
Temporal Arithmetic Mixing Months and Days

Feng Pan and Jerry R. Hobbs
Information Sciences Institute (ISI), University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292
{pan, hobbs}@isi.edu

Abstract

In this paper, we present our work on creating a
complete set of rules for temporal arithmetic mixing
months and days based on the “history-dependent
intuition”. Many examples are presented for
demonstrating how the rules are used and how the
computations satisfy various desired arithmetic
properties, such as the subtraction, commutativity and
associativity properties. A notion of “days lost” (DL)
is proposed to concisely keep track of the history of the
temporal arithmetic computation and explain possible
inconsistencies in terms of different desired properties.

1. Introduction

Temporal arithmetic involves the computation of
adding durations to dates/times, subtracting durations
from dates/times, and computing durations between
date/time pairs. Such arithmetic (sometimes is also
referred as date arithmetic when only dates are of
interest) is very useful in many different domains, such
as artificial intelligence (Bettini et al., 2002), databases
(Chandra and Segev, 1994), time series management
systems (Dreyer et al., 1994), agents (Mallya et al.,
2004), and Web services (Pan and Hobbs, 2004).

As long as we stay within the year-month system or
the day-hour-minute-second system, temporal
arithmetic is just arithmetic and requires only a few
simple axioms or rules to encode. When we mix
months and days, problems arise. For example,
consider that January 31, 2006 plus 2 months equals
March 31, 2006. But if we add the months one at a
time, we may get a different result: January 31, 2006
plus one month is February 28, 2006, but February 28,
2006 plus one month would seem to be March 28,
2006. If we want to avoid results like this, we need, in
some sense, to keep track of the history of the
computation.

This motivating example is taken from the
documentation for Java methods add() and roll() of the
class Calendar1, where they explained the behavior of
the methods using the above example and claimed that,
“as most users will intuitively expect”, the final date
after adding the second month should be March 31,
2006, not March 28, 2006, and this is what you will
get when you use the temporal arithmetic methods in
Java. (In what follows, we will refer to this kind of
intuition as the “history-dependent intuition”.)

However, different people may have different
intuitions regarding how the computation should work.
Some people may believe adding one month to
February 28 should always be March 28, no matter
where February 28 was originally computed from. (In
what follows, we will refer to this kind of intuition as
the “history-independent intuition”.) This intuition
results in much simpler arithmetic rules, where when
adding durations to dates, simply add each of their
fields (temporal units) respectively, and handle
overflow when needed. In fact, this approach is what
XML Schema is currently using in their algorithm for
adding “durations” to “dateTimes”2 (Biron and
Malhotra, 2004). But they didn’t consider at all the
alternative (maybe even more popular) intuition (the
“history-dependent intuition”) we described in the
above motivating example.

Biron and Malhotra (2004) also warn that there are
cases where the properties of commutativity and
associativity cannot hold using the algorithm in XML
Schema, and give one example as follows:

(2000-03-30 + P1D) + P1M
= 2000-03-31 + P1M = 2000-04-30

(2000-03-30 + P1M) + P1D
= 2000-04-30 + P1D = 2000-05-01

1 http://java.sun.com/j2se/1.4.2/docs/api/java/util/Calendar.html
2 http://www.w3.org/TR/xmlschema-2/#adding-durations-to-
dateTimes

This example shows that adding one month (P1M)
and one day (P1D) to March 30, 2000 in different
orders using their algorithm would give different
destination dates.

Many real-world applications, on the other hand,
use a fixed number of days for each month (e.g., car
rental companies usually count 28 days as one month),
but they also cannot avoid the problem raised when
mixing months and days. For example, Stonebraker
(1990) pointed out that the yield calculation on
financial bonds uses a calendar that has 30 days in
every month for date arithmetic, but 365 days in the
year for the actual yield calculation, which inevitably
causes inconsistency.

To avoid this problem, Malhotra et. al. (2005)
proposed, for XQuery and XPath, deriving two new
(totally ordered) subtypes, “yearMonthDuration” (in
the year-month system) and “dayTimeDuration” (in the
day-hour-minute-second system), from the (partially
ordered) datatype “duration”. But in this case, temporal
arithmetic can only be carried out in the two separate
systems, and months and days cannot be computed
together.

Both the “history-independent intuition” and the
approach with a fixed number of days for each month
can be encoded straightforwardly with a few simple
axioms or rules. However, to our knowledge, there has
been no serious effort for doing temporal reasoning
based on the “history-dependent intuition”, which may
be the most popular intuition, but the most difficult to
model.

In this paper, we present our work on creating a
complete set of rules that can handle temporal
arithmetic mixing months and days for the “history-
dependent intuition” (including the motivating
example), proposing a notion (called “days lost” DL)
to concisely keep track of the history of the
computation and explain possible inconsistencies in
terms of different desired arithmetic properties. In
Section 2 we describe these desired properties for
temporal arithmetic computation. The notion of “days
lost” is introduced in Section 3, and in Section 4 we
present the temporal arithmetic rules with examples.
Finally we discuss our future work in Section 5.

Since the problem arise only when months and days
are mixed, in this paper we only consider dates with
months and days, and all other fields of a date/time
(e.g., year, hour) will be omitted in the examples and
rules. First, we introduce some notation and
assumptions for later examples and rules.

Notation:
• (m, d)DL denotes a date with a month “m”, a day

“d”, and days lost “DL” (see Section 3 for the

details on “days lost”). For example, (2, 28)3
means February 28th with 3 days lost. DL is
omitted when DL = 0.

• [m, d] denotes a duration with “m” months and
“d” days. For example, [3, 2] means 3 months and
2 days.

• #(m) denotes the number of days in a month “m”.
For example #(3) = 31, since there are 31 days in
March.

Assumptions:
• The year is 2006, so that the number of days in

February is 28.
• Dates and durations are in canonical forms, i.e.,
 For dates: 1 ≤ m ≤ 12
 1 ≤ d ≤ last day of the current month, #(m)
 For durations: 1 ≤ m < 12
 1 ≤ d < last day of the destination month

2. Desired Properties for Temporal
Arithmetic

Before creating the rules for temporal arithmetic
computation satisfying the “history-dependent
intuition”, a list of desired properties which we hope
can hold during the computation are presented first,
and these properties were also used to guide the
creation of the rules. The desired properties are as
follows, with the most desired ones at the top.

(1) Motivating example for the “history-dependent
intuition”:

 (1, 31) + [1, 0] + [1, 0]
 = (2, 28) + [1, 0] = (3, 31)
(2) Addition-Simplicity property:
 (m1, d1) + [m2, d2] = (m1+m2, d1+d2),
 if d1+d2 ≤ #(m1+m2), m1+m2 ≤ 12
(3) Subtraction-Simplicity property:
 (m1, d1) – [m2, d2] = (m1-m2, d1-d2),
 if m1 > m2, d1 > d2, d1-d2 ≤ #(m1-m2)
(4) Subtraction property:
 (m1, d1) + [m2, d2] = (m3, d3)
 <=> (m3, d3) - [m2, d2] = (m1, d1)

 <=> (m3, d3) - (m1, d1) = [m2, d2]
(5) Commutativity property:
 (m1, d1) + [m2, d2] + [m3, d3]
 = (m1, d1) + [m3, d3] + [m2, d2]
(6) Associativity property:
 {(m1, d1) + [m2, d2]} + [m3, d3]
 = (m1, d1) + {[m2, d2] + [m3, d3]}
Property (1) is actually an instance of associativity,

because
 {(1, 31) + [1, 0]} + [1, 0]
 = (2, 28) + [1, 0] = (3, 31)

 (1, 31) + {[1, 0] + [1, 0]}
 = (1, 31) + [2, 0] = (3, 31)

3. Meaning of “Days Lost (DL)”

In order to keep track of the history of the temporal

arithmetic computation for the “history-dependent
intuition”, we introduce a notion, called “days lost
(DL)”. Its meaning is as follows:

(1) If the day of the month is the end of the month
(e.g., (2, 28)3), the days lost (“DL”) means the number
of days lost in the current month. For example, adding
1 month to January 31st results in February 28th, and 3
days are “lost” in the computation. Thus we use (2,
28)3 to “remember” that 3 days were lost in February.

(2) If the day of the month is not the end of the
month (e.g., (3, 2)3), the days lost (“DL”) is just a
record of the number of days lost in the past. For
example, adding 1 month and 2 days to January 31st
results in March 2nd, where 3 days were “lost” in
February.

In fact, “days lost (DL)” not only is used to keep
track of the history of the computation, but also plays a
crucial role in explaining the inconsistency of the
computation results with respect to different desired
properties (e.g., commutativity and associativity). For
example, it can be used to explain the inconsistency
described in the introduction regarding the temporal
arithmetic algorithm in XML Schema (Biron and
Malhotra, 2004):

(2000-03-30 + P1D) + P1M
= 2000-03-31 + P1M = 2000-04-30

(2000-03-30 + P1M) + P1D
= 2000-04-30 + P1D = 2000-05-01

The different results are actually due to the “one
day lost” in the first computation when adding 1 month
(P1M) to 2000-03-31, since there are only 30 days (not
31 days) in April. We will show in the next section
how our rules can be used to deal with such
inconsistency.

4. Temporal Arithmetic Rules

In this section, we describe a complete set of rules

we created for temporal arithmetic satisfying the
“history-dependent intuition”, including adding
durations to dates, subtracting durations from dates,
and computing duration between two dates. Each rule
is presented with one representative example, and

additional examples are shown to demonstrate how to
use multiple rules together in the computation.

All the rules can be straightforwardly translated into
first-order logic (FOL) axioms, so that they can be
incorporated into the OWL-Time (formerly DAML-
Time) ontology (Hobbs and Pan, 2004) to give them
access to the full ontology of time for temporal
reasoning, including representation and reasoning
about temporal relations, date-time information,
durations, and temporal aggregates (Pan and Hobbs,
2005) such as recurrence events. One FOL translation
of a temporal arithmetic rule is shown at the end of the
section.

4.1. Adding Durations to Dates

There are three sets of rules for adding durations to
dates: add-decompose, add-month, and add-day. In the
following table, the rules are shown in the left column
with index numbers (e.g., (1.1)), and one
representative example is shown for each line of the
rules in the right column for the demonstration and
justification purpose.

Temporal Arithmetic Rule Example

(1) Add-decompose:

(m1,d1)DL+[m2,d2]

(1.1) =(m1,d1)DL+[m2,0]+[0,d2]

(2) Add-month: // N = #(m1+m2)

(m1, d1) DL + [m2, 0]

= if (d1 = #(m1))

(2.1) (m1+m2, d1+DL), d1+DL≤N

(2.2) (m1+m2,N)d1+DL-N, d1+DL>N

else (i.e., d1 < #(m1))

(2.3) (m1+m2, d1) , d1 ≤ N

(2.4) (m1+m2, N)d1-N, d1 > N

(3) Add-day: // N = #(m1)

(m1, d1) DL + [0, d2]

= if (d1 = #(m1))

(3.1) (m1+1, d2)DL

else (i.e., d1 < #(m1))

(3.2) (m1, d1+d2) DL, d1+d2 < N

(3.3) (m1, d1+d2), d1+d2 = N

(3.4) (m1+1, d1+d2-N), d1+d2 > N

(2,28)2+[1,2]

= (2,28)2+[1,0]+[0,2]

(2,28)2+[2,0] = (4,30)

(3,31)+[1,0] = (4,30)1

(3, 2) + [1, 0] = (4, 2)

(1,30) + [1,0] = (2,28)2

(2,28)1 + [0,1] = (3,1)1

(3,2)3+[0,20] = (3,22)3

(5,5) + [0,26] = (5,31)

(2,20) + [0,10] = (3,2)

For any given duration, before it adds to a date,
add-decompose rule is applied first to separate the
months and days by decomposing the duration into two
sub-durations with only months and days respectively,
and then add months first to the date using add-month
rules, then the days using add-day rules.

Two more examples of adding durations to dates
are also shown below. The first one is from the
motivating example, and the second one demonstrates
the complete procedure (3 steps) for adding durations
to dates, when durations have both months and days
(the rule applied for each step of the computation is
also shown with a corresponding rule index number):

Ex.1. (1, 31) + [1, 0] = (2, 28)3 // add-month (2.2)

 (2, 28)3 + [1, 0] = (3, 31) // add-month (2.1)

Ex.2. (1, 29) + [1, 2]
 = (1, 29) + [1, 0] + [0, 2] // add-decompose (1.1)
 = (2, 28)1 + [0, 2] // add-month (2.4)
 = (3, 2)1 // add-day (3.1)

4.2. Subtracting Durations from Dates

There are three sets of rules for subtracting

durations from dates: sub-decompose, sub-day, and
sub-month:

Temporal Arithmetic Rule Example

(1) Sub-decompose

(m1, d1)DL - [m2, d2]

(1.1) = (m1,d1) DL - [0,d2] - [m2,0]

(2) Sub-day

(m1, d1) DL - [0, d2]

(2.1) = (m1, d1-d2) DL, d1 > d2

(2.2) (m1-1,d1+#(m1-1)-d2) DL,

 d1 ≤ d2

(3) Sub-month // N = #(m1-m2)

(m1, d1) DL - [m2, 0]

= if (d1 = #(m1))

(3.1) (m1-m2, d1+DL), d1+DL ≤ N

(3.2) (m1-m2,N)d1+DL-N,d1+DL>N

else (i.e., d1 < #(m1))

(3.3) (m1-m2, N)d1-N, d1 > N

(3.4) (m1-m2, d1), d1 ≤ N

(2,28)2-[1,2]

= (2,28)2-[0,2]-[1,0]

(4,30)1–[0,15]=(4,15)1

(3,2)3–[0,10] = (2,20)3

(2,28)2 – [1,0] = (1,30)

(4,30)1 – [2,0] = (2,28)3

(3,30)2 – [1,0] = (2,28)2

(5,16) – [1,0] = (4,16)

For any given duration, before it subtracts from a
date, sub-decompose rule is applied first to separate the
months and days by decomposing the duration into two
sub-durations with only days and months respectively,
and then subtract days first from the date using sub-
day rules, then the months using sub-month rules.

Two more examples of subtracting durations from
dates are also shown below. The first one is from the
motivating example, and the second one demonstrates
the complete procedure (3 steps) for subtracting
durations from dates, when durations have both
months and days:

Ex.3. (3, 31) - [1, 0] = (2, 28)3 // sub-month (3.2)

 (2, 28)3 - [1, 0] = (1, 31) // sub-month (3.1)

Ex.1. and Ex.3. show that the temporal arithmetic

rules work for the motivating example for the “history-
dependent intuition” (desired property 1), and the first
part of the “subtraction property” (desired property 2)
also holds for the motivating example, because

(1,31) + [1,0] = (2,28)3 <=> (2,28)3 - [1,0] = (1,31)

(2,28)3 + [1,0] = (3,31) <=> (3,31) - [1,0] = (2,28)3

(1, 31) + [1, 0] + [1, 0] = (2, 28)3 + [1, 0] = (3, 31)

Ex.4. (3, 2)1 - [1, 2]
 = (3, 2)1 - [0, 2] - [1, 0] // sub-decompose (1.1)
 = (2, 28)1 - [1, 0] // sub-day (2.2)
 = (1, 29) // sub-month (3.1)

Ex.2. and Ex.4. also show that the first part of the

“subtraction property” (desired property 2) holds for
this example whose duration has both months and
days, because

(1,29) + [1,2] = (3,2) 1 <=> (3,2) 1 - [1,2] = (1,29)

4.3. Computing Duration between Two Dates

There is only one set of rules for computing

duration between two dates:

Temporal Arithmetic Rule Example

(1) Sub-between-dates

(m2, d2) DL2 – (m1, d1) DL1

= if (d1 = #(m1))

(1.1) [m2-m1, d2-(d1+DL1)],

 d2 >= d1+DL1

(1.2) [m2-m1-1,(d2+DL2)+#(m2-1)

 -(d1+DL1)], d2<d1+DL1, d2<#(m2)

(5,31)-(2,28)2=[3,1]

(3,2)3-(1,31)=[1,2]

(1.3) [m2-m1, 0],d2<d1+DL1, d2=#(m2)

else (i.e., d1 < #(m1))

(1.4) [m2-m1, d2-d1], d2 >= d1

(1.5) [m2-m1-1, d2],

 d2 < d1, d2 < #(m2), #(m2-1) ≤ d1

(1.6) [m2-m1-1, d2+#(m2-1)-d1],

 d2 < d1, d2 < #(m2), #(m2-1) > d1

(1.7) [m2-m1, 0], d2 < d1, d2 = #(m2)

(4,30)1-(2,28)3

= [2,0]

(3,20)-(2,10)

=[1, 10]

(3,2) - (1,28) = [1,2]

(3,2)-(1,20) = [1,10]

(2,28)1-(1,29)=[1,0]

Two more examples of computing duration between

two dates are also shown below. The first one is from
the motivating example, and the second one
demonstrates the procedure for computing durations
between two dates, when durations have both months
and days:

Ex.5. (3,31) - (2,28)3 = [1,0] // sub-between-dates (1.1)

 (2,28)3 - (1,31) = [1,0] // sub-between-dates (1.3)
 (3,31) - (1,31) = [2,0] // sub-between-dates (1.1)

Ex.1., Ex.3., and Ex.5. show the complete

“subtraction property” (desired property 2) holds for
the motivating example, because

(1, 31) + [1, 0] = (2, 28)3

<=> (2, 28)3 - [1, 0] = (1, 31)
<=> (2, 28)3 - (1, 31) = [1, 0]

(2, 28)3 + [1, 0] = (3, 31)

<=> (3, 31) - [1, 0] = (2, 28)3
<=> (3, 31) - (2, 28)3 = [1, 0]

They also show the “associativity property” holds

for the motivating example, because

{(1, 31) + [1, 0]} + [1, 0] = (3, 31)
<=> (1, 31) + {[1, 0] + [1, 0]}
 = (1, 31) + [2, 0] = (3, 31)

Ex.6. (3,2)1 - (1,29) = [1,2] // sub-between-dates (1.5)

Ex.2., Ex.4., and Ex.6. also show that the complete

“subtraction property” (desired property 2) holds for
this example, since

(1, 29) + [1, 2] = (3, 2) 1

<=> (3, 2) 1 - [1, 2] = (1, 29)
<=> (3, 2)1 - (1, 29) = [1, 2]

Ex.7. (1, 31) + [1, 2] + [2, 0]
 = (1, 31) + [1, 0] + [0, 2] + [2, 0]
 // add-decompose (1.1)
 = (2, 28)3 + [0, 2] + [2, 0] // add-month (2.2)
 = (3, 2)3 + [2, 0] // add-day (3.1)
 = (5, 2) // add-month (3.4)

 (1, 31) + [2, 0] + [1, 2]
 = (3, 31) + [1, 2] // add-month (2.1)
 = (3, 31) + [1, 0] + [0, 2] // add-decompose (1.1)
 = (4, 30)1 + [0, 2] // add-month (2.2)
 = (5, 2)1 // add-day (3.1)

Ex.7. shows that the “commutativity property”

holds for this more complicated example, if the
supplemental information (days lost “DL”) is ignored.

Ex.8. In the introduction, we showed the following
example from XML Schema (Biron and Malhotra,
2004) that demonstrates the case where the properties
of commutativity and associativity cannot hold using
their temporal arithmetic algorithm:

(2000-03-30 + P1D) + P1M
= 2000-03-31 + P1M = 2000-04-30

(2000-03-30 + P1M) + P1D
= 2000-04-30 + P1D = 2000-05-01

Can our rules handle this problem? The

computation is as follows.

(3, 30) + [0, 1] + [1, 0]
= (3, 31) + [1, 0] // add-day (3.3)
= (4, 30)1 // add-month (2.2)

(3, 30) + [1, 0] + [0, 1]
= (4, 30) + [0, 1] // add-month (2.3)
= (5, 1) // add-day (3.1)

The rules not only compute the results exactly

based on the “history-dependent intuition”, but also
include supplemental information (days lost “DL”) for
explaining the reason why the commutativity property
doesn’t hold: there was “one day lost” in the first
computation when one month is added to March 31.

In fact, the commutativity property would hold, if
we specify that (4, 30)1 “equals” to (5, 1). More
generally, the commutativity and associativity
properties hold with our temporal arithmetic rules, if
we define the month-day equality “more softly” and
take into account the effect of “days lost” (assume
overflow is properly handled):

(m1, d1) DL1 = (m2, d2) DL2, if m1 = m2
 AND (d1 = d2 OR d1 + DL1 = d2 + DL2)

We have only given examples in this paper, but we
believe and are in the process of demonstrating that the
rules satisfy the desired properties in general, given
this definition of month-day equality.

4.4. Translating Rules to FOL Axioms in
OWL-Time

All the above temporal arithmetic rules can be

straightforwardly translated into FOL axioms in OWL-
Time to give them access to the full ontology of time
for temporal reasoning. For example, the rule “add-
month (2.1)”

(m1, d1) DL + [m2, 0] = (m1+m2, d1+DL),
if d1 = #(m1), d1+DL ≤ #(m1+m2)

can be translated as (see (Hobbs and Pan, 2004) for

the definitions of the predicates):

(∀ T, t1, t3, m1, m2, m3, d1, d3, DL, DL3, n1, n3)
 dateOf(t1, m1, d1, DL) ∧ durationOf(T, m2, 0)
∧ begins(t1, T) ∧ ends(t3, T)
∧ dateOf(t3, m3, d3, DL3) ∧ Hath(n1, *Day*, m1)
∧ Hath(n3, *Day*, m3) ∧ d1 = n1 ∧ d1+DL ≤ n3
 ⊃ m3 = m1+m2 ∧ d3 = d1+DL ∧ DL3 = 0

5. Conclusions

In this paper, we have presented our work on

creating a complete set of rules for temporal arithmetic
mixing months and days, based on the “history-
dependent intuition”. A notion of “days lost” (DL) was
proposed for both keeping track of the history of the
computation and explaining possible inconsistencies in
terms of different desired arithmetic properties, such as
the subtraction, commutativity and associativity
properties.

Acknowledgement

This work was supported by the Advanced
Research and Development Activity (ARDA), now the
Disruptive Technology Office (DTO), under
DOD/DOI/ARDA Contract No. NBCHC040027. Any
opinions, findings and conclusions or
recommendations expressed in this material are those

of the authors and do not necessarily reflect the views
of the ARDA or the Department of Interior. The
authors have profited from discussions with José Luis
Ambite, Hans Chalupsky, Kevin Knight, Rutu Mulkar,
Daniel O'Leary, Paul Rosenbloom, and Tom Russ.

Reference

Bettini, C., Wang, S. X. and Jajodia, S. 2002. Solving multi-
granularity temporal constraint networks, Artificial
Intelligence, vol. 140, pp. 107-152.

Biron, P. V. and Malhotra, A. 2004. XML Schema Part 2:
Datatypes Second Edition. W3C Recommendation.
http://www.w3.org/TR/xmlschema-2/

Chandra, R., Segev, A., and Stonebraker, M. 1994.
Implementing Calendars and Temporal Rules in Next
Generation Databases”. In Proceedings of the Tenth
International Conference on Data Engineering, pages 264–
273, Houston, Texas.

Dreyer, W, Dittrich, A. Koa, and Schmidt, D. 1994. Research
Perspectives for Time Series Management Systems.
SIGMOD RECORD, Vol. 23, No. 1, pp. 10-15.

Hobbs, J. R. and Pan, F. 2004. An Ontology of Time for the
Semantic Web. ACM Transactions on Asian Language
Processing (TALIP): Special issue on Temporal Information
Processing, Vol. 3, No. 1, pp. 66-85.

Malhotra, A, Melton, J., and Walsh, N. 2005. XQuery 1.0
and XPath 2.0 Functions and Operators. W3C Candidate
Recommendation. http://www.w3.org/TR/xpath-functions/

Mallya, A. U., Yolum, P., and Singh, M. P. 2004. Resolving
commitments among autonomous agents. In F. Dignum,
editor, Advances in Agent Communication, In Proceedings
of the International Workshop on Agent Communication
Languages, Germany.

Pan, F. and Hobbs, J. R. 2004. Time in OWL-S. In
Proceedings of AAAI Spring Symposium on Semantic Web
Services, Stanford University, California, pp. 29-36, AAAI
Press.

Pan, F. and Hobbs, J. R., 2005. Temporal Aggregates in
OWL-Time. In Proceedings of the 18th International Florida
Artificial Intelligence Research Society Conference
(FLAIRS), Clearwater Beach, Florida, pp. 560-565, AAAI
Press.

Stonebraker, M. R. Extensibility. 1990. In M.R. Stonebraker,
editor, Readings in Database Systems. Morgan Kaufman.

