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Abstract 
This paper reports on our recent work on modeling and 
automatically extracting vague, implicit event durations 
from text (Pan et al., 2006a, 2006b). It is a kind of 
commonsense knowledge that can have a substantial impact 
on temporal reasoning problems. We have also proposed a 
method of using normal distributions to model judgments 
that are intervals on a scale and measure their inter-
annotator agreement; this should extend from time to other 
kinds of vague but substantive information in text and 
commonsense reasoning. 

Introduction   
Consider the sentence from a news article: 

 George W. Bush met with Vladimir Putin in Moscow. 

How long was the meeting? Our first reaction to this 
question might be that we have no idea.  But in fact we do 
have an idea. We know the meeting lasted more than ten 
seconds and less than one year. As we guess narrower and 
narrower bounds, our chances of being correct go down. 
How accurately can we make vague duration judgments 
like this? How much agreement can we expect among 
people? Will it be possible to extract this kind of 
information from text automatically? 
 The uncertainty of temporal durations has been 
recognized as one of the most significant issues for 
temporal reasoning (Allen and Ferguson, 1994; Chittaro 
and Montanari, 2000). For example, we have to know how 
long a battery remains charged to decide when to replace it 
or to predict the effects of actions which refer to the battery 
charge as a precondition (Chittaro and Montanari, 2000). 
 As part of our commonsense knowledge, we can 
estimate roughly how long events of different types last 
and roughly how long situations of various sorts persist. 
For example, we know government policies typically last 
somewhere between one and ten years, while weather 
conditions fairly reliably persist between three hours and 
one day. There is much temporal information that has 
hitherto been largely unexploited, implicitly encoded in the 
descriptions of events and relying on our knowledge of the 
range of usual durations of types of events. This paper 
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reviews our recent work of exploring how this information 
can be captured automatically from text (Pan et al., 2006a, 
2006b), including the way we used normal distributions to 
model the data for measuring inter-annotator agreement 
and applying machine learning techniques to extract 
coarse-grained event durations. 
 This research can be very useful for temporal reasoning 
applications in which the time course of events is to be 
extracted from text. For example, whether two events 
overlap or are in sequence often depends very much on 
their durations.  If a war started yesterday, we can be pretty 
sure it is still going on today.  If a hurricane started last 
year, we can be sure it is over by now. 

Related Work 
Although there has been much work on temporal anchoring 
and event ordering in text (Boguraev and Ando, 2005; 
Mani et al., 2006), to our knowledge, there has been no 
serious published empirical effort to model and learn vague 
and implicit duration information in natural language and 
to perform reasoning over this information.  
 There has been work on generalizing Allen’s interval-
based temporal reasoning (Allen, 1984) with incomplete 
temporal knowledge (Freksa, 1992), and also on using 
fuzzy logic for representing and reasoning with imprecise 
durations (Godo and Vila, 1995; Fortemps, 1997), but 
these make no attempt to collect human judgments on such 
durations or learn to extract them automatically from text. 
 The event calculus (Kowalski and Sergot, 1986; 
Shanahan, 1999) has been applied to many commonsense 
reasoning problems (Mueller, 2006). The vague event 
duration information can be useful commonsense 
knowledge for reasoning about action and change with 
non-deterministic (durational) effects. 

Annotation Guidelines and Event Classes 
Our goal is to be able to extract the vague event duration 
information from text automatically, and to that end we 
first annotated the events in news articles with bounds on 
their durations. For reliability, narrow bounds of duration 
are needed if we want to infer that event e is happening at 
time t, while wide bounds of duration are needed to infer 
that event e is not happening at time t.  



 In the corpus, every event to be annotated was already 
identified in TimeBank (Pustejovsky et al., 2003).  
Annotators were instructed to provide lower and upper 
bounds on the duration of the event, encompassing 80% of 
the possibilities, excluding anomalous cases, and taking the 
entire context of the article into account. For example, here 
is the graphical output of the annotations (3 annotators) for 
the “finished” event (underlined) in the sentence 

 After the victim, Linda Sanders, 35, had finished her 
cleaning and was waiting for her clothes to dry,... 

 
 This graph shows that the first annotator believes that 
the event lasts for minutes whereas the second annotator 
believes it could only last for several seconds. The third 
annotates the event to range from a few seconds to a few 
minutes. A logarithmic scale is used for the output because 
of the intuition that the difference between 1 second and 20 
seconds is significant, while the difference between 1 year 
1 second and 1 year 20 seconds is negligible.  
 A preliminary exercise in annotation revealed about a 
dozen classes of systematic discrepancies among 
annotators’ judgments. We thus developed guidelines to 
categorize these event classes (e.g., aspectual events, 
reporting events, multiple events), and to make annotators 
aware of these cases and to guide them in making the 
judgments. The use of the annotation guidelines resulted in 
about 10% improvement in inter-annotator agreement. See 
(Pan et al., 2006b) for more complete description of the 
annotation guidelines and the event classes we categorized. 

Inter-Annotator Agreement and Data 
Modeling 

Although the graphical output of the annotations enables us 
to visualize quickly the level of agreement among different 
annotators for each event, a quantitative measurement of 
the agreement is needed. We used the kappa statistic 
(Carletta, 1996) for the measurement:  

)(1
)()(

EP
EPAP

−
−

=κ  

What Should Count as Agreement? 
Determining what should count as agreement (P(A)) is not 
only important for assessing inter-annotator agreement, but 
is also crucial for later evaluation of machine learning 
experiments. For example, for a given event with a known 
gold standard duration range from 1 hour to 4 hours, if a 
machine learning program outputs a duration of 3 hours to 
5 hours, how should we evaluate this result? 

 In the literature on the kappa statistic, most authors 
address only category data; some can handle more general 
data, such as data in interval scales or ratio scales. 
However, none of the techniques directly apply to our data, 
which are ranges of durations from a lower bound to an 
upper bound. 
 In fact, what annotators were instructed to annotate for a 
given event is not just a range, but a duration distribution 
for the event, where the area between the lower bound and 
the upper bound covers about 80% of the entire 
distribution area. Since it’s natural to assume the most 
likely duration for such distribution is its mean (average) 
duration, and the distribution flattens out toward the upper 
and lower bounds, we use the normal or Gaussian 
distribution to model our duration distributions. If the area 
between lower and upper bounds covers 80% of the entire 
distribution area, the bounds are each 1.28 standard 
deviations from the mean. With this data model, the 
agreement between two annotations can be defined as the 
overlapping area between two normal distributions.  
 Figure 1 shows the overlap in distributions for 
judgments of [10 minutes, 30 minutes] and [10 minutes, 2 
hours], and the overlap or agreement is 0.508706.  
 

 
Figure 1: Overlap of Judgments of [10 minutes, 30 
minutes] and [10 minutes, 2 hours]. 

Expected Agreement 
What is the probability that the annotators agree by chance 
for our task (i.e., P(E))? The first quick response to this 
question may be 0, if we consider all the possible durations 
from 1 second to 1000 years or even positive infinity. 
 However, not all the durations are equally possible. As 
in (Carletta, 1996), we assume there exists one global 
distribution for our task (i.e., the duration ranges for all the 
events), and the “chance” annotations would be consistent 
with this distribution. Therefore, we must compute this 
global distribution of the durations, in particular, of their 
means and their widths. This will be of interest not only in 
determining expected agreement, but also in terms of what 
it says about the genre of news articles and about fuzzy 
judgments in general. 
 We first compute the distribution of the means of all the 
annotated durations. Its histogram is shown in Figure 2, 
where the horizontal axis represents the mean values in the 



natural logarithmic scale and the vertical axis represents 
the number of annotated durations with that mean. 
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Figure 2: Distribution of Means of Annotated Durations. 
 
 There are two peaks in this distribution. One is from 5 to 
7 in the natural logarithmic scale, which corresponds to 
about 1.5 minutes to 30 minutes. The other is from 14 to 17 
in the natural logarithmic scale, which corresponds to 
about 8 days to 6 months. One could speculate that this 
bimodal distribution is because daily newspapers report 
short events that happened the day before and place them 
in the context of larger trends. The lowest point between 
the two peaks occurs at about 1 day. 
 We also compute the distribution of the widths (i.e., 
Xupper – Xlower) of all the annotated durations, and its 
histogram is shown in Figure 3, where the horizontal axis 
represents the width in the natural logarithmic scale and 
the vertical axis represents the number of annotated 
durations with that width. 
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Figure 3: Distribution of Widths of Annotated Durations. 
 
 The peak of this distribution occurs at 2.5 in the natural 
logarithmic scale. This shows that for annotated durations, 
the most likely uncertainty factor from a mean (average) 
duration is 3.5: 
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 This is the half orders of magnitude factor that Hobbs 
and Kreinovich (2001) argue gives the optimal 
commonsense granularity; making something 3 – 4 times 
bigger changes the way we interact with it. 
 Since the global distribution is determined by the above 
mean and width distributions, we can then compute the 
expected agreement, i.e., the probability that the annotators 
agree by chance, where the chance is actually based on this 
global distribution. See (Pan et al., 2006b) for the details of 
the computation. 

Learning Coarse-Grained Event Durations 
The corpus we have annotated from TimeBank currently 
contains 58 news articles (a total of 2288 event instances), 
including both print and broadcast news that are from a 
variety of news sources, such as ABC, NYT, VOA, and 
WSJ. The annotated data has already been integrated into 
the TimeBank corpus.  
 Because the annotated corpus is still fairly small, we 
cannot hope to learn to make fine-grained judgments of 
event durations that are currently annotated in the corpus, 
but we have demonstrated machine learning techniques 
applied to this data can yield useful coarse-grained event 
duration information, considerably outperforming a 
baseline and approaching human performance.  

Features 
We have considered the following lexical, syntactic, and 
semantic features in learning event durations. 
Local Context. For a given event, the local context 
features include a window of n tokens to its left and n 
tokens to its right, as well as the event itself. The best n 
was determined via cross validation. A token can be a 
word or a punctuation mark. For each token in the local 
context, including the event itself, three features are 
included: the original form of the token, its lemma (or root 
form), and its part-of-speech (POS) tag. 
Syntactic Relations. The information in the event’s 
syntactic environment is very important in deciding the 
durations of events. For a given event, both the head of its 
subject and the head of its object are extracted from the 
parse trees. Similarly to the local context features, for both 
the subject head and the object head, their original form, 
lemma, and POS tags are extracted as features. 
WordNet Hypernyms. Events that share the same 
hypernyms may have similar durations. But closely related 
events don’t always have the same direct hypernyms. Thus 
for our learning experiments, we extract the first 3 levels of 
hypernyms from WordNet (Miller, 1990). We extract the 
hypernyms not only for the event itself, but also for the 
subject and object of the event.  



Experimental Results 
The distribution of the means of the annotated durations 
shown in Figure 2 is bimodal, dividing the events into 
those that take less than a day and those that take more 
than a day. Thus, in our first machine learning experiment, 
we have tried to learn this coarse-grained event duration 
information as a binary classification task.  
 The learning results in (Pan et al., 2006a) show that 
among all three learning algorithms explored (Naïve 
Bayes, Decision Trees C4.5, and Support Vector Machines 
(SVM)), SVM with linear kernel achieved the best overall 
precision (76.6%). Compared with a baseline (59.0%) and 
human agreement (87.7%), this level of performance is 
very encouraging, especially as the learning is from such 
limited training data. Experiments also show very good 
generalization of the learned model to different news 
genres. Our feature evaluation study demonstrates that 
most of the performance comes from event word or phrase 
itself. A significant improvement above that is due to the 
addition of information about the subject and object. Local 
context and hypernyms do not help and in fact may hurt. It 
is of interest that the most important information is that 
from the predicate and arguments describing the event, as 
our linguistic intuitions would lead us to expect.  
 Some preliminary experimental results of learning more 
fine-grained event duration information, i.e., the most 
likely temporal unit, were also reported in (Pan et al., 
2006a), where SVM again achieved the best performance 
with 67.9% test precision (baseline 51.5% and human 
agreement 79.8%). 

Conclusion 
In the research described in this paper, we have addressed 
a problem – modeling and automatically extracting vague 
event durations from text -- that has heretofore received 
very little attention in the field.  It is information that can 
have a substantial impact on applications where the 
temporal placement of events is important.  Moreover, it is 
representative of a set of problems – making use of the 
vague information in text – that has largely eluded 
empirical approaches in the past. In this work we also 
proposed a method of using normal distributions to model 
judgments that are intervals on a scale and measure their 
inter-annotator agreement; this should extend from time to 
other kinds of vague but substantive information in text 
and commonsense reasoning. 

Acknowledgments 
This work was supported by the Advanced Research and 
Development Activity (ARDA), now the Disruptive 
Technology Office (DTO), under DOD/DOI/ARDA 
Contract No. NBCHC040027. The authors have profited 
from discussions with Hoa Trang Dang, Donghui Feng, 
Kevin Knight, Daniel Marcu, James Pustejovsky, Deepak 
Ravichandran, and Nathan Sobo. 

References 
J. F. Allen. 1984. Towards a general theory of action and 
time. Artificial Intelligence 23, pp. 123-154. 
J. F. Allen and G. Ferguson. 1994. Actions and events in 
interval temporal logic. Journal of Logic and Computation, 
4(5):531-579. 
B. Boguraev and R. K. Ando. 2005. TimeML-Compliant 
Text Analysis for Temporal Reasoning. In Proceedings of 
International Joint Conference on Artificial Intelligence 
(IJCAI). 
J. Carletta. 1996. Assessing agreement on classifica-tion 
tasks: the kappa statistic. Computational Linguistics, 
22(2):249–254. 
L. Chittaro and A. Montanari. 2000. Temporal 
Representation and Reasoning in Artificial Intelligence: 
Issues and Approaches. Annals of Mathematics and 
Artificial Intelligence, vol. 28, no.1-4, pp. 47-106. 
P. Fortemps. 1997. Jobshop Scheduling with Imprecise 
Durations: A Fuzzy Approach. IEEE Transactions on 
Fuzzy Systems Vol. 5 No. 4. 
C. Freksa. 1992. Temporal Reasoning based on Semi-
Intervals. Artificial Intelligence, Vol. 54:199-227. 
L. Godo and L. Vila. 1995. Possibilistic Temporal 
Reasoning based on Fuzzy Temporal Constraints. In 
Proceedings of International Joint Conference on Artificial 
Intelligence (IJCAI). 
J. R. Hobbs and V. Kreinovich. 2001. Optimal Choice of 
Granularity in Commonsense Estimation: Why Half Orders 
of Magnitude, In Proceedings of Joint 9th IFSA World 
Congress and 20th NAFIPS International Conference. 
R. A. Kowalski and M. J. Sergot. 1986. A logic-based 
calculus of events. New Generation Computing, 4(1):67–
95. 
I. Mani, M. Verhagen, B. Wellner, C. M. Lee, J. 
Pustejovsky. 2006. Machine Learning of Temporal 
Relations. In Proceedings of the 44th Annual Meeting of 
the Association for Computational Linguistics (ACL). 
G. A. Miller. 1990. WordNet: an On-line Lexical 
Database. International Journal of Lexicography 3(4). 
E. T. Mueller. 2006. Commonsense Reasoning. Morgan 
Kaufmann, San Francisco. 
F. Pan, R. Mulkar, and J. R. Hobbs. 2006a. Learning Event 
Durations from Event Descriptions. In Proceedings of the 
44th Annual Meeting of the Association for Computational 
Linguistics (ACL), pp. 393-400, Sydney, Australia. 
F. Pan, R. Mulkar, and J. R. Hobbs. 2006b. An Annotated 
Corpus of Typical Durations of Events. In Proceedings of 
the Fifth International Conference on Language Resources 
and Evaluation (LREC), pp. 77-83, Genoa, Italy. 
J. Pustejovsky, P. Hanks, R. Saurí, A. See, R. Gaizauskas, 
A. Setzer, D. Radev, B. Sundheim, D. Day, L. Ferro and 
M. Lazo. 2003. The timebank corpus. In Corpus 
Linguistics, Lancaster, U.K. 
M. Shanahan. 1999. The event calculus explained. In 
Artificial Intelligence Today: Recent Trends and 
Developments, Springer, Berlin. 


