflow when needed. In fact, this approach is what 
XML Schema is currently using in their algorithm for 
adding “durations” to “dateTimes”2 (Biron and 
Malhotra, 2004). But they didn’t consider at all the 
alternative (maybe even more popular) intuition (the 
“history-dependent intuition”) we described in the 
above motivating example.  

Biron and Malhotra (2004) also warn that there are 
cases where the properties of commutativity and 
associativity cannot hold using the algorithm in XML 
Schema, and give one example as follows: 

(2000-03-30 + P1D) + P1M  
= 2000-03-31 + P1M = 2000-04-30 
 
(2000-03-30 + P1M) + P1D  
= 2000-04-30 + P1D = 2000-05-01 

                                                           
1 http://java.sun.com/j2se/1.4.2/docs/api/java/util/Calendar.html 
2 http://www.w3.org/TR/xmlschema-2/#adding-durations-to-
dateTimes 



This example shows that adding one month (P1M) 
and one day (P1D) to March 30, 2000 in different 
orders using their algorithm would give different 
destination dates. 

Many real-world applications, on the other hand, 
use a fixed number of days for each month (e.g., car 
rental companies usually count 28 days as one month), 
but they also cannot avoid the problem raised when 
mixing months and days. For example, Stonebraker 
(1990) pointed out that the yield calculation on 
financial bonds uses a calendar that has 30 days in 
every month for date arithmetic, but 365 days in the 
year for the actual yield calculation, which inevitably 
causes inconsistency.  

To avoid this problem, Malhotra et. al. (2005) 
proposed, for XQuery and XPath, deriving two new 
(totally ordered) subtypes, “yearMonthDuration” (in 
the year-month system) and “dayTimeDuration” (in the 
day-hour-minute-second system), from the (partially 
ordered) datatype “duration”. But in this case, temporal 
arithmetic can only be carried out in the two separate 
systems, and months and days cannot be computed 
together. 

Both the “history-independent intuition” and the 
approach with a fixed number of days for each month 
can be encoded straightforwardly with a few simple 
axioms or rules. However, to our knowledge, there has 
been no serious effort for doing temporal reasoning 
based on the “history-dependent intuition”, which may 
be the most popular intuition, but the most difficult to 
model. 

In this paper, we present our work on creating a 
complete set of rules that can handle temporal 
arithmetic mixing months and days for the “history-
dependent intuition” (including the motivating 
example), proposing a notion (called “days lost” DL) 
to concisely keep track of the history of the 
computation and explain possible inconsistencies in 
terms of different desired arithmetic properties. In 
Section 2 we describe these desired properties for 
temporal arithmetic computation. The notion of “days 
lost” is introduced in Section 3, and in Section 4 we 
present the temporal arithmetic rules with examples. 
Finally we discuss our future work in Section 5.  

Since the problem arise only when months and days 
are mixed, in this paper we only consider dates with 
months and days, and all other fields of a date/time 
(e.g., year, hour) will be omitted in the examples and 
rules. First, we introduce some notation and 
assumptions for later examples and rules. 

 
Notation: 
• (m, d)DL denotes a date with a month “m”, a day 

“d”, and days lost “DL” (see Section 3 for the 

details on “days lost”). For example, (2, 28)3 
means February 28th with 3 days lost. DL is 
omitted when DL = 0. 

• [m, d] denotes a duration with “m” months and 
“d” days. For example, [3, 2] means 3 months and 
2 days. 

• #(m) denotes the number of days in a month “m”. 
For example #(3) = 31, since there are 31 days in 
March. 

 
Assumptions: 
• The year is 2006, so that the number of days in 

February is 28. 
• Dates and durations are in canonical forms, i.e.,  
        For dates: 1 ≤ m ≤ 12 
       1 ≤ d ≤ last day of the current month, #(m) 
        For durations: 1 ≤ m < 12 
       1 ≤ d < last day of the destination month 
 
2. Desired Properties for Temporal 
Arithmetic 
 

Before creating the rules for temporal arithmetic 
computation satisfying the “history-dependent 
intuition”, a list of desired properties which we hope 
can hold during the computation are presented first, 
and these properties were also used to guide the 
creation of the rules. The desired properties are as 
follows, with the most desired ones at the top. 

(1) Motivating example for the “history-dependent 
intuition”:  

     (1, 31) + [1, 0] + [1, 0] 
 = (2, 28) + [1, 0] = (3, 31) 
(2) Addition-Simplicity property:  
  (m1, d1) + [m2, d2] = (m1+m2, d1+d2),  
 if d1+d2 ≤ #(m1+m2), m1+m2 ≤ 12 
(3) Subtraction-Simplicity property: 
 (m1, d1) – [m2, d2] = (m1-m2, d1-d2),  
 if m1 > m2, d1 > d2, d1-d2 ≤ #(m1-m2) 
(4) Subtraction property:   
 (m1, d1) + [m2, d2] = (m3, d3)   
 <=> (m3, d3) - [m2, d2] = (m1, d1)  

 <=> (m3, d3) - (m1, d1) = [m2, d2] 
(5) Commutativity property:   
 (m1, d1) + [m2, d2] + [m3, d3]  
 = (m1, d1) + [m3, d3] + [m2, d2] 
(6) Associativity property: 
 {(m1, d1) + [m2, d2]} + [m3, d3]  
 = (m1, d1) + {[m2, d2] + [m3, d3]} 
Property (1) is actually an instance of associativity, 

because 
 {(1, 31) + [1, 0]} + [1, 0]  
 = (2, 28) + [1, 0] = (3, 31) 



 
 (1, 31) + {[1, 0] + [1, 0]}  
 = (1, 31) + [2, 0] = (3, 31) 
 

3. Meaning of “Days Lost (DL)” 
 
In order to keep track of the history of the temporal 

arithmetic computation for the “history-dependent 
intuition”, we introduce a notion, called “days lost 
(DL)”. Its meaning is as follows: 

(1) If the day of the month is the end of the month 
(e.g., (2, 28)3), the days lost (“DL”) means the number 
of days lost in the current month. For example, adding 
1 month to January 31st results in February 28th, and 3 
days are “lost” in the computation. Thus we use (2, 
28)3 to “remember” that 3 days were lost in February. 

(2) If the day of the month is not the end of the 
month (e.g., (3, 2)3), the days lost (“DL”) is just a 
record of the number of days lost in the past. For 
example, adding 1 month and 2 days to January 31st 
results in March 2nd, where 3 days were “lost” in 
February. 

In fact, “days lost (DL)” not only is used to keep 
track of the history of the computation, but also plays a 
crucial role in explaining the inconsistency of the 
computation results with respect to different desired 
properties (e.g., commutativity and associativity). For 
example, it can be used to explain the inconsistency 
described in the introduction regarding the temporal 
arithmetic algorithm in XML Schema (Biron and 
Malhotra, 2004): 

(2000-03-30 + P1D) + P1M  
= 2000-03-31 + P1M = 2000-04-30 
 
(2000-03-30 + P1M) + P1D  
= 2000-04-30 + P1D = 2000-05-01 

The different results are actually due to the “one 
day lost” in the first computation when adding 1 month 
(P1M) to 2000-03-31, since there are only 30 days (not 
31 days) in April. We will show in the next section 
how our rules can be used to deal with such 
inconsistency. 

 
4. Temporal Arithmetic Rules 

 
In this section, we describe a complete set of rules 

we created for temporal arithmetic satisfying the 
“history-dependent intuition”, including adding 
durations to dates, subtracting durations from dates, 
and computing duration between two dates. Each rule 
is presented with one representative example, and 

additional examples are shown to demonstrate how to 
use multiple rules together in the computation.  

All the rules can be straightforwardly translated into 
first-order logic (FOL) axioms, so that they can be 
incorporated into the OWL-Time (formerly DAML-
Time) ontology (Hobbs and Pan, 2004) to give them 
access to the full ontology of time for temporal 
reasoning, including representation and reasoning 
about temporal relations, date-time information, 
durations, and temporal aggregates (Pan and Hobbs, 
2005) such as recurrence events. One FOL translation 
of a temporal arithmetic rule is shown at the end of the 
section. 

 
4.1. Adding Durations to Dates 
 

There are three sets of rules for adding durations to 
dates: add-decompose, add-month, and add-day. In the 
following table, the rules are shown in the left column 
with index numbers (e.g., (1.1)), and one 
representative example is shown for each line of the 
rules in the right column for the demonstration and 
justification purpose. 
 
Temporal Arithmetic Rule Example 

(1) Add-decompose: 

(m1,d1)DL+[m2,d2]  

(1.1) =(m1,d1)DL+[m2,0]+[0,d2] 

 
(2) Add-month:  // N = #(m1+m2) 

(m1, d1) DL + [m2, 0] 

= if (d1 = #(m1))   

(2.1) (m1+m2, d1+DL), d1+DL≤N 

(2.2) (m1+m2,N)d1+DL-N, d1+DL>N 

else (i.e., d1 < #(m1)) 

(2.3) (m1+m2, d1) , d1 ≤ N 

(2.4) (m1+m2, N)d1-N, d1 > N 

 
(3) Add-day:              // N = #(m1) 

(m1, d1) DL + [0, d2]   

= if (d1 = #(m1))   

(3.1) (m1+1, d2)DL   

else (i.e., d1 < #(m1)) 

(3.2) (m1, d1+d2) DL, d1+d2 < N 

(3.3) (m1, d1+d2), d1+d2 = N 

(3.4) (m1+1, d1+d2-N), d1+d2 > N 

 

(2,28)2+[1,2] 

= (2,28)2+[1,0]+[0,2] 

 
 

 

 

(2,28)2+[2,0] = (4,30)  

(3,31)+[1,0] = (4,30)1      

 

(3, 2) + [1, 0] = (4, 2)  

(1,30) + [1,0] = (2,28)2 

 
 

 

 

(2,28)1 + [0,1] = (3,1)1  

 

(3,2)3+[0,20] = (3,22)3 

(5,5) + [0,26] = (5,31) 

(2,20) + [0,10] = (3,2) 



For any given duration, before it adds to a date, 
add-decompose rule is applied first to separate the 
months and days by decomposing the duration into two 
sub-durations with only months and days respectively, 
and then add months first to the date using add-month 
rules, then the days using add-day rules.  

Two more examples of adding durations to dates 
are also shown below. The first one is from the 
motivating example, and the second one demonstrates 
the complete procedure (3 steps) for adding durations 
to dates, when durations have both months and days 
(the rule applied for each step of the computation is 
also shown with a corresponding rule index number): 
 
Ex.1. (1, 31) + [1, 0] = (2, 28)3  // add-month (2.2) 

     (2, 28)3 + [1, 0] = (3, 31) // add-month (2.1) 
 

Ex.2. (1, 29) + [1, 2] 
     = (1, 29) + [1, 0] + [0, 2] // add-decompose (1.1) 
     = (2, 28)1 + [0, 2]          // add-month (2.4) 
     = (3, 2)1           // add-day (3.1) 
 

4.2. Subtracting Durations from Dates 
 
There are three sets of rules for subtracting 

durations from dates: sub-decompose, sub-day, and 
sub-month: 

 
Temporal Arithmetic Rule Example 

(1) Sub-decompose 

(m1, d1)DL - [m2, d2] 

(1.1) = (m1,d1) DL - [0,d2] - [m2,0] 

 
(2) Sub-day 

(m1, d1) DL - [0, d2] 

(2.1) = (m1, d1-d2) DL, d1 > d2 

(2.2)    (m1-1,d1+#(m1-1)-d2) DL,  

            d1 ≤ d2 

 
(3) Sub-month    // N = #(m1-m2) 

(m1, d1) DL - [m2, 0] 

= if (d1 = #(m1))   

(3.1) (m1-m2, d1+DL), d1+DL ≤ N 

(3.2) (m1-m2,N)d1+DL-N,d1+DL>N 

else (i.e., d1 < #(m1)) 

(3.3) (m1-m2, N)d1-N, d1 > N 

(3.4) (m1-m2, d1), d1 ≤ N   

 

(2,28)2-[1,2] 

= (2,28)2-[0,2]-[1,0] 

 
 

 

(4,30)1–[0,15]=(4,15)1 

(3,2)3–[0,10] = (2,20)3 

 
 

 

 

 

(2,28)2 – [1,0] = (1,30) 

(4,30)1 – [2,0] = (2,28)3 

 

(3,30)2 – [1,0] = (2,28)2 

(5,16) – [1,0] = (4,16) 

For any given duration, before it subtracts from a 
date, sub-decompose rule is applied first to separate the 
months and days by decomposing the duration into two 
sub-durations with only days and months respectively, 
and then subtract days first from the date using sub-
day rules, then the months using sub-month rules.  

Two more examples of subtracting durations from 
dates are also shown below. The first one is from the 
motivating example, and the second one demonstrates 
the complete procedure (3 steps) for subtracting 
durations from dates, when durations have both 
months and days: 

 
Ex.3. (3, 31) - [1, 0] = (2, 28)3    // sub-month (3.2) 

     (2, 28)3 - [1, 0] = (1, 31)    // sub-month (3.1) 
 
Ex.1. and Ex.3. show that the temporal arithmetic 

rules work for the motivating example for the “history-
dependent intuition” (desired property 1), and the first 
part of the “subtraction property” (desired property 2) 
also holds for the motivating example, because  

  
(1,31) + [1,0] = (2,28)3 <=> (2,28)3 - [1,0] = (1,31) 

(2,28)3 + [1,0] = (3,31) <=> (3,31) - [1,0] = (2,28)3 

(1, 31) + [1, 0] + [1, 0] = (2, 28)3 + [1, 0] = (3, 31) 
 

Ex.4. (3, 2)1 - [1, 2] 
     = (3, 2)1 - [0, 2] - [1, 0]    // sub-decompose (1.1) 
     = (2, 28)1 - [1, 0]         // sub-day (2.2) 
     = (1, 29)          // sub-month (3.1)  
 
Ex.2. and Ex.4. also show that the first part of the 

“subtraction property” (desired property 2) holds for 
this example whose duration has both months and 
days, because   

(1,29) + [1,2] = (3,2) 1 <=> (3,2) 1 - [1,2] = (1,29) 
 

4.3. Computing Duration between Two Dates 
 
There is only one set of rules for computing 

duration between two dates: 
 

Temporal Arithmetic Rule Example 

(1) Sub-between-dates 

(m2, d2) DL2 – (m1, d1) DL1  

= if (d1 = #(m1))  

(1.1) [m2-m1, d2-(d1+DL1)], 

                                       d2 >= d1+DL1 

(1.2) [m2-m1-1,(d2+DL2)+#(m2-1) 

       -(d1+DL1)], d2<d1+DL1, d2<#(m2) 

 

 

 

(5,31)-(2,28)2=[3,1] 

 

(3,2)3-(1,31)=[1,2] 

 



(1.3) [m2-m1, 0],d2<d1+DL1, d2=#(m2) 

else (i.e., d1 < #(m1))  

(1.4) [m2-m1, d2-d1], d2 >= d1 

  

(1.5) [m2-m1-1, d2],  

         d2 < d1, d2 < #(m2), #(m2-1) ≤ d1 

(1.6) [m2-m1-1, d2+#(m2-1)-d1], 

         d2 < d1, d2 < #(m2), #(m2-1) > d1 

(1.7) [m2-m1, 0], d2 < d1, d2 = #(m2) 

(4,30)1-(2,28)3 

= [2,0] 

(3,20)-(2,10) 

=[1, 10] 

(3,2) - (1,28) = [1,2] 

 

(3,2)-(1,20) = [1,10] 

 

(2,28)1-(1,29)=[1,0] 

 
Two more examples of computing duration between 

two dates are also shown below. The first one is from 
the motivating example, and the second one 
demonstrates the procedure for computing durations 
between two dates, when durations have both months 
and days: 

 
Ex.5. (3,31) - (2,28)3 = [1,0] // sub-between-dates (1.1) 

     (2,28)3 - (1,31) = [1,0] // sub-between-dates (1.3) 
     (3,31) - (1,31) = [2,0]  // sub-between-dates (1.1) 
 
Ex.1., Ex.3., and Ex.5. show the complete 

“subtraction property” (desired property 2) holds for 
the motivating example, because 

   
(1, 31) + [1, 0] = (2, 28)3  

<=> (2, 28)3 - [1, 0] = (1, 31) 
<=> (2, 28)3 - (1, 31) = [1, 0] 
 
(2, 28)3 + [1, 0] = (3, 31)  

<=> (3, 31) - [1, 0] = (2, 28)3 
<=> (3, 31) - (2, 28)3 = [1, 0] 
  
They also show the “associativity property” holds 

for the motivating example, because 
 
{(1, 31) + [1, 0]} + [1, 0] = (3, 31)  
<=> (1, 31) + {[1, 0] + [1, 0]} 
       = (1, 31) + [2, 0] = (3, 31) 
 

Ex.6. (3,2)1 - (1,29) = [1,2]   // sub-between-dates (1.5) 
 
Ex.2., Ex.4., and Ex.6. also show that the complete 

“subtraction property” (desired property 2) holds for 
this example, since   

 
(1, 29) + [1, 2] = (3, 2) 1  

<=> (3, 2) 1 - [1, 2] = (1, 29) 
<=> (3, 2)1 - (1, 29) = [1, 2]  
 

Ex.7. (1, 31) + [1, 2] + [2, 0]  
     = (1, 31) + [1, 0] + [0, 2] + [2, 0]  
           // add-decompose (1.1) 
     = (2, 28)3 + [0, 2] + [2, 0] // add-month (2.2) 
     = (3, 2)3 + [2, 0]         // add-day (3.1) 
     = (5, 2)          // add-month (3.4)  
 
     (1, 31) + [2, 0] + [1, 2]  
     = (3, 31) + [1, 2]         // add-month (2.1) 
     = (3, 31) + [1, 0] + [0, 2]  // add-decompose (1.1) 
     = (4, 30)1 + [0, 2]         // add-month (2.2) 
     = (5, 2)1                    // add-day (3.1)  
 
Ex.7. shows that the “commutativity property” 

holds for this more complicated example, if the 
supplemental information (days lost “DL”) is ignored.   

 
Ex.8. In the introduction, we showed the following 
example from XML Schema (Biron and Malhotra, 
2004) that demonstrates the case where the properties 
of commutativity and associativity cannot hold using 
their temporal arithmetic algorithm: 
 

(2000-03-30 + P1D) + P1M  
= 2000-03-31 + P1M = 2000-04-30 
 
(2000-03-30 + P1M) + P1D  
= 2000-04-30 + P1D = 2000-05-01 
 
Can our rules handle this problem? The 

computation is as follows. 
 
(3, 30) + [0, 1] + [1, 0]  
= (3, 31) + [1, 0] // add-day (3.3) 
= (4, 30)1  // add-month (2.2) 
 
(3, 30) + [1, 0] + [0, 1]  
= (4, 30) + [0, 1] // add-month (2.3) 
= (5, 1)  // add-day (3.1) 
 
The rules not only compute the results exactly 

based on the “history-dependent intuition”, but also 
include supplemental information (days lost “DL”) for 
explaining the reason why the commutativity property 
doesn’t hold: there was “one day lost” in the first 
computation when one month is added to March 31.  

In fact, the commutativity property would hold, if 
we specify that (4, 30)1 “equals” to (5, 1). More 
generally, the commutativity and associativity 
properties hold with our temporal arithmetic rules, if 
we define the month-day equality “more softly” and 
take into account the effect of “days lost” (assume 
overflow is properly handled): 



(m1, d1) DL1 = (m2, d2) DL2, if m1 = m2  
           AND (d1 = d2 OR d1 + DL1 = d2 + DL2) 

We have only given examples in this paper, but we 
believe and are in the process of demonstrating that the 
rules satisfy the desired properties in general, given 
this definition of month-day equality. 

 
4.4. Translating Rules to FOL Axioms in 
OWL-Time 

 
All the above temporal arithmetic rules can be 

straightforwardly translated into FOL axioms in OWL-
Time to give them access to the full ontology of time 
for temporal reasoning. For example, the rule “add-
month (2.1)”  

 
(m1, d1) DL + [m2, 0] = (m1+m2, d1+DL),  
if d1 = #(m1), d1+DL ≤ #(m1+m2) 
 
can be translated as (see (Hobbs and Pan, 2004) for 

the definitions of the predicates): 
 
(∀ T, t1, t3, m1, m2, m3, d1, d3, DL, DL3, n1, n3) 
 dateOf(t1, m1, d1, DL) ∧  durationOf(T, m2, 0)  
∧  begins(t1, T) ∧  ends(t3, T)  
∧  dateOf(t3, m3, d3, DL3) ∧  Hath(n1, *Day*, m1)  
∧  Hath(n3, *Day*, m3) ∧  d1 = n1 ∧  d1+DL ≤ n3   
 ⊃ m3 = m1+m2 ∧  d3 = d1+DL ∧  DL3 = 0 
 

5. Conclusions 
 
In this paper, we have presented our work on 

creating a complete set of rules for temporal arithmetic 
mixing months and days, based on the “history-
dependent intuition”. A notion of “days lost” (DL) was 
proposed for both keeping track of the history of the 
computation and explaining possible inconsistencies in 
terms of different desired arithmetic properties, such as 
the subtraction, commutativity and associativity 
properties. 
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