

REPRESENTING COMPLEX TEMPORAL PHENOMENA FOR THE SEMANTIC

WEB AND NATURAL LANGUAGE

by

Feng Pan

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

December 2007

Copyright 2007 Feng Pan

ii

Dedication

To my wife, parents and sister…

iii

Acknowledgments

First of all, I would like to extend my heartfelt thanks to my advisor, Jerry Hobbs, for

his continuous support and inspiring guidance during my graduate career. His

encouragement greatly helped me bolster my confidence and also maintain a high

motivation through the inevitable ups and downs of my PhD study. Without him I

would not have accomplished what I have right now. I am also very grateful to other

members of my thesis committee --Hans Chalupsky, Kevin Knight, Paul Rosenbloom,

and Daniel O'Leary -- for their valuable comments and constructive criticism on my

thesis proposal and draft.

 During my graduate life at the ISD division of USC Information Sciences

Institute (ISI), I have been very lucky to have many great mentors and colleagues. I

would like to thank Craig Knoblock, Jim Blythe, Jeff Rickel (who has passed away,

and we all miss him so much!), who have supervised me with different projects at ISI;

I have learned from them not only broader knowledge of AI, but more importantly

different ways of doing research. I have also learned a lot from our KR/NLP group

meetings; special thanks to the ICT members of the meeting, Andrew Gordon, Wenji

Mao, Reid Swanson, Erin Tavano, for their helpful feedbacks to my research and

inspiring discussions. Many thanks to Rutu Mulkar-Mehta, who has collaborated with

me under Jerry’s supervision during the last two years, for her valuable contributions

to the research. I am also greatly indebted to José Luis Ambite, Rahul Bhagat,

Michael Bloodgood, Jim Blythe, Donghui Feng, Ulf Hermjakob, Shou-de Lin, Tom

iv

Russ, Liang-Chih Yu for their very helpful feedbacks to my qualifying and defense

presentations. There are many other fellow ISDers I would like to thank for their help

and advice: Yigal Arens, Erika Barragan-Nunez, Harris Chi Ho Chiu, Tim Chklovski,

Berthe Choueiry (visiting professor), Hal Daume III, Steven DeNeefe, Lei Ding,

Alexander Fraser, Yolanda Gil, Eduard Hovy, Soo-Min Kim, Jihie Kim, Namhee

Kwon, Brent Lance, Kary Lau, Chin-Yew Lin, Daniel Marcu, Jonathan May, Nick

Mote, Alma Nava, Patrick Pantel, Karen Pressler, Lei Qu, Nadeesha Ranasinghe,

Nishit Rathod, Deepak Ravichandran, Wei-Min Shen, Mei Si, Nathan Sobo, Radu

Soricut, Snehal Thakkar, Quamrul Tipu, Ning Wang, Shumin Wu, Liang Zhou,

Jingbo Zhu.

 Finally, this thesis is dedicated to my family. I am so grateful to my parents

and sister for their enormous support, endless love, and constant encouragement

throughout my life. Special thanks to my parents-in-law and brother-in-law for their

continuous support. My deepest love and gratitude to my lovely wife for her

unconditional love, for always being there for me through the good times and the bad,

and for making my life so colorful and joyful!

v

Table of Contents

Dedication ...ii

Acknowledgments ..iii

List of Tables..viii

List of Figures .. ix

Abstract ...x

Chapter 1: Introduction ... 1
1.1 Time for the Semantic Web ..1
1.2 Time for Natural Language ...4
1.3 Applications of OWL-Time: the Current Usage ...8
1.4 Major Contributions ..11
1.5 Thesis Outline ...12

Chapter 2: Related Work...13
2.1 Ontology of Temporal Concepts ...13
2.2 Temporal Ontology for Natural Language..15
2.3 Other Temporal Representation and Reasoning Formalisms......................16

Chapter 3: OWL-Time Basics...18
3.1 Topological Temporal Relations ...19
3.2 Linking Time and Events ..22
3.3 Measuring Durations ...23

3.3.1 Temporal Units..23
3.3.2 Concatenation and Hath ..25
3.3.3 The Structure of Temporal Units ..27
3.3.4 Duration Description ...28

3.4 Clock and Calendar ...30
3.4.1 Time Zones..30
3.4.2 Time Zone Resource in OWL ...31
3.4.3 Clock and Calendar Units ...32
3.4.4 Calendar-Clock Description..37

Chapter 4: Temporal Aggregates ..41
4.1 Temporal Aggregates in FOL ...42

4.1.1 Temporal Sequences ...42
4.1.2 Temporal Sequences and Their Elements ...45

vi

4.1.3 Everynthp ..46
4.2 Embedding iCalendar Recurrence Sets in OWL-Time48

4.2.1 Reify Recurrence Rules...49
4.2.2 Map Recurrence Sets...50

4.3 Natural Language Examples in FOL...55
4.4 Temporal Aggregates in OWL..59

4.4.1 Temporal Sequences and Their Members ...59
4.4.2 Temporal Aggregate Description ..61

4.5 Natural Language Examples in OWL ...64
4.6 Improving Set Expression Annotations in TimeML68

4.6.1 TimeML and Its Set Expression Annotations68
4.6.2 Suggestions for Improvements..70

4.7 Evaluation..74

Chapter 5: Temporal Arithmetic Mixing Months and Days 76
5.1 Desired Properties for Temporal Arithmetic Computation.........................80
5.2 Meaning of “Day Lost (DL)” ..82
5.3 Temporal Arithmetic Rules ...83

5.3.1 Adding Durations to Dates .. 83
5.3.2 Subtracting Durations from Dates...85
5.3.3 Computing Duration between Two Dates ...88

5.4 Translating Rules to FOL Axioms ..92

Chapter 6: Vague Event Durations..93
6.1 Annotation Guidelines and Events Classes...96

6.1.1 Annotation Instructions ...97
6.1.2 Analysis ...98
6.1.3 Event Classes...99

6.2 Inter-Annotator Agreement ...104
6.2.1 What Should Count as Agreement? ..105
6.2.2 Expected Agreement ...108
6.2.3 Inter-Annotator Agreement Experiments..112

6.3 Learning Event Durations ...115
6.3.1 Features ...115
6.3.2 Learning Binary Event Durations ...119
6.3.3 Learning the Most Likely Temporal Unit ...124

6.4 Integrating Vague Event Durations to TimeML127
6.4.1 Event Classes in TimeML ...127
6.4.2 Integrating Event Duration Annotations ...128

6.5 Representing and Reasoning about Vague Event Durations.....................131

vii

Chapter 7: More Efficient Reasoning with Temporal Constraint-Based
Formalisms…. ...133

7.1 Temporal Constraint-Based Formalisms...134
7.2 Mapping Axioms to Temporal Constraint-Based Formalisms138

Chapter 8: Conclusion...147

References ...150

Appendices .. 161
Appendix A. Representation and Proof Steps for the Scheduling Use Case161
Appendix B. Temporal Aggregates from the ACE Corpus163

viii

List of Tables

Table 4.1 Difficult Temporal Aggregate Expressions from the ACE corpus75

Table 5.1 Rules for Adding Durations to Dates ..84

Table 5.2 Rules for Subtracting Durations from Dates ...86

Table 5.3 Rules for Computing Duration between Dates ...88

Table 6.1 Inter-Annotator Agreement with Different Overlapping Thresholds114

Table 6.2 Local context features for the “signed” event in sentence (1) with n = 2 .116

Table 6.3 Syntactic relation features for the “signed” event in sentence (1)117

Table 6.4 WordNet hypernym features in sentence (1)...119

Table 6.5 Inter-Annotator Agreement for Binary Event Durations120

Table 6.6 Test Performance of Three Algorithms...122

Table 6.7 Overall Test Precision on non-WSJ Data..122

Table 6.8 Feature Evaluation with Different Feature Sets using SVM.....................123

Table 6.9 Test Performance on WSJ data ...124

Table 6.10 Inter-Annotator Agreement for Most Likely Temporal Unit 126

Table 6.11 Overall Test Precisions ...126

ix

List of Figures

Figure 6.1 Example for Overlap of Judgments ...108

Figure 6.2 Distribution of means of annotation durations ..109

Figure 6.3 Distribution of widths of annotation durations ..110

Figure 6.4 Inter-Annotator Agreements Comparison ...113

Figure 7.1 A TCSP Example...135

x

Abstract

As an essential dimension of our information space, time plays a very important role

in every aspect of our lives. A specification of temporal information is necessarily

required for a large group of applications, including the Semantic Web and natural

language. In response to this need, we have developed a rich ontology of temporal

concepts, OWL-Time (formerly DAML-Time), for describing the temporal content of

Web pages and the temporal properties of Web services. Since most of the

information on the Web is in natural language, it can also be used for temporal

reasoning and to increase the temporal awareness for different natural language

applications. The ontology is represented in first-order logic (FOL) and the OWL

Web Ontology Language.

The ontology covers a very rich set of temporal concepts. It extends Hobbs

(2002)’s work with more complex temporal phenomena, such as temporal aggregates,

temporal arithmetic mixing months and days, and vague event durations. We have

also created axioms that map subsets of the problems that can be represented by the

ontology in FOL to temporal constraint-based formalisms for more efficient temporal

reasoning. The temporal aggregate part of the ontology is rich enough to handle both

complex multiple-layered and conditional temporal aggregates. A systematic way of

mapping recurrence sets in iCalendar (iCal) to temporal aggregates in OWL-Time

was developed to give it access to the full ontology of time for temporal reasoning. A

set of rules for temporal arithmetic mixing months and days were developed with

xi

consideration of different desired arithmetic properties, such as commutativity and

associativity.

 Since missing explicit and exact durations is one of the most common sources

of incomplete information for temporal reasoning in natural language applications,

we have constructed an annotated corpus to extract the implicit and vague event

durations from text. We generated annotation guidelines, categorized the event

classes to reduce gross discrepancies in inter-annotator judgments, used normal

distributions to model event duration annotations that are intervals on a scale and to

measure their inter-annotator agreement. Machine learning techniques were then

applied to the annotated data and produced coarse-grained event duration information

automatically, considerably outperforming a baseline and approaching human

performance. The methods used here should be applicable to other kinds of vague but

substantive information.

1

Chapter 1

Introduction

As an essential dimension of our information space, time plays a very important role

in every aspect of our lives. A specification of temporal information is necessarily

required for a large group of applications. This thesis builds on Hobbs (2002)’s time

ontology work and extends it with complex temporal phenomena that has little study

before. The goal is to provide an ontology of temporal concepts that is rich and

expressive enough for the Semantic Web and natural language applications. As

shown in Section 1.3, the ontology is actually useful for applications in a great variety

of domains.

1.1 Time for the Semantic Web

The vision of the Semantic Web is to create a “meaningful” environment for

programs and software agents to roam from page to page to carry out sophisticated

tasks for users (Berners-Lee et al., 2001), and the specification of temporal

information is necessarily required for bringing the Semantic Web into reality. For

example, some program or software agent does a Web search for its user to find a

place to buy a book needed before next Tuesday. In order to decide whether or not to

use an online bookstore that promises delivery within five business days, the

specification of temporal information is needed to represent durations in its service

2

description (i.e., “delivery within five business days”), represent calendar dates and

temporal relations for user’s constraints and preferences (i.e., “needed before next

Tuesday”), do temporal arithmetic on calendar dates and durations (i.e., adding five

business days to the current date, assuming shipping out immediately), and compare

calendar dates to see whether it can arrive before next Tuesday.

 Temporal information is everywhere on the Web, for example, in Web

services, such as temporal availability of services (e.g., “an advertised service is

available from 01/01/2004 to 01/15/2005” (Dumas et al. 2001)), temporal constraints

on the user’s preferences (e.g., “I would prefer driving over flying if the driving time

to my destination is less than three hours.” (McIlraith et al. 2001); “I would like to

receive this book by next Monday.”), and so on.

 In ubiquitous and pervasive computing, a time ontology is crucial for

modeling and reasoning about the time dimension of the context (Bulcao Neto and

Pimentel, 2005). In a smart meeting room application, for example, it can help to

reason about the temporal orders among different events in a meeting room, and to

model time intervals that may contain repeating time intervals or instants, which will

be useful for representing recurrent events such as weekly meetings and classes (Chen

et al., 2004). For a use case on scheduling:

Suppose someone has weekly telecons on Mondays at 2pm EST in Spring
2007. You would like to make an appointment with him for 10am PST on
03/05/2007, and expect the meeting to last 45 minutes. Will there be an
overlap?

3

the time ontology needs to be able to specify all the facts about the meetings that will

allow a temporal reasoner to determine whether there is a conflict or overlap (see

Appendix A. for the representation and proof steps for this use case).

 In response to this need, such an ontology of temporal concepts, OWL-Time

(formerly DAML-Time) (Hobbs and Pan, 2004, 2006), has been developed for

describing the temporal content of Web pages and the temporal properties of Web

services. It has been informed by temporal ontologies developed at a number of sites,

and is intended to capture the essential features of all of them and make them easily

available to a large group of Web developers and users. As (Allen, 1984; Hayes,

1994), OWL-Time is mainly concerned with the actual structure of time, instead of

how facts persist through time, or how states of knowledge are sensitive to the

changes that time can produce.

 The ontology is represented in both first-order logic (FOL) and the OWL Web

Ontology Language (McGuinness and Harmelen, 2003). The reason for choosing

FOL to represent our ontology is that it is a flexible and well-understood approach to

the representation of knowledge that satisfies many of the requirements raised for a

meaning representation language. Specifically, it provides a sound computational

basis for the verifiability, inference, and expressiveness requirements (Jurafsky and

Martin, 2000). Considering the undecidability and high computational complexity of

FOL theorem proving, sets of rules are developed to map subsets of the problems that

can be represented by the time ontology in FOL to temporal constraint-based

formalisms for more efficient temporal reasoning (see Section 7 for details).

4

 Endorsed by W3C, the OWL Web Ontology Language is designed for use by

applications that need to process the content of information instead of just presenting

information to humans. OWL facilitates greater machine interpretability of Web

content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing

additional vocabulary along with a formal semantics. As a vocabulary extension of

RDF, OWL adds more vocabulary for describing properties and classes: among

others, relations between classes (e.g. disjointness), cardinality (e.g. “exactly one”),

equality, richer typing of properties, characteristics of properties (e.g. symmetry), and

enumerated classes. (McGuinness and Harmelen, 2004)

 There have been many proposals for representing rules/axioms for the

Semantic Web (e.g., SWRL (Horrocks, et al., 2004), RuleML (Boley, et al., 2001),

SWSL (Grosof, et al., 2005)). SWRL (A Semantic Web Rule Language Combining

OWL and RuleML), for example, has even proposed an extension of the language to

FOL (Patel-Schneider, 2005). Unfortunately, none of these rule languages has

become the standard for the Semantic Web (i.e., endorsed by W3C). Thus, in this

thesis we only represent our ontology in FOL and OWL. When a rule language is

endorsed by W3C, we should be able to straightforwardly translate our FOL axioms

to that rule language.

1.2 Time for Natural Language

Since most of the information on the Web is in natural language, OWL-Time is also

an ontology for natural language and can be used for temporal reasoning and to

5

increase the temporal awareness for different natural language applications, such as

question answering, information retrieval, and summarization. For example, in

summarizing a story in terms of a timeline, a system may have to extract and

chronologically order events in which a particular person participated. In answering a

question as to a person’s current occupation, a system may have to selectively

determine which of several occupations reported for that person is the most recently

reported one. (Mani et al., 2004)

 A question answering system may have in its knowledge base the following

sentences about Bill Clinton:

 On February 1, 2005, he (Bill Clinton) was picked by UN Secretary-General
 Kofi Annan to head the United Nations earthquake and tsunami relief and
 reconstruction effort. Five days later, he and Bush (George H. W. Bush) both
 appeared on the Super Bowl XXXIX pre-game show on Fox in support of
 their bipartisan effort to raise money for relief of the disaster through the USA
 Freedom Corps, an action which Bush described as “transcending politics.”
 Thirteen days later, they both traveled to the affected areas to see how the
 relief efforts are going.

In order to answer questions like “when did Clinton and Bush both travel to the

affected areas in 2005?”, the specification of temporal information is needed to

represent the calendar dates (e.g., “February 1, 2005”) and durations (e.g., “thirteen

days”), and do temporal reasoning on the date and the durations to get the answer date

by applying temporal arithmetic rules (for this example, simply add 5 days and then

13 days to February 1, and get the answer date of February 19, 2005).

 In general, given (possibly incomplete or uncertain) information about the

temporal relations holding between events or facts in the represented domain, a

6

system needs to be able to answer temporal queries about other implicit (entailed)

relations; for example, queries about the possibility or the necessity that two

particular future events will temporally overlap or about the shortest temporal

distance separating two events that have occurred (Gerevini, 1997).

 In order to achieve this, besides the representation of usual temporal concepts

(e.g., temporal relations, dates and times, and durations), extraction of vague or

typical event durations is also necessarily required due to the fact that missing

durations is one of the most common sources of incomplete information for temporal

reasoning, since very often explicit duration information (e.g., “a five-day meeting”,

“I have lived here for three years”) is missing in natural language texts.

 FOL representation and reasoning for natural language has already been

applied successfully to question answering (Moldovan et al., 2002) at LCC1, where

questions and answers are first translated into FOL forms. A resolution-based module

then proves that the question logically follows from the answer using a set of axioms

that are automatically extracted from the WordNet (Miller, 1990) glosses.

 For temporal information processing and reasoning in natural language text

using OWL-Time, we can first use LFToolkit 2 to translate original temporal

expressions in natural language to a “surface” FOL form where the predicate names

are taken directly from the expressions. Then domain mapping rules are used to map

the “surface” FOL form to the “deep” or domain FOL forms where the predicate

1 http://www.languagecomputer.com/
2 http://www.isi.edu/~nrathod/wne/LFToolkit/

7

names are from the OWL-Time vocabulary. For example, a natural language

expression

 “four consecutive Mondays”

is first translated into its “surface” FOL form

 plur(d,s) ∧ card(s, 4) ∧ consecutive(s, Monday1)

The following mapping rule is then used

 (∀ s, p) consecutive(s, p) ≡ (∃ s0) everyp(s, s0, p)

to translate this “surface” FOL form to the OWL-Time domain FOL form

 (everyp(s, s0, Monday1) ∧ card(s, 4))3

Finally, with all the propositions in the OWL-Time vocabulary, inferences can be

made using OWL-Time inference axioms by any FOL theorem provers, e.g., OTTER

(Kalman, 2001). Mapping rules have also been developed to map subsets of the

problems that can be represented by the time ontology in FOL to different temporal

constraint-based formalisms for more efficient temporal reasoning (see Section 7 for

details).

 OWL-Time can also be used to support and interpret useful annotation of

temporal information in natural language text (Hobbs and Pustejovsky, 2003), e.g.,

TimeML (Pustejovsky et al., 2002), to provide a temporal grounding for texts that

will facilitate reasoning over events, their orderings, and their relative granularity.

3 See Section 4.3 for more details on this example.

8

1.3 Applications of OWL-Time: the Current Usage

OWL-Time can be applied to a very wide range of applications. Whenever you need

a program or software agent to process and/or reason about temporal information,

such a time ontology would be needed. In fact, OWL-Time has already been used in

applications from all sorts of different fields besides the Semantic Web and natural

language, from ubiquitous and pervasive computing, information integration, video

event representation, to geographic information science, and so on. OWL-Time has

already been used in/for

• OWL-S, an OWL-based Web service ontology which supplies Web service

providers with a core set of markup language constructs for describing the

properties and capabilities of their Web services in unambiguous, computer-

interpretable form (OWL-S Coalition, 2004). In the current version (i.e., OWL-S

1.1 release 4), OWL-Time is used in its upper ontology for services in

process.owl5 and its Congo.com (a fictitious B2C site) example6 (Pan and Hobbs,

2004). (Dobson and Sommerville, 2006) also uses OWL-Time in a Quality of

Service (QoS) ontology to capture the semantics of availability.

• RSCDF as temporal and contextual extensions of Resource Description

Framework (RDF) for the Semantic Web (Kaykova et al., 2005). A Semantic

Web-based agent communication framework with a case study of meeting

4 http://www.daml.org/services/owl-s/1.1/
5 http://www.daml.org/services/owl-s/1.1/Process.owl
6 http://www.daml.org/services/owl-s/1.1/examples.html

9

scheduling (Hritcu and Buraga, 2005). A reusable ontology for fluents in OWL,

i.e., dealing with the problem of representing relationships that change over time

in OWL (Welty and Fikes, 2006).

• Question Answering systems to handle questions that ask about temporal

information. OWL-Time is used as one of the resources for identifying expected

answer types, as well as supplying rules (axioms) for temporal inferences

(Harabagiu and Bejan, 2005).

• Information integration for scientific data on the Grid to map temporal attributes

from different sources (Tuchinda et al., 2004). A workday calendar model for

workflows in business service grid environment (Liu et al., 2006).

• Video event representation for the development of a formal language for

describing an ontology of video events (Nevatia et al., 2004). Temporal content

modeling of video data for semantic video retrieval (QasemiZadeh et al., 2006).

• Ubiquitous and pervasive computing and its use for building a smart meeting

room system for its standard ontology SOUPA and the broker-centric agent

architecture CoBrA (Chen et al., 2003, 2004). A domain-independent semantic

model for context-aware computing (Bulcao Neto and Pimentel, 2005). Event

representation for building a smart hospital (Wu et al., 2005). The DoNet

ontology for the applications to household appliances and buildings (Attard and

Montebello, 2006).

10

• Data integration to resolve temporal semantic conflicts between data sources and

receivers due to data semantics changes over time, e.g., historical stock price

database, (Zhu et al., 2004).

• Improving portlet (i.e., applications within a portal in much the same way as

servlets within a Web server) interoperability by defining events for the portal

ontology (Díaz et al., 2005).

• Semantic Tuple Spaces (sTuples) to provide temporal concepts for creating

ontologies in sTuples, a infrastructure for pervasive computing, where Tuple

Space can be viewed as a logically shared memory, where producers add tuples to

the space, while consumers read or extract tuples from the space using a search

template (Khushraj et al., 2004).

• Ontology architecture for semantic Geo services for the Olympic Games 2008 in

Beijing as its time ontology component (Weissenberg and Gartmann, 2003).

Geographic Information Science (GIScience) to provide a basis for representing

geographic information, e.g., “time regions” and “space-time regions” (Agarwal,

2005).

11

1.4 Major Contributions

The thesis has the following major contributions:

1. A rich and expressive ontology of temporal concepts in FOL and OWL Web

Ontology Language that covers not only the basic concepts, such as temporal

relations, durations, clock and calendar information, but also the more

advanced ones, such as temporal aggregates, temporal arithmetic mixing

months and days, and vague event durations.

2. Axioms to map subsets of the problems that can be represented by the

ontology in FOL to temporal constraint-based formalisms for more efficient

temporal reasoning.

3. The temporal aggregates part of the ontology is rich enough to represent

complex multiple-layered and conditional temporal aggregates.

4. The first attempt to develop a set of rules for doing temporal arithmetic

mixing months and days based on the “history-dependent intuition” with

different desired arithmetic properties.

5. Use normal distributions to model vague judgments that are intervals on a

scale, which can extend from time to other kinds of vague but substantive

information.

6. The first effort to automatically extract vague and implicit event duration

information in natural language text, and shows that the learning performance

is very promising.

12

1.5 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 reviews related work on time ontologies and temporal reasoning

formalisms.

• Chapter 3 gives an overview of the basics of the time ontology, including the

representation of topological temporal relations, durations, clock and calendar

information.

• Chapter 4 describes the representation of temporal aggregates (i.e.,

collections/aggregates of temporal entities), including complex multiple-

layered and conditional temporal aggregates.

• Chapter 5 presents why and how we developed temporal arithmetic rules with

mixing months and days, given a list of desired arithmetic properties.

• Chapter 6 presents our work on modeling and learning vague event durations

from natural language texts.

• Chapter 7 describes a set of mapping axioms we developed for mapping

subsets of the problems that can be represented by the ontology in FOL to

different temporal constraint-based formalisms for more efficient reasoning.

• Chapter 8 concludes the thesis and discusses future research directions.

13

Chapter 2

Related Work

2.1 Ontology of Temporal Concepts

There already exist ontologies of temporal concepts from both commercial (e.g., time

ontology in Cyc (Lenat, 1995)) and academic sources (e.g., a reusable time ontology

(Zhou and Fikes, 2002); time ontology in SUMO (Suggested Upper Merged Ontology)

(Niles and Pease, 2001); a catalog of temporal theories (Hayes, 1995)).

 Both Cyc and SUMO are large upper ontologies encoding common sense

knowledge, and hence more focus on abstract and philosophical concepts that are

general enough to address a broad range of domain areas. Each domain (including

time) is not intended to be complete, and they don’t aim at Web or natural language

applications either. Moreover, OWL-Time is designed to be cleanly separated from

other ontologies one might build, where the interface between them will involve the

minimum of elements, and the only ontologies assumed are arithmetic and set theory.

As defined in a large upper ontology, the time ontology in Cyc and SUMO, however,

is less separated from other domains in the upper ontology (e.g., event ontology), and

makes more assumptions about higher level concepts and their properties. As a

commercial institution, Cyc has only released a part of its entire ontology to the

public, and it has not been subject to extensive peer review either.

14

 SUMO is written in SUO-KIF (Pease, 2004) which was derived from KIF

(Genesereth, 1992) to support the definition of SUMO. Special translation or a

theorem prover would be needed in order to interact with ontologies written in other

languages. The time ontology in SUMO is relatively less expressive. For example, it

cannot express multiple-layered or conditional temporal aggregates.

 (Zhou and Fikes, 2002) proposed a reusable time ontology written in KIF for

large-scale knowledge system applications. Our treatments on topological temporal

relations are pretty similar, for example, we both treat instant and interval as

independent primitives. However, we have different treatment for many other

domains (e.g., calendar and clock information and measures of durations), and OWL-

Time includes a richer set of axioms and concepts and also broader coverage of the

domains (e.g., time zone, temporal aggregates, and temporal arithmetic).

 As a survey of several structures that time can be taken to have, a catalog of

temporal theories (Hayes, 1994) gives a coherent overview of different theories and

synthesizes them as much as possible. Like OWL-Time, what it’s concerned with is

the actual structure of time, instead of how facts persist through time, or how states of

knowledge are sensitive to the changes that time can produce, which is the major

concern for the research on temporal logic as described next.

15

2.2 Temporal Ontology for Natural Language

According to Mark Steedman (1997, 2002), in general there are two approaches to

temporal ontology for natural language. The first one is the descriptive approach

which is usually attributed to Vendler (1967) and has then been refined (Dowty 1979,

1982; Verkuyl, 1989) and further extended (Moens and Steedman, 1988; Smith,

1991). The work in this framework most concerns the descriptive properties of tense

and aspect in natural language, for example, how to disambiguate the four aspectual

categories (i.e., achievements, activities, accomplishments, and states), which is

relevant to our work on extracting vague event durations from news articles (see

Section 6 for details).

 The logical and computational approach (McDermott, 1982; van Benthem,

1983, 1995; Allen, 1984; Galton, 1984; Allen and Ferguson, 1997) is the other

approach that tries to formalize this quite complex ontology. OWL-Time falls into

this category with the focus on representing and reasoning about temporal concepts

and expressions, instead of tense and aspect in natural language.

 Besides FOL, or first-order predicate calculus (FOPC), which is very popular

in the logical and computational approach, special temporal operators were used in

other temporal logic, for example, tense logic (Prior, 1957), which, as other modal

logics, has a richer expressive power in its domain (e.g., time domain), but it needs

special theorem proving systems (maybe inefficient or not practical). Most of the

tense logics can be translated into FOL, and usually they are translated into FOL for

(efficient/practical) theorem proving or automated deduction.

16

2.3 Other Temporal Representation and Reasoning Formalisms

Constraint-based formalisms for temporal reasoning have been developed for

representing and reasoning, ranging from less expressive problems (e.g., Simple

Temporal Problem (STP) (Dechter et al., 1991)) to more expressive ones (e.g.,

Disjunctive Temporal Problem (DTP)). Efficient algorithms have been developed for

solving STPs and DTPs to get exact solutions (Tsamardinos and Pollack, 2003) or

approximate solutions (Moffitt and Pollack, 2005). Planning and scheduling tasks are

the applications they are most concerned with.

 Although DTP is more expressive than STP and the Temporal Constraint

Satisfaction Problem (TCSP), it can only represent duration constraints (plus simple

relations as before/after/at given time points, which can be converted to their

representation), and there are no calendar or clock concepts involved. It cannot

represent temporal aggregates or any non-temporal properties either.

 TCSP-based framework has also been applied to temporal reasoning for

natural language (Han and Lavie, 2004), where not only the durations but also the

calendar and granularity are modeled as a two level TCSP – the higher level models a

TCSP with different temporal objects/variables, and within each temporal variable is

a model of calendars, i.e., a CSP describing constraints among different temporal

units. However, more advance temporal concepts like temporal aggregates (e.g.,

recurrence expressions) cannot be represented in their current framework (Han et al.,

2006). A special-purpose reasoner, which is a conventional TCSP solver with the aid

17

of the calendar model, has to be used to draw inferences on given temporal

expressions.

 A formal framework for the definition and representation of time granularities

was proposed in (Bettini et al., 2000) especially for temporal database applications.

This framework has also been extended to TCSP (Bettini et al., 2002) for more

general temporal reasoning tasks.

18

Chapter 3

OWL-Time Basics

The material in this section is taken from (Hobbs, 2002; Hobbs and Pan, 2004). The

full definitions of OWL-Time can be found in (Hobbs and Pan, 2004). Here we only

present those parts that are essential for our later treatment of the complex temporal

phenomena (i.e., temporal aggregates, temporal arithmetic mixing months and dates,

and vague event durations), including a vocabulary for expressing facts about

topological relations among instants and intervals (Section 3.1), together with

information about durations (Section 3.3), and about clock and calendar information

(Section 3.4). The abstract characterization of the concepts and relations are

expressed in both FOL and OWL. A time zone resource in OWL developed for the

entire world will also be described.

 The notation of set theory is assumed for the ontology. Sets and elements of

sets will be ordinary individuals, and relations such as “member” will be relations

between such individuals. In particular, we will use the relation “member” between

an element of a set and the set. We will use the notation “{x}” for the singleton set

containing the element x. We will use the function “union” to refer to the union

operation between two sets. The function “card” will map a set into its cardinality.

19

 In an extension of the time ontology, it is also allowed for temporal predicates

to apply directly to events (Pan and Hobbs, 2004), should the user wish, but here we

restrict our treatment to temporal entities.

3.1 Topological Temporal Relations

There are two subclasses of TemporalEntity: Instant and Interval.

(∀ T)[TemporalEntity(T) ≡ Interval(T) ∨ Instant(T)]

This can be expressed in OWL as:

 <owl:Class rdf:ID=“Instant”>
 <rdfs:subClassOf rdf:resource=“#TemporalEntity”/>
 </owl:Class>

 <owl:Class rdf:ID=“Interval”>
 <rdfs:subClassOf rdf:resource=“#TemporalEntity”/>
 </owl:Class>

 <owl:Class rdf:ID=“TemporalEntity”>
 <owl:unionOf rdf:parseType=“Collection”>
 <owl:Class rdf:about=“#Instant” />
 <owl:Class rdf:about=“#Interval” />
 </owl:unionOf>
 </owl:Class>

Intervals are, intuitively, things with extent and instants are, intuitively, point-like in

that they have no interior points.

 The predicates “begins” and “ends” are relations between instants and

temporal entities.

begins(t,T) ⊃ Instant(t) ∧ TemporalEntity(T)

ends(t,T) ⊃ Instant(t) ∧ TemporalEntity(T)

 “begins”, for example, can be specified in OWL as:

 <owl:ObjectProperty rdf:ID=“begins”>
 <rdfs:domain rdf:resource=“#TemporalEntity” />
 <rdfs:range rdf:resource=“#Instant” />

20

 </owl:ObjectProperty>

The predicate “inside” is a relation between an instant and an interval.

inside(t,T) ⊃ Instant(t) ∧ Interval(T)

This concept of “inside” is not intended to include beginnings and ends of intervals.

 It will be useful in characterizing clock and calendar terms to have a relation

between instants and intervals that says that the instant is inside or the beginning of

the interval.

(∀ t,T)[beginsOrIn(t,T) ≡ [begins(t,T) ∨ inside(t,T)]]

A proper interval can be defined as one whose start and end are not identical.

(∀ T)ProperInterval(T)

≡ Interval(T) ∧ (∀ t 1 ,t 2)[begins(t 1 ,T) ∧ ends(t 2 ,T) ⊃ t 1 ≠ t 2]]

There is a “before” relation on temporal entities, which gives directionality to time. If

temporal entity T 1 is before temporal entity T 2 , then the end of T 1 is before the start

of T 2 . Thus, “before” can be considered to be basic to instants and derived for

intervals.

(∀ T 1 ,T 2)[before(T 1 ,T 2)

 ≡ (∃ t 1 ,t 2)[ends(t 1 ,T 1) ∧ begins(t 2 ,T 2) ∧ before(t 1 ,t 2)]]

The “before” relation is anti-reflexive, anti-symmetric, and transitive.

before(T 1 ,T 2) ⊃ T 1 ≠ T 2

before(T 1 ,T 2) ⊃ ¬before(T 2 ,T 1)

21

before(T 1 ,T 2) ∧ before(T 2 ,T 3) ⊃ before(T 1 ,T 3)

If an instant is inside a proper interval, then the beginning of the interval is before the

instant, which is before the end of the interval. This is the principal property of inside.

inside(t,T) ∧ begins(t 1 ,T) ∧ ends(t 2 ,T) ∧ ProperInterval(T)

 ⊃ before(t 1 ,t) ∧ before(t,t 2)

The relation “after” is defined in terms of “before”.

after(T 1 ,T 2) ≡ before(T 2 ,T 1)

The relations between intervals defined in Allen’s temporal interval calculus (Allen,

1984; Allen and Ferguson, 1997) can be defined in a straightforward fashion in terms

of “before” and identity on the beginning and end points.

 OWL-Time includes axioms defining the interval relations “intEquals”,

“intBefore”, “intMeets”, “intOverlaps”, “intStarts”, “intDuring”, “intFinishes”, and

their reverse interval relations: “intAfter”, “intMetBy”, “intOverlappedBy”,

“intStartedBy”, “intContains”, “intFinishedBy”. For example, the definition of

“intMeets” is:

intMeets(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t)[ends(t,T 1) ∧ begins(t,T 2)]]

It will be useful below to have a single predicate for intervals intersecting in at most

an instant.

22

nonoverlap(T 1 ,T 2)

 ≡ [intBefore(T 1 ,T 2) ∨ intAfter(T 1 ,T 2) ∨ intMeets(T 1 ,T 2)

 ∨ intMetBy(T 1 ,T 2)]

This could have been defined as easily in terms of “before” relations on the

beginnings and ends of the intervals.

“intMeets”, for example, can be specified in OWL as:

 <owl:ObjectProperty rdf:ID=“intMeets”>
 <rdfs:subPropertyOf rdf:resource=“#nonoverlap” />
 <rdfs:domain rdf:resource=“#ProperInterval” />
 <rdfs:range rdf:resource=“#ProperInterval” />
 </owl:ObjectProperty>

3.2 Linking Time and Events

The time ontology links to other things in the world through four predicates:

“atTime”, “during”, “holds”, and “timeSpan”. It is assumed that another ontology

provides for the description of events, either a general ontology of event structure

abstractly conceived, or specific, domain-dependent ontologies for specific domains.

 The predicate “atTime” relates an event to an instant, and is intended to say

that the event holds, obtains, or is taking place at that time.

atTime(e,t) ⊃ Instant(t)

The predicate “during” relates an event to an interval, and is intended to say that the

event holds, obtains, or is taking place during that interval.

during(e,T) ⊃ Interval(T)

23

Whether a particular process is viewed as instantaneous or as occurring over an

interval is a granularity decision that may vary according to the context of use, and is

assumed to be provided by the event ontology.

 The predicate “timeSpan” relates eventualities to instants or intervals (or

temporal sequences of instants and intervals). For contiguous states and processes, it

tells the entire instant or interval for which the state or process obtains or takes place.

timeSpan(T,e) ⊃ TemporalEntity(T) ∨ tseq(T)7

timeSpan(T,e) ∧ Interval(T) ⊃ during(e,T)

timeSpan(t,e) ∧ Instant(t) ⊃ atTime(e,t)

Whether the event obtains at the start and end points of its time span is a matter for

the event ontology to specify. The silence here on this issue is the reason “timeSpan”

is not defined in terms of necessary and sufficient conditions.

 In an extension of the time ontology, it is also allowed for temporal predicates

to apply directly to events (Pan and Hobbs, 2004), should the user wish. Thus,

“begins(t,e)” says that the instant t begins the interval that is the time span of event e.

3.3 Measuring Durations

3.3.1 Temporal Units

This development assumes that ordinary arithmetic is available.

7 tseq(T): T is a temporal sequence. Please see Section 4 for details.

24

 There are at least two approaches that can be taken toward measuring intervals.

The first is to consider units of time as functions from Intervals to Reals. Owing to

infinite intervals, the range must also include Infinity.

minutes: Intervals → Reals ∪ {Infinity}

minutes([5:14,5:17]) = 3

The other approach is to consider temporal units to constitute a set of entities, call it

“TemporalUnits”, and have a single function duration mapping “Intervals ×

TemporalUnits” into the Reals.

duration: Intervals × TemporalUnits → Reals ∪ {Infinity}

duration([5:14,5:17],*Minute*) = 3

The two approaches are interdefinable:

seconds(T) = duration(T,*Second*)

minutes(T) = duration(T,*Minute*)

hours(T) = duration(T,*Hour*)

days(T) = duration(T,*Day*)

weeks(T) = duration(T,*Week*)

months(T) = duration(T,*Month*)

years(T) = duration(T,*Year*)

Ordinarily, the first is more convenient for stating specific facts about particular units;

the second is more convenient for stating general facts about all units.

25

 The arithmetic relations among the various units are as follows:

seconds(T) = 60∗minutes(T)

minutes(T) = 60∗hours(T)

hours(T) = 24∗days(T)

days(T) = 7∗weeks(T)

months(T) = 12∗years(T)

The relation between days and months (and, to a lesser extent, years) are specified

later as part of the ontology of clock and calendar, below.

3.3.2 Concatenation and Hath

The multiplicative relations above don’t tell the whole story of the relations among

temporal units. Temporal units are composed of smaller temporal units. A larger

temporal unit is a concatenation of smaller temporal units. A general relation of

concatenation between an interval and a set of smaller intervals will be defined first.

A predicate Hath that specifies the number of smaller unit intervals that concatenate

to a larger interval will then be introduced.

 Concatenation: A proper interval x is a concatenation of a set S of proper

intervals if and only if S covers all of x, and all members of S are subintervals of x and

are mutually disjoint. (The third conjunct on the right side of ≡ is because

“beginsOrIn” only covers instants that begin or are inside x.)

concatenation(x,S)

 ≡ ProperInterval(x)

26

 ∧ (∀ z)[beginsOrIn(z,x) ⊃ (∃ y)[member(y,S) ∧ beginsOrIn(z,y)]]

 ∧ (∀ z)[ends(z,x) ⊃ (∃ y)[member(y,S) ∧ ends(z,y)]]

 ∧ (∀ y)[member(y,S)

 ⊃ [intStarts(y,x) ∨ intDuring(y,x) ∨ intFinishes(y,x)

 ∨ intEquals(y,x)]]

 ∧ (∀ y 1 ,y 2)[member(y 1 ,S) ∧ member(y 2 ,S)

 ⊃ [y 1 = y 2 ∨ nonoverlap(y 1 ,y 2)]]

 Hath: The basic predicate used here for expressing the composition of larger

intervals out of smaller clock and calendar intervals is Hath, from statements like “30

days hath September” and “60 minutes hath an hour.” Its structure is

Hath(N,u,x)

meaning “N proper intervals of duration one unit u hath the proper interval x.” That is,

if “Hath(N,u,x)” holds, then x is the concatenation of N unit intervals where the unit is

u. For example, if x is some month of September then “Hath(30,*Day*,x)” would be

true. Hath is defined as follows:

Hath(N,u,x)

 ≡ (∃ S)[card(S) = N ∧ (∀ z)[member(z,S) ⊃ duration(z,u) = 1]

 ∧ concatenation(x,S)]

That is, x is the concatenation of a set S of N proper intervals of duration one unit u.

 The type constraints on its arguments can be proved as a theorem: N is an

integer (assuming that is the constraint on the value of “card”), u is a temporal unit,

and x is a proper interval:

27

Hath(N,u,x) ⊃ integer(N) ∧ TemporalUnit(u) ∧ ProperInterval(x)

This treatment of concatenation will work for scalar phenomena in general. This

treatment of Hath will work for measurable quantities in general.

3.3.3 The Structure of Temporal Units

It is now possible to define predicates true of intervals that are 1 temporal unit long.

For example, week is a predicate true of intervals whose duration is one week.

second(T) ≡ seconds(T) = 1

minute(T) ≡ minutes(T) = 1

hour(T) ≡ hours(T) = 1

day(T) ≡ days(T) = 1

week(T) ≡ weeks(T) = 1

month(T) ≡ months(T) = 1

year(T) ≡ years(T) = 1

It is now in a position to state the relations between successive temporal units.

minute(T) ⊃ Hath(60,*Second*,T)

hour(T) ⊃ Hath(60,*Minute*,T)

day(T) ⊃ Hath(24,*Hour*,T)

week(T) ⊃ Hath(7,*Day*,T)

year(T) ⊃ Hath(12,*Month*,T)

28

3.3.4 Duration Description

The duration of an interval (or temporal sequence) can have many different

descriptions. An interval can be 1 day 2 hours, or 26 hours, or 1560 minutes, and so

on. It is useful to be able to talk about these descriptions in a convenient way as

independent objects, and to talk about their equivalences. We do this first in terms of

a predicate called “durationOf” that takes eight arguments, one for a temporal entity,

and one each for years, months, weeks, days, hours, minutes, and seconds. Then we

will define a specific kind of individual called a “duration description”, together with

a number of relations relating the duration description to the values of each of the

eight arguments. Thereby we convert the 8-ary predicate “durationOf” into eight

binary relations that are more convenient for description logic-based markup

languages, such as OWL. Here is the definition of the duration description, as well as

the binary relations like “yearsOf”:

(∀ T,y,m,w,d,h,n,s)[durationOf(T,y,m,w,d,h,n,s)

 ≡ (∃ D)[durationDescriptionOf(D,T) ∧ DurationDescription(D)

 ∧ yearsOf(D, y) ∧ monthsOf(D, m) ∧ weeksOf(D, w)

 ∧ daysOf(D, d) ∧ hoursOf(D, h) ∧ minutesOf(D, n)

 ∧ secondsOf(D, s)]]

It can be expressed in OWL as:

 <owl:Class rdf:ID=“DurationDescription”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#years” />
 <owl:maxCardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:maxCardinality>
 </owl:Restriction>

</rdfs:subClassOf>

29

...

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#seconds” />
 <owl:maxCardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

There are two ways to specify the duration description of a temporal entity. The

relation “durationDescriptionOf” uses “DurationDescription” as its range, while

“durationDescriptionDataType” uses the XML Schema datatype “duration”8 as its

range:

 <owl:ObjectProperty rdf:ID=“durationDescriptionOf”>
 <rdfs:domain rdf:resource=“#TemporalEntity” />
 <rdfs:range rdf:resource=“#DurationDescription” />
 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID=“durationDescriptionDataType”>
 <rdfs:domain rdf:resource=“#TemporalEntity” />
 <rdfs:range rdf:resource=“&xsd;duration” />
 </owl:DatatypeProperty>

Using the XML Schema datatype “duration” is simpler and more standard. But it

can’t specify weeks, which can be specified by using “DurationDescription”. Using

“DurationDescription” also makes it easier to extract values from any field for the

later use. The user has the freedom to choose either of these two properties/relations

to specify a duration description for a temporal entity.

8 http://www.w3.org/TR/2001/REC-xmlschema-2 20010502/#duration

30

3.4 Clock and Calendar

3.4.1 Time Zones

What hour of the day an instant is in is relative to the time zone. This is also true of

minutes, since there are regions in the world, e.g., central Australia, where the hours

are not aligned with UTC (Coordinated Universal Time)9 hours, but are, e.g., offset

half an hour. Seconds are not relative to the time zone. Days, weeks, months and

years are also relative to the time zone, since, e.g., 2005 began in the Eastern

Standard time zone three hours before it began in the Pacific Standard time zone.

Thus, predications about all clock and calendar intervals except seconds are relative

to a time zone.

 We have been referring to time zones, but in fact it is more convenient to

work in terms of what might be called the “time standard” that is used in a time zone.

That is, it is better to work with the Pacific Standard Time (PST) as a legal entity than

with the PST zone as a geographical region. A time standard is a way of computing

the time, relative to a world-wide system of computing time. For each time standard,

there is a zone, or geographical region, and a time of the year in which it is used for

describing local times. Where and when a time standard is used have to be

axiomatized, and this involves interrelating a time ontology and a geographical

ontology. These relations can be quite complex. Only the entities like PST and EDT,

the time standards, are part of the time ontology.

9 http://aa.usno.navy.mil/faq/docs/UT.html

31

 If we were to conflate time zones (i.e., geographical regions) and time

standards, it would likely result in problems in several situations. For example, the

Eastern Standard zone and the Eastern Daylight zone are not identical, since most of

Indiana until recently was on Eastern Standard time all year. The state of Arizona

and the Navajo Indian Reservation, two overlapping geopolitical regions, have

different time standards during the daylight saving times -- one is Pacific and the

other is Mountain.

 Time standards that seem equivalent, like Eastern Standard and Central

Daylight, should be thought of as separate entities. Whereas they function the same

in the time ontology, they do not function the same in the ontology that articulates

time and geography. For example, it would be false to say those parts of Indiana

shifted in April from Eastern Standard to Central Daylight time.

3.4.2 Time Zone Resource in OWL

A time zone resource10 in OWL for not only the US but also the entire world has been

developed, including three parts: the time ontology file11, the US time zone instance

file12, and the world time zone instance file13.

 The time zone ontology links a preliminary geographic ontology with a time

ontology. It defines the vocabulary about regions, political regions (countries, states,

counties, reservations, and cities), time zones, daylight saving policies, and the

10 http://www.isi.edu/~pan/timezonehomepage.html
11 http://www.isi.edu/~pan/damltime/timezone-ont.owl
12 http://www.isi.edu/~pan/damltime/timezone-us.owl
13 http://www.isi.edu/~pan/damltime/timezone-world.owl

32

relationships between these concepts. Its instances also link to other existing data on

the Web, such as US states instances developed by Terry Payne14, FIPS 55 county

instances15, and ISO country instances16.

 It can handle all the usual time zone and daylight savings cases. For example,

Los Angles uses PST, the time offset from UTC is -8 hours, and it observed daylight

savings from April 3 to October 30 in 2005. But it handles unusual cases as well. For

example, in Idaho the northern part is in the Pacific zone, the southern part in the

Mountain. The city of West Wendover, Nevada is in the Mountain time zone, while

the rest of Nevada is in the Pacific. For the details, see the documentation17, which

includes an outline of the ontology and the anticipated use.

3.4.3 Clock and Calendar Units

A day as a calendar interval begins at and includes midnight, and goes until, but does

not include, the next midnight. This contrasts with a day as a duration which is any

interval that is 24 hours in length.

 Including the beginning but not the end of a calendar interval in the interval

may strike some as arbitrary. But we get a cleaner treatment if, for example, all times

of the form 12:xx am, including 12:00 am, are part of the same hour and day, and all

times of the form 10:15:xx, including 10:15:00, are part of the same minute. Clock

intervals are described with the predicate “clockInt”:

14 http://www.daml.ri.cmu.edu/ont/USRegionState.daml
15 http://www.daml.org/2003/02/fips55/
16 http://www.daml.org/2001/09/countries/iso
17 http://www.isi.edu/~pan/damltime/time-zone documentation.txt

33

clockInt(y,n,u,x)

This expression says that y is the nth clock interval of type u in x. For example, the

proposition “clockInt(10:03,3, *Minute*,[10:00,11:00])” holds. Here u is a member of

the set of clock units, that is, one of *Second*, *Minute*, or *Hour*. The larger

interval x may not line up exactly with clock intervals. In this case we take y to be the

nth complete clock interval of type u in x. In addition, there is a calendar unit function

with similar structure:

calInt(y,n,u,x)

This says that y is the nth calendar interval of type u in x. For example, the

proposition “calInt(12Mar2002,12,*Day*,Mar2002)” holds. Here u is one of the

calendar units *Day*, *Week*, *Month*, and *Year*.

 A distinction is made above between clocks and calendars because they differ

in how they number their unit intervals. The first minute of an hour is labeled with 0;

for example, the first minute of the hour [10:00,11:00] is 10:00. The first day of a

month is labeled 1; the first day of March is March 1. We number minutes for the

number just completed; we number days for the day we are working on. Thus, if the

larger unit has N smaller units, the argument n in “clockInt” runs from 0 to N-1;

whereas, in “calInt”, n runs from 1 to N. To state properties true of both clock and

calendar intervals, we can use the predicate “calInt” and relate the two notions with

the axiom

calInt(y,n,u,x) ≡ clockInt(y,n-1,u,x)

34

In “calInt(y,n,u,x)” and “clockInt(y,n,u,x)”, y is not an arbitrary interval; it has to be a

calendar-clock interval which is a subclass of a proper interval:

 CalendarClockInterval(T) ⊃ ProperInterval(T)

The names of months can be defined in terms of the predicate “calInt”. For example,

July is the seventh month of a year.

 July(m,y) ≡ calInt(m,7,*Month*,y) ∧ (∃ n,t) [calInt(y,n,*Year*,t)]

The top-level time interval (for modern applications) is CE(z), which is the Common

Era in time zone z. Thus, the year 2005 in the Eastern Standard Time Zone is the y

such that “calInt(y, 2005, *Year*, CE(*EST*))”.

 A week is any seven consecutive days. A calendar week, by contrast,

according to a commonly adopted convention, starts at midnight, Saturday night, and

goes to the next midnight, Saturday night. That is, weeks start with Sunday. (By

contrast, the ISO 8061 standard week starts with Monday, and this is also

accommodated in the time ontology.) There are 52 weeks in a year, but there are not

usually 52 calendar weeks in a year. Weeks are independent of months and years.

However, we can still talk about the nth week in some larger period of time, e.g., the

third week of the month or the fifth week of the semester. To say a time interval is a

calendar-week, we say

calInt(y,n,*Week*,x)

As it happens, the n and x arguments will often be irrelevant when we only want to

say that some period is a calendar week, and not say which.

35

 The day of the week is a calendar interval of type *Day*. The nth day-of-the-

week in a week is the nth day in that interval.

dayofweek(y,n,x) ≡ calInt(y,n,*Day*,x) ∧ (∃ n1,x1) calInt(x,n1,*Week*, x1)

The days of the week have special names in English, such as Sunday, Monday, and so

on. For example, Monday is defined as follows:

dayofweek(y,2,x) ≡ Monday(y,x)

This says that y is the Monday of week x. The ISO 8061 standard week is related to

the traditional week as follows:

0 < n < 7 ⊃ [isodayofweek(y,n,x) ≡ dayofweek(y,n+1,x)]

isodayofweek(y,7,x) ≡ Sunday(y,x)

Holidays can also be specified in this ontology. To say that July 4 is a holiday one

could write

 (∀ d,m,y)[calInt(d,4,*Day*,m) ∧ July(m,y) ⊃ holiday(d)]

Holidays like Easter can be defined in terms of this ontology coupled with an

ontology of the phases of the moon.

 Standard notation for date lists the year, month, day, and time zone. It is

useful to define a predication for this.

dateOf(t,y,m,d,z)

 ≡ (∃ d 1 ,m 1 ,y 1 ,e) [beginsOrIn(t,d 1)

 ∧ calInt(d 1 ,d,*Day*,m 1) ∧ calInt(m 1 ,m,*Month*,y 1)

 ∧ calInt(y 1 ,y,*Year*,e) ∧ CE(z) = e]

36

Standard notation for times list the year, month, day, hour, minute, second, and time

zone. It is useful to define a predication for this.

timeOf(t,y,m,d,h,n,s,z)

≡ beginsOrIn(t,secFn(s,minFn(n,hrFn(h,

daFn(d,monFn(m,yrFn(y,CE(z))))))))

Alternatively,

timeOf(t,y,m,d,h,n,s,z)

 ≡ (∃ s 1 ,n 1 ,h 1 ,d 1 ,m 1 ,y 1 ,e) [beginsOrIn(t,s 1) ∧ sec(s 1 ,s,n 1)

 ∧ min(n 1 ,n,h 1) ∧ hr(h 1 ,h,d 1) ∧ da(d 1 ,d,m 1)

 ∧ mon(m 1 ,m,y 1) ∧ yr(y 1 ,y,e) ∧ CE(z) = e]

For example, an instant t has the time

5:14:35pm PST, Wednesday, February 6, 2002

if the following properties hold for t:

timeOf(t,2002,2,6,17,14,35,*PST*)

 ∧ (∃ w,x)[beginsOrIn(t,w) ∧ Wednesday(w,x)]

The second line says that t is in the Wednesday w of some week x.

 The relations among time zones can be expressed in terms of the “timeOf”

predicate. Two examples follow:

timeOf(t,y,m,d,h,n,s,*EST*) ≡ timeOf(t,y,m,d,h,n,s,*CDT*)

timeOf(t,y,m,d,h,n,s,*GMT*) ∧ hours(T) = 8 ∧ ends(t,T)

 ∧ begins(t 1 ,T) ∧ timeOf(t 1 ,y 1 ,m 1 ,d 1 ,h 1 ,n,s,*GMT*)

 ⊃ timeOf(t,y 1 ,m 1 ,d 1 ,h 1 ,n,s,*PST*)

37

3.4.4 Calendar-Clock Description

To express “calInt(y,n,u,x)” and “clockInt(y,n,u,x)” directly in OWL is inconvenient

since x is itself a clock or calendar interval that requires description. So a calendar-

clock description is defined in OWL for specifying both calendar and clock

information for a calendar-clock interval.

 A calendar-clock description has the following properties/fields: unitType,

year, month, week, day, dayOfWeek, dayOfYear, hour, minute, second, and time

zone. The property “unitType” specifies the temporal unit type of the calendar-clock

description, and its domain is “TemporalUnit”:

 <owl:Class rdf:ID=“TemporalUnit”>
 <owl:oneOf rdf:parseType=“Collection”>
 <TemporalUnit rdf:about=“#unitSecond” />
 <TemporalUnit rdf:about=“#unitMinute” />
 <TemporalUnit rdf:about=“#unitHour” />
 <TemporalUnit rdf:about=“#unitDay” />
 <TemporalUnit rdf:about=“#unitWeek” />
 <TemporalUnit rdf:about=“#unitMonth” />
 <TemporalUnit rdf:about=“#unitYear” />
 </owl:oneOf>
 </owl:Class>

For example, the temporal unit type of 10:30 is minute (“unitMinute”), and the

temporal unit type of March 20, 2003 is day (“unitDay”). The unit type is required.

With a given temporal unit type, all the fields/properties for smaller units will be

ignored. For instance, if the temporal unit type is day (“unitDay”), the values of the

field/property hour, minute, and second, if present, will be ignored.

 Since calendar-clock description is for describing calendar-clock intervals, a

property, called “calendarClockDescriptionOf” with “CalendarClockDescription” as

the range, for calendar-clock intervals is defined.

38

 To express “calInt(12Mar2002,12,*Day*,Mar2002)”, for example, using

calendar-clock description, we need an instance of “CalendarClockDescription” that

has values only for unitType (“unitDay”), year (2002), month (3), and day (12).

“clockInt(10:03,3,*Minute*,[10:00, 11:00))” can be expressed similarly.

 “CalendarClockDescription” and “calendarClockDescriptionOf” are defined

in OWL as:

 <owl:Class rdf:ID=“CalendarClockDescription”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#unitType” />
 <owl:cardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#year” />
 <owl:maxCardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:maxCardinality>
 </owl:Restriction>

</rdfs:subClassOf>

 ...

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#second” />
 <owl:maxCardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#timeZone” />
 <owl:maxCardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:ObjectProperty rdf:ID=“calendarClockDescriptionOf”>
 <rdfs:domain rdf:resource=“#CalendarClockInterval” />
 <rdfs:range rdf:resource=“#CalendarClockDescription” />
 </owl:ObjectProperty>

In order to specify that an instant is in a calendar-clock interval, an “inCalendar-

Clock” property/relation is defined similarly to “calendarClockDescriptionOf” as

follows:

39

 <owl:ObjectProperty rdf:ID=“inCalendarClock”>
 <rdfs:domain rdf:resource=“#Instant” />
 <rdfs:range rdf:resource=“#CalendarClockDescription” />
 </owl:ObjectProperty>

With this “inCalendarClock” relation, we can say that an instant is at a specific

calendar-clock time. For example, the beginning of a meeting, which is an instant, is

at 6:00pm which is actually in a calendar-clock interval of [6:00:00, 6:01:00).

 Two simpler relations, “calendarClockDescriptionDatatype” and “inCalendar-

ClockDatatype” are also defined in OWL. Similar to durations, the only difference

between these two relations and the above “calendarClockDescriptionOf” and

“inCalendarClock” relations is their ranges: these two simpler relations use the XML

Schema datatype “dateTime”18 as their ranges, while the above uses “CalendarClock-

Description”:

 <owl:DatatypeProperty rdf:ID=“inCalendarClockDataType”>
 <rdfs:domain rdf:resource=“#Instant” />
 <rdfs:range rdf:resource=“&xsd;dateTime” />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID=“calendarClockDescriptionDataType”>
 <rdfs:domain rdf:resource=“#CalendarClockInterval” />
 <rdfs:range rdf:resource=“&xsd;dateTime” />
 </owl:DatatypeProperty>

 To illustrate more clearly the difference between using

CalendarClockDescription and using the XML datatype dateTime, let’s look at a

concrete example: an instant, called “instantExample”, at 10:30am EST on

01/01/2005 can be expressed using both inCalendarClockDataType and

inCalendarClock in OWL as:

 <time:Instant rdf:ID=“instantExample”>
 <time:inCalendarClock rdf:resource=“instantExampleDescription” />

18 http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#dateTime

40

 <time:inCalendarClockDataType rdf:datatype=“&xsd;dateTime”>
 2005-01-01T10:30:00-5:00</time:inCalendarClockDataType>
 </time:Instant>

 <time:CalendarClockDescription rdf:ID=“instantExampleDescription”>
 <time:unitType rdf:resource=“&time;unitMinute” />
 <time:year rdf:datatype=“&xsd;gYear”>2005</time:year>
 <time:month rdf:datatype=“&xsd;gMonth”>1</time:month>
 <time:week rdf:datatype=“&xsd;nonNegativeInteger”>1</time:week>
 <time:day rdf:datatype=“&xsd;gDay”>1</time:day>
 <time:dayOfWeekField rdf:datatype=“&xsd;nonNegativeInteger”>6

</time: dayOfWeekField>
 <time:dayOfYearField rdf:datatype=“&xsd;nonNegativeInteger”>1
 </time: dayOfYearField>
 <time:hour rdf:datatype=“&xsd;nonNegativeInteger”>10</time:hour>
 <time:minute rdf:datatype=“&xsd;nonNegativeInteger”>30</time:minute>
 <time:timeZone rdf:resource=“&tz-us;EST” />
 </time:CalendarClockDescription>

We can see from this example that it’s much simpler to use the XML Schema

datatype, “dateTime”. However, the advantage of using “CalendarClockDescription”

is that it can express more information than “dateTime”, such as “week”, “day of

week” and “day of year”, so in the above example, we can also know that 01/01/2005

is Saturday, on the first day of the year, and in the first week of the year. The

namespace “tz-us” points to our US time zone data 19 . Moreover, each field of

“CalendarClockDescription” is separate so that it's easier to extract the value of some

fields for the later use and easier to reason about.

19 http://www.isi.edu/~pan/damltime/timezone-us.owl

41

Chapter 4

Temporal Aggregates

Temporal aggregates are collections/aggregates of temporal entities. Natural language

texts involve many expressions of temporal aggregates, such as “every Tuesday”,

“every 3rd Monday in 2001”, “4 consecutive Sundays”, “3 weekdays after today”,

“the 4th of 6 days of voting”, and so on.

 Such information is also very common on the Web, for example, in Web

services you may have “the customer service is available from 8am to 5pm EST every

working day between 01/01/2004 to 01/15/2005 (Dumas et al. 2001)”; “send me the

closing price of IBM, every 7 days after it exceeds $100, as long as it remains above

$100 (Motakis and Zaniolo 1997)”. Thus it is crucial to develop an ontology of

temporal aggregates to represent these expressions.

 In Section 4.1 we describe our general approach to temporal aggregates in

FOL that is intended to handle any collection of temporal entities, regardless of how

they are described. An important special case is temporal aggregates consisting of

clock and calendar temporal entities, like calendar months. iCalendar (Dawson and

Stenerson, 1998) is a popular framework for describing these, and in Section 4.2 we

show how iCalendar can be embedded in OWL-Time. In Section 4.3 we present

several examples of natural language expressions for temporal aggregates and how

42

they would be represented in FOL. Some can be described in both iCalendar and

OWL-Time, while others can only be represented in OWL-Time. We also

demonstrate how we can translate from a natural language sentence to our

representation. The temporal aggregates ontology represented in OWL is described in

detail in Section 4.4. Two natural language examples will be taken from Section 4.3,

and are expressed in OWL in Section 4.5. Suggestions on improving set expression

(i.e., temporal aggregate) annotations in TimeML are proposed in Section 4.6. Section

4.7 reports the evaluation result on the coverage of the temporal aggregates ontology.

4.1 Temporal Aggregates in FOL

In this section, for convenience, we will make moderate use of second-order

formulations, and quantify over predicate symbols. This could be eliminated with the

use of an “apply” predicate and axiom schemas systematically relating predicate

symbols to corresponding individuals, e.g., the axiom schema for unary predicates p,

 (∀ x)[apply(*p*,x) ≡ p(x)]

4.1.1 Temporal Sequences

It will be convenient to have a relation “ibefore” that generalizes over several interval

and instant relations, covering both “intBefore” and “intMeets” for proper intervals.

 (∀ T1,T2)[ibefore(T1,T2)

 ≡ [before(T1,T2) ∨

 [ProperInterval(T1) ∧ ProperInterval(T2) ∧ intMeets(T1,T2)]]]

43

It will also be useful to have a relation “iinside” that generalizes over all temporal

entities and aggregates. A predicate “iinside-1” is defined first that generalizes over

instants and intervals and covers “intStarts”, “intFinishes” and “intEquals” as well as

“intDuring” for intervals. We break the definition into several cases.

 (∀ T1,T2)[iinside-1(T1,T2)

 ≡ [T1 = T2

 ∨ [Instant(T1) ∧ ProperInterval(T2) ∧ inside(T1,T2)]

 ∨ [(∃ t) begins(t,T1) ∧ ends(t,T1)

 ∧ ProperInterval(T2) ∧ inside(t,T2)]

 ∨ [ProperInterval(T1) ∧ ProperInterval(T2)

 ∧ [intStarts(T1,T2) ∨ intDuring(T1,T2)

 ∨ intFinishes(T1,T2) ∨ intEquals(T1,T2)]]]]

The third disjunct in the definition is for the case of 0-length intervals, should they be

allowed and distinct from the corresponding instants.

 A temporal aggregate is first of all a set of temporal entities, but it has further

structure. The relation “ibefore” imposes a natural order on some sets of temporal

entities, and the predicate “tseq” is used to describe those sets.

 (∀ s)[tseq(s) ≡ (∀ t)[member(t,s) ⊃ TemporalEntity(t)]

 ∧ (∀ t1,t2)[member(t1,s) ∧ member(t2,s)

 ⊃ [t1 = t2 ∨ ibefore(t1,t2) ∨ ibefore(t2, t1)]]]

That is, a temporal sequence is a set of temporal entities totally ordered by the

“ibefore” relation. A temporal sequence has no overlapping temporal entities.

44

 It will be useful to have the notion of a temporal sequence whose elements all

have a property p.

 (∀ s,p)[tseqp(s,p) ≡ tseq(s) ∧ (∀ t)[member(t,s) ⊃ p(t)]]

The same temporal aggregate can be broken up into a set of intervals in many

different ways.

 A minimal temporal sequence is one whose intervals are maximal, so that the

number of intervals is minimal. We can view a week as a week or as 7 individual

successive days; the first would be minimal. We can go from a non-minimal to a

minimal temporal sequence by concatenating intervals that meet.

 (∀ s)[min-tseq(s)

 ≡ (∀ t1,t2)[member(t1,s) ∧ member(t2,s)

 ⊃ [t1 = t2 ∨ (∃ t)[ibefore(t1,t) ∧ ibefore(t,t2) ∧ ~member(t,s)]]]]

That is, s is a minimal temporal sequence when any two distinct intervals in s have a

temporal entity not in s between them.

 A temporal sequence s1 is a minimal equivalent temporal sequence to

temporal sequence s2 if s1 is minimal and equivalent to s2.

 (∀ s1,s2)[min-equiv-tseq(s1,s2)

 ≡ min-tseq(s1) ∧ tseq(s2)

 ∧ (∀ t,t2)[TemporalEntity(t) ∧ iinside-1(t,t2) ∧ member(t2,s2)

 ⊃ (∃ t1)[member(t1,s1) ∧ iinside(t,t1)]]]

45

4.1.2 Temporal Sequences and Their Elements

“iinside-1” can now be generalized to the predicate “iinside”, which covers both

temporal entities and temporal sequences. A temporal entity is “iinside” a temporal

sequence if it is “iinside-1” one of the elements of its minimal equivalent temporal

sequence.

 (∀ t,s)[iinside(t,s)

 ≡ [TemporalEntity(t) ∧ TemporalEntity(s) ∧ iinside-1(t,s)]

 ∨ [TemporalEntity(t) ∧ tseq(s)

 ∧ (∃ s1,t1)[min-equiv-tseq(s1,s) ∧ member(t1,s1)

 ∧ iinside-1(t,t1)]]]

A notion of “isubset” can be defined on the basis of “iinside”.

 (∀ s,s0)[isubset(s,s0) ≡ [tseq(s) ∧ tseq(s0) ∧ (∀ t)[member(t,s)

 ⊃ iinside(t,s0)]]]

That is, every element of temporal sequence s is inside some element of the minimal

equivalent temporal sequence of s0.

 A relation of “idisjoint” between two temporal sequences can also be defined.

 (∀ s1,s2)[idisjoint(s1,s2)

 ≡ [tseq(s1) ∧ tseq(s2)

 ∧ ~(∃ t, t1, t2)[member(t1,s1) ∧ member(t2,s2)

 ∧ iinside(t,t1) ∧ iinside(t,t2)]]]

That is, temporal sequences s1 and s2 are disjoint if there is no overlap between the

elements of one and the elements of the other.

46

 The last temporal entity in a temporal sequence is the one with any of the

others “ibefore” it.

 (∀ t,s)[last(t,s) ≡ [tseq(s) ∧ member(t,s)

 ∧ (∀ t1)[member(t1,s) ⊃ [t1 = t ∨ ibefore(t1,t)]]]]

More generally, the nth element of temporal sequence can be defined.

 (∀ t,s)[nth(t,n,s)

 ≡ [tseq(s) ∧ member(t,s) ∧ natnum(n)

 ∧ (∃ s1)[(∀ t1)[member(t1,s1)

 ≡ [member(t1,s) ∧ ibefore(t1,t)]] ∧ card(s1) = n-1]]]

That is, the nth element of a temporal sequence has n-1 elements before it.

4.1.3 Everynthp

The predicate “ngap” will enable us to define “everynthp” below. Essentially, the idea

is a temporal sequence s containing every nth element of s0 for which p is true. The

predicate “ngap” holds between two elements of s and says that there are n-1

elements between them that are in s0 and not in s for which p is true.

 (∀ t1,t2,s,s0,p,n) [ngap(t1,t2,s,s0,p,n)

 ≡ [member(t1,s) ∧ member(t2,s) ∧ tseqp(s,p)

 ∧ tseq(s0) ∧ isubset(s,s0) ∧ natnum(n)

 ∧ (∃ s1)[card(s1) = n-1 ∧ idisjoint(s,s1)

 ∧ (∀ t)[member(t,s1)

 ≡ [iinside(t,s0) ∧ p(t) ∧ ibefore(t1,t) ∧ ibefore(t,t2)]]]]]

The predicate “everynthp” says that a temporal sequence s consists of every nth

element of the temporal sequence s0 for which property p is true. It will be useful in

47

describing temporal aggregates like “every third Monday in 2001”, where s is the

desired temporal sequence(“every third Monday in 2001”), s0 is the context temporal

sequence (“in 2001”), n is 3 (“third”), and p is Monday.

 (∀ s,s0,p,n)[everynthp(s,s0,p,n)

 ≡ [tseqp(s,p) ∧ tseq(s0) ∧ natnum(n)

 ∧ (∃ t1)[nth(t1,1,s) ∧ ~(∃ t][iinside(t,s0) ∧ ngap(t,t1,s,s0,p,n)]]

 ∧ (∃ t2)[last(t2,s) ∧ ~(∃ t][iinside(t,s0) ∧ ngap(t2,t,s,s0,p,n)]]

 ∧ (∀ t1)[last(t1,s) ∨ (∃ t2) ngap(t1,t2,s,s0,p,n)]]]

That is, the first element in s has no p element n elements before it in s0, the last

element in s has no p element n elements after it, and every element but the last has a

p element n elements after it.

 The variable for the temporal sequence s0 is, in a sense, a context parameter.

When we say “every other Monday”, we are unlikely to mean every other Monday in

the history of the Universe. The parameter s0 constrains us to some particular segment

of time. (Of course, that segment could in principle be the entire time line.)

 The definition of “everyp” is simpler:

 (∀s,s0,p)[everyp(s,s0,p)

 ≡ (∀ t)[member(t,s) ≡ [iinside(t,s0) ∧ p(t)]]]

It is a theorem that every p is equivalent to every first p.

 (∀s,s0,p)[everyp(s,s0,p) ≡ everynthp(s,s0,p,1)]

“every-other-p” could be defined similarly.

 More examples will be shown in Section 4.3 to illustrate how to use our

ontology to represent different kinds of temporal aggregates expressions.

48

4.2 Embedding iCalendar Recurrence Sets in OWL-Time

Internet Calendaring and Scheduling Core Object Specification (iCalendar) is a

widely supported standard for personal data interchange. It provides the definition of

a common format for openly exchanging calendaring and scheduling information

across the Internet. The recurrence set in iCalendar is the complete set of recurrence

instances for a calendar component. iCalendar recurrence sets are a subset of OWL-

Time temporal sequences. For example, “everyday in January, for 3 years” can be

expressed as20

 DTSTART;TZID=US-Eastern:19980101T090000

 RRULE:FREQ=YEARLY;UNTIL=20000131T090000Z;

 BYMONTH=1;BYDAY=SU,MO,TU,WE,TH,FR,SA

 or

 RRULE:FREQ=DAILY;UNTIL=20000131T090000Z;BYMONTH=1

DTSTART specifies the start time, and RRULE specifies the recurrence rule. The

properties of the recurrence rule (e.g., FREQ, UNTIL) are discussed in this section.

More examples will be shown in Section 4.3.

 A systematic way has been developed to map a recurrence set in iCalendar to

a temporal sequence in OWL-Time. Here only an illustrative subset of recurrence sets

will be demonstrated.

 As shown in the next section with natural language examples, there are cases

that can be expressed in OWL-Time more accurately than in iCalendar, and there are

20 The example is taken from iCalendar RFC 2445 page 119.

49

also cases that iCalendar can’t express, but OWL-Time can. Moreover, embedding

recurrence sets in OWL-Time gives access to the full ontology of time for temporal

reasoning.

4.2.1 Reify Recurrence Rules

 In iCalendar, a recurrence set s is defined by a recurrence rule r which can be

expressed as “RecurrenceSetRule(s,r)”. First, we list the properties of a recurrence

rule r:

(∀ r) [rule(r) ⊃ (∃ tu,g) [freq(r) = tu ∧ TemporalUnit(tu) ∧ gap(g,r)]]

“freq(r)” corresponds to the FREQ property of recurrence rules. Since it is a required

property, it is defined as a function mapping from a recurrence rule to a temporal unit,

tu. For example, FREQ = WEEKLY will have a return value of temporal unit

Week.

 “gap(g,r)” corresponds to the INTERVAL property of recurrence rules. For

example, “every 3rd month” will have an INTERVAL property with a value of 3. If it

is missing, we assume it is given a default value of 1 during the translation process

from iCalendar to OWL-Time.

 It is required in iCalendar that either UNTIL or COUNT property may appear

in a recurrence rule, but they must not occur in the same rule.

 (∀ r) [rule(r)

 ⊃ (∃ n) [count(n,r) ∧ natnum(n)]

 ∨ (∃ t,y,mo,d,h,mi,s,z) [until(t,r) ∧ timeOf(t,y,mo,d,h,mi,s,z)]]

50

“count(n,r)” corresponds to the COUNT property of recurrence rules. “until(t,r)”

corresponds to the UNTIL property of recurrence rules.

 Then, we specify the optional properties of a recurrence rule as in:

(∀ r, ls) [rule(r) ∧ bysecond(ls, r)

 ⊃ (∀ s) [member(s, ls) ⊃ integer(s) ∧ 0 ≤ s ≤ 59]]

This corresponds to the BYSECOND property of recurrence rules. BYMINUTE,

BYHOUR, and so on are defined similarly.

4.2.2 Map Recurrence Sets

Now we can map from the recurrence set generated by a recurrence rule r with either

COUNT or UNTIL to a temporal sequence s:

(∀ r,n,s,g) [RecurrenceSetRule(s,r) ∧ count(n,r) ∧ gap(g,r)

 ⊃ (∃ s0) [card(s)=n ∧ everynthp(s,s0,map2p(freq(r)),g)]]

(∀ r,t,s,g) [RecurrenceSetRule(s,r) ∧ until(t,r) ∧ gap(g,r)

 ⊃ (∃ t’,s0) [last(t’,s0) ∧ ends(t,t’) ∧ everynthp(s,s0,map2p(freq(r)),g)]]

“map2p” is a function that maps from temporal units to their corresponding unary

predicate names. For example,

map2p(*year*) = year1,

where (∀ y) [year1(y) ≡ (∃ n,x) [calInt(y,n,*Year*,x)]]

For example, the recurrence rule for expressing “daily for 10 occurrences” is:21

RRULE:FREQ=DAILY;COUNT=10

21 The example is taken from iCalendar RFC 2445 page 118.

51

which can be expressed as:

RecurrenceSetRule(s,r) ∧ count(10,r) ∧ gap(1,r)

This can be translated to:

 (∃ s0) [card(s)=10 ∧ everynthp(s,s0,map2p(freq(r)),1)]

 ⊃ (∃ s0) [card(s)=10 ∧ everynthp(s,s0,map2p(*day*),1)]

 ⊃ (∃ s0) [card(s)=10 ∧ everynthp(s,s0,day1,1)]

 ⊃ (∃ s0) [card(s)=10 ∧ everyp(s,s0,day1)]

 where (∀ d) [day1(d) ≡ (∃ n,x) [calInt(y,n,*Day*,x)]]

iCalendar can express very complicated recurrence sets. For example, “The 1st and 2nd

hours of the 4th and 5th months of every year” will have a recurrence rule in which

BYHOUR = 1, 2, BYMONTH = 4, 5, and FREQ = YEARLY.

 To formalize this we need recursion through the sequence of temporal units

(with the predicate “everyithtempunit”) and recursion through the list of integers

associated with each temporal unit (with the predicate “byTulistRecurs”). We do the

latter first.

(∀ s,ls,r,tu,g) [RecurrenceSetRule(s,r) ∧ bytempunit (ls,r,tu) ∧ gap(g,r)

 ⊃ (∃ s’,s0) [everynthp(s’,s0,map2p(freq(r)),g)

 ∧ byTulistRecurs(s,ls,s’,tu,freq(r))]]

(∀ s,ls,s’,tu,tu’) [byTulistRecurs (s,ls,s’,tu,tu’) ∧ card(ls) > 1

 ⊃ (∃ s1,ls1,i,si,i) [ls = union({i},ls1) ∧ ~member(i,ls1)

 ∧ everyithtempunit(si,s’,i,tu,tu’) ∧ s = union(s1, si)

 ∧ byTulistRecurs(s1,ls1,s’,tu,tu’)]]

Base case of the recursion:

52

(∀ s,s’,i,tu,tu’) [byTulistRecurs(s,{i},s’,tu,tu’)

 ⊃ everyithtempunit(s,s’,i,tu,tu’)]

“bytempunit” is a generalized relation from “bysecond”, “byminute”, and so on. It is

a relation among a recurrence rule r, a temporal unit tu, and a list of values associated

with BYxxx with that temporal unit. For example,

(∀ ls,r) [bytempunit(ls,r,*Second*) ≡ bysecond(ls,r)]

“byTulistRecurs” is a relation among two temporal sequences (s, s’), their temporal

units (tu, tu’), and a list of values associated with tu.

 “everyithtempunit” is an important relation among two temporal sequences (s,

s’), their temporal units (tu, tu’), and an integer value i. For example,

“everyithtempunit(s,s’,2,*Month*,*Year*)” specifies that the members of temporal

sequence s are every 2nd month (i.e., February) of the members of temporal sequence

s’ (with temporal unit of *Year*); in English, it means “every other February” with

an implicit context, i.e., a sequence of years.

 It’s possible that the temporal units of FREQ and BYxxx are not successive.

For example, “the 1st two hours in every month”, which can be expressed in iCalendar

with FREQ = MONTHLY, BYHOUR = 1, 2. The temporal units of FREQ (*Month*)

and BYHOUR (*Hour*) are not successive, and what the example actually says is

“the 1st two hours of the 1st day of every month”. Our axiom needs to be able to

handle this case, as well as the normal case where the temporal units are successive.

The predicate “everyithtempunit” is defined recursively:

(∀ s1,s2,i,tu1,tu2) [everyithtempunit (s1,s2,i,tu1,tu2)

53

 ∧ tulevel(tu2) > tulevel(tu1)+1 ∧ tu1 ≠ *Monthday*

 ∧ tu1 ≠ *Yearday* ∧ tu1 ≠ *Week*

 ⊃ (∃ s’) [everyithtempunit(s1,s’,i,tu1,level2tu(tulevel(tu2)-1))

 ∧ everyithtempunit(s’,s2,1,level2tu(tulevel(tu2)-1),tu2)]]

Base case:
(∀ s1,s2,i,tu1,tu2) [everyithtempunit (s1,s2,i,tu1,tu2)

 ∧ tulevel(tu2) = tulevel(tu1)+1 ∧ tu1 ≠ *Monthday*

 ∧ tu1 ≠ *Yearday* ∧ tu1 ≠ *Week*

 ⊃ (∀ t1) [member(t1,s1) ⊃ (∃ t2) [member(t2,s2)

 ∧ iinside-1(t1,t2) ∧ calclockInt(t1,i,tu1,t2)]]]

where calclockInt(y,n,u,x) ≡ calInt(y,n,u,x) ∨ clockInt(y,n,u,x)

“tulevel” is a function mapping from a temporal unit to its level value according to

the hierarchy below. For example, “tulevel(*second*) = 1, tulevel(*month*) = 5”.

“level2tu” is an inverse function of “tulevel”. It maps from the level value to the

associated temporal unit. For example, “level2tu(1) = *second*, level2tu(5) =

month”. This hierarchy is consistent with the temporal unit ordering in iCalendar.

 second --- minute --- hour day -- month --- year
 monthday week
 yearday

The temporal units in bold, i.e., *Monthday*, *Yearday*, and *Week*, need to be

axiomatized sepecially.

• When *Monthday* and *Month* are together,:

 everyithtempunit(s1, s2, i, *Monthday*, *Month*)

54

 ⊃ (∀ t1) [member(t1,s1) ⊃ (∃ t2) [member(t2,s2) ∧ iinside-1(t1,t2)

 ∧ calclockInt(t1,i,*Monthday*,t2)]]]

• When *Yearday* and *Year* are together, force them to the base case, i.e., skip

Month:

 everyithtempunit(s1, s2, i, *Yearday*, *Year*)

 ⊃ (∀ t1) [member(t1,s1) ⊃ (∃ t2) [member(t2,s2) ∧ iinside-1(t1,t2)

 ∧ calclockInt(t1,i,*Yearday*,t2)]]]

• When *Week* and *Year* are together:

 everyithtempunit(s1, s2, i, *Week*, *Year*)

 ⊃ (∀ t1) [member(t1,s1) ⊃ (∃ t2) [member(t2,s2) ∧ iinside-1(t1,t2)

 ∧ calclockInt(t1,i,*Week*,t2)]]]

For example, the recurrence rule for the expression “monthly on the 2nd and 15th of

the month for 10 occurrences” is22:

 RRULE:FREQ=MONTHLY;COUNT=10;BYMONTHDAY=2,15

which can be expressed as:

RecurrenceSetRule(s,r) ∧ count(10,r) ∧ bymonthday({2,15},r)

This can be translated to:

(∃ s0) [card(s)=10 ∧ byTulistRecurs(s,{2,15},s0,*Monthday*,*Month*)]

 ⊃ (∃ s0,s1,s2) [everyithtempunit(s1,s0,2,*Monthday*,*Month*)

 ∧ everyithtempunit(s2,s0,15,*Monthday*,*Month*)

 ∧ card(s)=10 ∧ s = union(s1,s2)]

22 The example is taken from iCalendar RFC 2445 page 121.

55

iCalendar allows one to specify lists of dates/times as well, with the attributes

RDATE and EXDATE. These are translated into simple temporal sequences. A

recurrence set is generated by generating recurrence sets specified by the RRULE

and/or RDATE attributes and by the EXRULE and/or EXDATE attributes,

subtracting the latter from the former, and constraining the result by the DTSTART

attribute.

4.3 Natural Language Examples in FOL

In the previous section, we’ve shown how iCalendar statements can be systematically

mapped to OWL-Time predicates; in this section we demonstrate how these

predicates in OWL-Time can be used to express natural language expressions.

 We will first take an example from iCalendar, and show how to express it in

OWL-Time. Then we will show an example that OWL-Time can do better than

iCalendar. After showing an example that iCalendar can’t handle, but OWL-Time can,

we will show more natural language expressions that can be represented using OWL-

Time predicates.

1) “Every other week on Monday, Wednesday and Friday until December 24, 1997,

but starting on Tuesday, September 2, 1997.”23

DTSTART;TZID=US-Eastern:19970902T090000

RRULE:FREQ=WEEKLY;INTERVAL=2;UNTIL=19971224T000000Z;

WKST=SU;BYDAY=MO,WE,FR

23 The example is taken from iCalendar RFC 2445 page 120.

56

iCalendar uses “FREQ=WEEKLY;INTERVAL=2” to represent “every other week”,

and uses “BYDAY=MO, WE,FR” to get “every Monday, Wednesday, and Friday”.

WKST specifies the start of the week, which is Sunday in this example.

 This example can be expressed in OWL-Time as a temporal sequence s for

which the following is true:

(∃ s,s’,T,t1,t2) [everynthp(s’,{T},Week1,2)

 ∧ byTulistRecurs(s,{1,3,5},s’,*Day*,*Week*)

 ∧ begins(t1,T) ∧ ends(t2,T) ∧ dateOf(t1,1997,9,2)

 ∧ dateOf(t2,1997,12,24)]

where (∀ w) [Week1(w) ≡ (∃ n,x) [calInt(w,n,*Week*,x)]]

s is the desired temporal sequence representing “every Monday, Wednesday, and

Friday” of s’ which is a temporal sequence of “every other week from 09/02/1997 to

12/24/1997”.

2) “Every 3rd Monday in 2001.”

 This looks like a simple example, but iCalendar can’t express it exactly.

Though iCalendar can express “the 3rd Monday” using BYDAY=3MO, it can’t

express “every 3rd Monday”. In order to express this phrase in iCalendar, we have to

paraphrase it first to: “Every 3rd week on Monday in 2001”.

 However, the paraphrased one is not exactly the same as the original, since it

depends on what the first week is. In iCalendar, the first week is defined as the week

that “contains at least four days in that calendar year”. Based on this definition,

57

however, if the first week starts from a Tuesday, the first 3rd Monday will be different

from the first Monday of the 3rd week!

 In order to express year 2001, in iCalendar it has to specify the start date

(01/01/2001) using DTSTART and the end date (12/31/2001) using UNTIL. Here is

how to express “Every 3rd week on Monday in 2001” in iCalendar:

DTSTART;TZID=US-Eastern:20010101T000000

RRULE:FREQ=WEEKLY;INTERVAL=3;UNTIL=20011231T000000Z;

WKST=SU;BYDAY=MO

In OWL-Time, this example can be expressed very straightforwardly as a temporal

sequence s for which the following is true:

 (∃ y,z) [yr(y,2001,CE(z)) ∧ everynthp(s,{y},Monday1,3)]

 where (∀ d) [Monday1(d) ≡ (∃ w) [Monday(d,w)]]

3) “Every Monday that’s a holiday.”

 There is no way in iCalendar to express “conditional temporal aggregates” or

any temporal aggregates that are not in a form of standard temporal units, such as

“holidays”, “voting dates”, “days with classes”, “months starting with a Monday”,

and so on.

 OWL-Time, however, can express any kind of temporal aggregates, using the

argument p in “everynthp(s,s0,p,n)” or “everyp(s,s0,p)”. All the conditions and non-

temporal-unit concepts can be captured using this p.

 For example, we can express “Every Monday that’s a holiday” in OWL-Time

as a temporal sequence s for which the following is true:

58

 (∃ s,s0) [everyp(s,s0,HolidayMonday)]

 where (∀ d) [HolidayMonday(d) ≡ (∃ w) [Monday(d,w)] ∧ holiday(d)]

4) More natural language expressions represented in OWL-Time are as follows,

where s is the set corresponding to the noun phrase:

• “The past three Mondays.”

 (∃ s,s0,t) [everyp(s,s0,Monday1) ∧ card(s) = 3 ∧ last(t,s0) ∧ ends(nowfn(D),t)]

In our treatment of temporal deictics, the function “nowfn” maps a document d into

the instant or interval viewed as “now” from the point of view of that document, and

D is the document this phrase occurs in.

• “Every other Monday in every 4th month in every year.”

(∃ s,s1,s2,s0) [everyp(s1,s0,Year1) ∧ everynthp(s2,s1,Month1,4)

 ∧ everynthp(s,s2,Monday1,2)]

where (∀ y) [Year1(y) ≡ (∃ n,x) [calInt(y,n,*Year*,x)]]

 (∀ m) [Month1(m) ≡ (∃ n,x) [calInt(m,n,*Month*,x)]]

• “Four consecutive Mondays.”

(∃ s,s0) [everyp(s,s0,Monday1) ∧ card(s) = 4]

In order to translate from natural language sentences to our representation, we first

run a semantic parser to get a “surface” logical form from a given sentence. Then we

use some additional rules to map from the “surface” logical form to our domain

ontology. For example, given the above input sentence, the “surface” logical form

would be:

(∃ s,d) [plur(d,s) ∧ Monday1(d) ∧ consecutive(s, Monday1) ∧ card(s) = 4]

59

“plur” takes as its arguments both a set and a representative member of the set.

“consecutive” takes as its arguments both a set and the property of the set, meaning

that the members of the set are not only consecutive but also share a certain property.

“card” is a function that returns the cardinality/size of the set.

 Then we map the above “surface” logical form to our ontology predicates by

applying the following rule: 

(∀ s,p) consecutive(s,p) ≡ (∃ s0) everyp(s,s0,p)

4.4 Temporal Aggregates in OWL

4.4.1 Temporal Sequences and Their Members

In order to encode the temporal aggregates ontology in OWL, we first defined a

temporal sequence. It has only one optional property “hasMemeber” which maps

from a temporal sequence to any temporal entity. A temporal sequence can have no

(empty sequence) or many members:

 <owl:Class rdf:ID=“TemporalSeq”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#hasMember” />
 <owl:minCardinality
 rdf:datatype=“&xsd;nonNegativeInteger”>0
 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:ObjectProperty rdf:ID=“hasMember”>
 <rdfs:domain rdf:resource=“#TemporalSeq” />
 <rdfs:range rdf:resource=“#TemporalEntity” />
 </owl:ObjectProperty>

Since we also want to have a backward link pointing from the temporal sequence

member to its associated sequence, a “TemporalSeqMember” class is defined. It’s a

60

subclass of “TemporalEntity”, and has a required pair of properties: “isMemberOf”

and “hasPosition”, so that it can not only point back to the associated sequence but

also locate itself in the sequence:

 <owl:Class rdf:ID=“TemporalSeqMember”>
 <rdfs:subClassOf rdf:resource=“#TemporalEntity”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#isMemberOf” />
 <owl:cardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#hasPosition” />
 <owl:cardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:ObjectProperty rdf:ID=“isMemberOf”>
 <rdfs:domain rdf:resource=“#TemporalSeqMember” />
 <rdfs:range rdf:resource=“#TemporalSeq” />
 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID=“hasPosition”>
 <rdfs:range rdf:resource=“&xsd;integer” />
 </owl:DatatypeProperty>

Since “hasPosition” is also used for other classes, as will see later, it only has a range

of integers.

 For a temporal sequence member that is associated with multiple sequences,

multiple instances of “TemporalSeqMember” must be defined. The reason for

defining it in this way is that for a given temporal sequence member instance, it will

only have one pair of “isMemberOf” and “hasPosition” values, so that it’s not

confusing which “hasPosition” value should be paired with which “isMemberOf”

value. Moreover, different temporal sequences may apply different attributes to their

members.

61

4.4.2 Temporal Aggregate Description

The most important class in the OWL encodings of the temporal aggregates ontology

is the temporal aggregate description class. Analogous to the calendar-clock

description, it specifies the temporal aggregate description for temporal sequences,

and it’s associated with the temporal sequence class by “hasTemporalAggregate-

Description” property.

 The temporal aggregate description has the following fields/properties:

“hasStart”, “hasEnd”, “hasContextTemporalSeq”, “hasithTemporalUnit”,

“hasTemporalUnit”, “hasContextTemporalUnit”, “hasPosition”, “hasGap”, and

“hasCount”:

 <owl:Class rdf:ID=“TemporalAggregateDescription”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#hasStart” />
 <owl:maxCardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 ...
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#hasCount” />
 <owl:maxCardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:ObjectProperty rdf:ID=“hasTemporalAggregateDescription”>
 <rdfs:domain rdf:resource=“#TemporalSeq” />
 <rdfs:range rdf:resource=“#TemporalAggregateDescription” />
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID=“hasStart”>
 <rdfs:domain rdf:resource=“#TemporalAggregateDescription” />
 <rdfs:range rdf:resource=“#Instant” />
 </owl:ObjectProperty>

The optional properties “hasStart” and “hasEnd” map from the temporal aggregate

description to an instant, specifying the start and the end instants of a temporal

62

sequence. The calendar and clock properties described in Section 3 can then be used

to specify the start and the end times or dates the instants are in.

 <owl:ObjectProperty rdf:ID=“hasContextTemporalSeq”>
 <rdfs:domain rdf:resource=“#TemporalAggregateDescription” />
 <rdfs:range rdf:resource=“#TemporalSeq” />
 </owl:ObjectProperty>

The optional property “hasContextTemporalSeq” maps from the temporal aggregate

description to the temporal sequence, specifying the context (super) temporal

sequence of a given (sub) temporal sequence.

 It corresponds to s0 in “everynthp(s,s0,p,n)” and s’ in “byTulistRecurs

(s,ls,s’,tu,tu’)”. When it’s not present, context-free temporal aggregates (e.g., “every

Monday”) can be represented.

 <owl:DatatypeProperty rdf:ID=“hasithTemporalUnit”>
 <rdfs:domain rdf:resource=“#TemporalAggregateDescription” />
 <rdfs:range rdf:resource=“&xsd;positiveInteger” />
 </owl:DatatypeProperty>

 The required property “hasithTemporalUnit” maps from the temporal

aggregate description to positive integers, specifying the ith temporal unit elements in

the temporal sequence.

 It corresponds to ls in “byTulistRecurs(s,ls,s’,tu,tu’)”. Thus it’s very possible

to have many such property values for a given temporal sequence. For example,

“every 3rd Monday, Tuesday, and Friday” (such examples will be illustrated in detail

in the next section).

 <owl:ObjectProperty rdf:ID=“hasTemporalUnit”>
 <rdfs:domain rdf:resource=“#TemporalAggregateDescription” />
 <rdfs:range rdf:resource=“#TemporalUnit” />
 </owl:ObjectProperty>

63

 The required properties “hasTemporalUnit” and the optional

“hasContextTemporalUnit” map from the temporal aggregate description to the

temporal unit. They specify the temporal unit of the given temporal sequence and the

context temporal sequence respectively. They correspond to tu and tu’ in

“byTulistRecurs(s,ls,s’,tu,tu’)”.

 The context temporal unit is associated with the context temporal sequence

property. Thus if the context temporal sequence is not present, so is the context

temporal unit, but not vice versa, since it’s possible that the temporal unit of the

context temporal sequence is unknown or not relevant.

 <owl:DatatypeProperty rdf:ID=“hasPosition”>
 <rdfs:range rdf:resource=“&xsd;integer” />
 </owl:DatatypeProperty>

The optional property “hasPosition” is a shared property with the

“TemporalSeqMember” class. It specifies the position of the element in the temporal

sequence. For example, “the first two Tuesdays in every May” would have

“hasPosition” value of 2. It’s also possible to have negative positions. For example,

“the last Thursday in every November” would have “hasPosition” value of -1.

 If this property value is not present, all the positions will be included in the

temporal sequence. For example, “the Thursdays in every November” includes all the

Thursdays in every November, while “the last Thursday in every November” only

includes the last Thursday in every November.

 <owl:DatatypeProperty rdf:ID=“hasGap”>
 <rdfs:domain rdf:resource=“#TemporalAggregateDescription” />
 <rdfs:range rdf:resource=“&xsd;positiveInteger” />
 </owl:DatatypeProperty>

64

The optional property “hasGap” maps from the temporal aggregate description to

positive integers, specifying the gap between the elements in the temporal sequence.

If it’s not present, the default value of 1 will be used, for example, as in “every

Monday”.

 It corresponds to n in “everynthp(s,s0,p,n)”. For example, “every 3rd Monday”

would have “hasGap” value of 3.

 <owl:DatatypeProperty rdf:ID=“hasCount”>
 <rdfs:domain rdf:resource=“#TemporalAggregateDescription” />
 <rdfs:range rdf:resource=“&xsd;positiveInteger” />
 </owl:DatatypeProperty>

The optional property “hasCount” maps from the temporal aggregate description to

positive integers, specifying the cardinality or the size of the temporal sequence. For

example, “four consecutive Sundays” would have “hasCount” value of 4.

4.5 Natural Language Examples in OWL

In this section, we will take two natural language examples from Section 4.3, and

express them in OWL. One example is a complex multiple-layered temporal

aggregate, and the other is a conditional temporal aggregate. Both FOL and OWL

representations will be shown.

• Every other week on Monday, Wednesday and Friday until December 24, 1997,

 but starting on Tuesday, September 2, 1997.24

FOL:
 (∃ s,s’,T,t1,t2) [everynthp(s’,{T},Week1,2) ∧ byTulistRecurs(s,{1, 3, 5},s’,*Day*,*Week*)

24 This example is taken from iCalendar RFC 2445 page 120.

65

 ∧ begins(t1,T) ∧ ends(t2,T) ∧ dateOf(t1,1997,9,2) ∧ dateOf(t2,1997,12,24)]
 where (∀ w) [Week1(w) ≡ (∃ n,x) [calInt(w,n,*Week*,x)]]

OWL:
 <time-entry:TemporalSeq rdf:ID=“tseq”>
<time-entry:hasTemporalAggregateDescription rdf:resource=“#MWFeveryOtherWeek” />

 </time-entry:TemporalSeq>

 <time-entry:TemporalSeq rdf:ID=“tseq-everyOtherWeek”>
<time-entry:hasTemporalAggregateDescription rdf:resource=“#everyOtherWeek” />

 </time-entry:TemporalSeq>

 <time-entry:TemporalAggregateDescription rdf:ID=“everyOtherWeek”>
<time-entry:hasTemporalUnit rdf:resource=“&time-entry;unitWeek” />
<time-entry:hasGap rdf:datatype=“&xsd;positiveInteger”>2</time-entry:hasGap>

 </time-entry:TemporalAggregateDescription>

 <time-entry:TemporalAggregateDescription rdf:ID=“MWFeveryOtherWeek”>
 <time-entry:hasStart rdf:resource=“#tseqStart” />
 <time-entry:hasEnd rdf:resource=“#tseqUntil” />
<time-entry:hasContextTemporalSeq rdf:resource=“#tseq-everyOtherWeek” />
<time-entry:hasithTemporalUnit rdf:datatype=“&xsd;positiveInteger”>1
</time-entry:hasithTemporalUnit>
<time-entry:hasithTemporalUnit rdf:datatype=“&xsd;positiveInteger”>3
</time-entry:hasithTemporalUnit>
<time-entry:hasithTemporalUnit rdf:datatype=“&xsd;positiveInteger”>5
</time-entry:hasithTemporalUnit>
<time-entry:hasTemporalUnit rdf:resource=“&time-entry;unitDay” />
<time-entry:hasContextTemporalUnit rdf:resource=“&time-entry;unitWeek” />

 </time-entry:TemporalAggregateDescription>

 <time-entry:Instant rdf:ID=“tseqStart”>
<time-entry:inCalendarClock rdf:resource=“#tseqStartDescription” />

 </time-entry:Instant>

 <time-entry:Instant rdf:ID=“tseqUntil”>
<time-entry:inCalendarClockDataType rdf:datatype=“&xsd;dateTime”>1997-12-24
</time-entry:inCalendarClockDataType>

 </time-entry:Instant>

 <time-entry:CalendarClockDescription rdf:ID=“tseqStartDescription”>
 <time-entry:unitType rdf:resource=“&time-entry;unitDay” />
<time-entry:year rdf:datatype=“&xsd;gYear”>1997</time-entry:year>
<time-entry:month rdf:datatype=“&xsd;gMonth”>9</time-entry:month>

 <time-entry:day rdf:datatype=“&xsd;gDay”>2</time-entry:day>
<time-entry:dayOfWeekField rdf:datatype=“&xsd;nonNegativeInteger”>2
</time-entry:dayOfWeekField>

 </time-entry:CalendarClockDescription>

The FOL axiom defines s as the set corresponding to the given temporal aggregate.

The first part of the axiom defines s’ as the set corresponding to “every other week”,

and it serves as the context temporal sequence for the desired temporal sequence s.

Predicates “begins” and “ends” are used to represent the start and the end times of the

given temporal aggregate.

66

 Besides what is shown in the first example, the OWL encodings for this one

show how “hasithTemporalUnit” is used to represent a list of temporal elements in

the temporal sequence (i.e., “on Monday, Wednesday, and Friday”), and how

“hasStart” and “hasEnd” are used and combined with the calendar and clock

representations to represent the start and end dates of the given temporal aggregate.

 This example also shows the tradeoffs of using XSD dateTime and the

“CalendarClockDescription” class defined in OWL-Time, as mentioned in Section 3.

In this example, the end date is represented using XSD dateTime, while the start date

is represented using the “CalendarClockDescription” class. As we can see, XSD

dateTime is simpler, but there’s some information it cannot represent, for example,

the start date is Tuesday, and this is the reason why “CalendarClockDescription”

class (with “dayOfWeekField” property) is used for the start date. In fact,

“CalendarClockDescription” class can also represent other information that XSD

dateTime cannot, such as “week” and “day of year”. Moreover, each field of the class

is separate so that it’s easier to extract the values of some fields for the later use and

easier to reason about.

• Every Monday that's a holiday.

FOL:
(∃ s,s0) [everyp(s,s0,HolidayMonday)]
where (∀ d) [HolidayMonday(d) ≡ (∃ w) [Monday(d,w)] ∧ holiday(d)25]

OWL:
 <EveryHolidayMonday rdf:ID=“tseq” />

 <owl:Class rdf:ID=“EveryHolidayMonday”>

25 It says d is a Holiday.

67

 <rdfs:subClassOf rdf:resource=“&time-entry;TemporalSeq”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#hasMember” />
 <owl:allValuesFrom rdf:resource=“#EveryHolidayMondayMember” />
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:ID=“EveryHolidayMondayMember”>
<rdfs:subClassOf rdf:resource=“&time-entry;TemporalSeqMember”/>

 <rdfs:subClassOf rdf:resource=“&time-entry;Holiday”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#isMemberOf” />
 <owl:allValuesFrom rdf:resource=“#EveryMonday” />
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:ID=“EveryMonday”>
 <rdfs:subClassOf rdf:resource=“&time-entry;TemporalSeq”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#hasTemporalAggregateDescription” />
 <owl:hasValue rdf:resource=“#everyMonday” />
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <time-entry:TemporalAggregateDescription rdf:ID=“everyMonday”>
<time-entry:hasithTemporalUnit rdf:datatype=“&xsd;positiveInteger”>1
</time-entry:hasithTemporalUnit>
<time-entry:hasTemporalUnit rdf:resource=“&time-entry;unitDay” />

 </time-entry:TemporalAggregateDescription>

This example shows an important advantage of using our temporal aggregates

ontology. It can represent conditional temporal aggregates which is hard or

impossible in some other representations. For example, there is no way in iCalendar

to express such conditional temporal aggregates or any temporal aggregates that are

not in a form of standard temporal units, such as “holidays”, “voting dates”, “days

with classes”, “months starting with a Monday”, and so on.

 As we can see, the FOL axiom is much simpler than the corresponding OWL

encodings. It defines s as the set corresponding to the given temporal aggregate, and a

new predicate (i.e., “HolidayMonday”) for this conditional temporal aggregate.

68

 The OWL encodings show how this kind of conditional temporal aggregates

can be defined in our representation in OWL.

 The most important class in this example is the “EveryHolidayMonday-

Member” class which defines a class for the members of the desired temporal

sequence class (i.e., “EveryHolidayMonday”). This class is both a temporal sequence

member and a holiday, and its associated temporal sequence class must be “every

Monday” (i.e., “EveryMonday” class).

 The desired temporal sequence is an instance of the “EveryHolidayMonday”

class whose members are only from the “EveryHolidayMondayMember” class.

4.6 Improving Set Expression Annotations in TimeML

4.6.1 TimeML and Its Set Expression Annotations

TimeML (Pustejovsky et al., 2002) is a rich specification language for event and

temporal expressions in natural language text. Unlike most previous attempts at event

and temporal specification, TimeML separates the representation of event and

temporal expressions from the anchoring or ordering dependencies that may exist in a

given text.

 TimeML includes four major data structures: EVENT, TIMEX3, SIGNAL,

AND LINK. EVENT is a cover term for situations that happen or occur, and also those

predicates describing states or circumstances in which something obtains or holds

true. TIMEX3, which extends TIMEX2 (Ferro, 2001), is used to mark up explicit

69

temporal expressions, such as time, dates, and durations. SIGNAL is used to annotate

sections of text, typically function words that indicate how temporal objects are

related to each other (e.g., “when”, “during”, “before”). The set of LINK tags encode

various relations that exist between the temporal elements of a document, including

three subtypes: TLINK (temporal links), SLINK (subordination links), and ALINK

(aspectual links).

 In TimeML temporal aggregate expressions are tagged with type “SET” (i.e.,

set expressions), and attributes “quant” and “freq” are used to specify sets that denote

quantified times in a TIMEX3. “quant” is generally a literal from the text that

quantifies over the expression, and “freq” contains an integer value and a time

granularity to represent any frequency contained in the set, just as a period of time is

represented in a duration. Here are some examples taken from the TimeML

specification:

<TIMEX3 tid=“t3” type=“SET” value=“P1M” freq=“2X”>

twice a month

</TIMEX3>

<TIMEX3 tid=“t4” type=“SET” value=“P1M” quant=“EVERY” freq=“3D”>

three days every month

</TIMEX3>

<TIMEX3 tid=“t5” type=“SET” value=“P1D quant=“EVERY”>

daily

70

</TIMEX3>

<TIMEX3 tid=“t1” type=“SET” value=“P1W” freq=“2X”>

twice a week

</TIMEX3>

<TIMEX3 tid=“t1” type=“SET” value=“P1W” quant=“EACH” freq=“3d”>

3 days each week

</TIMEX3>

From the above examples, we can see that there are some problems with the current

TimeML set expressions in the TIMEX3 tag:

 (1) It is not scalable to multiple-layered temporal aggregates. It seems

impossible to express multiple layer (more than two layers) temporal aggregates. For

example, “every Monday of every other month in every 3rd year”.

 (2) It is hard to annotate arbitrary “every nth”, because in theory “quant”

needs to have infinitely many literals, such as “EVERY_OTHER”,

“EVERY_THIRD”, and so on.

4.6.2 Suggestions for Improvements

Here are some suggestions to improve the set expression annotations:

 (1) Instead of annotating one entire temporal aggregate phrase at a time, we

can break them into multiple embedded primitive (single layer) temporal aggregates.

71

 For example, “every Monday of every other month in every 3rd year” can be

broken (bracketed) into three primitive temporal aggregates:

 [every Monday] of [every other month] in [every 3rd year].

In order to remember the embedding relations between the primitive temporal

aggregates, some reference/anchoring attribute such as “anchorTimeID” can be used.

 (2) To express “every nth” in a more scalable way, a new attribute (called

“gap”) used to express the “nth” can replace the attribute “quant”. If the “gap”

attribute is not present, the default value of 1 (i.e., “every/each”) will be applied. For

example, “every Monday” would have a gap value of 1 (default value, the attribute is

not necessary to be shown in the tag), “every other Monday” would have a gap value

of 2, “every 3rd Monday” would have a gap value of 3, and so on.

 With these two suggested modifications, the phrase “every Monday of every

other month in every 3rd year” can then be annotated as follows:

<TIMEX3 tid=“t1” type=“SET”

value=“XXXX-WXX-1” temporalFunction=“true” anchorTimeID=“t2”>

every Monday

</TIMEX3>

of

<TIMEX3 tid=“t2” type=“SET” value=“P1M” gap=2

temporalFunction=“true”

anchorTimeID=“t3”>

every other month

</TIMEX3>

in

72

<TIMEX3 tid=“t3” type=“SET” value=“P1Y” gap=3>

every 3rd year.

</TIMEX3>

(3) The “value” and “freq” attributes looks very confusing in set expressions. Based

on the examples shown at the beginning of the section, we can see that the roles of the

“value” and “freq” attributes are as follows

 The “freq” attribute represents the inner layer temporal entities that repeat. For

example, “twice” in “twice a month”; “three days” in “three days every month”. If it’s

a single layer temporal aggregate, it simply represents the only temporal entity that

repeats. For example, “October” in “every October” and “2 days” in “every 2 days”.

 The “value” attribute, on the other hand, represents the outer layer temporal

entities that repeat, if it’s a two layer temporal aggregates. For example, “a month”

(monthly) in “twice a month”; “each week” (weekly) in “3 days each week”.

 The problem with this structure is that it’s hard to scale up to more than two

layer temporal aggregates. With the suggestion (1), we can actually solve this

problem by breaking multiple layer temporal aggregates to embedded primitive

(single layer) temporal aggregates. This suggestion would also eliminate the usage of

the “value” attribute (i.e., for outer layer temporal aggregates) for set expressions,

since all the temporal aggregates that need to be annotated would be primitive (single

layer) ones.

 Since the “value” attribute is used elsewhere, in order to minimize the number

of total attributes, we could actually remove the “freq” attribute and use the “value”

73

attribute in the way that the current freq attribute is used, i.e., representing the only

temporal entity that repeats. Please note, in this way the “value” attribute will have to

be able to take any CDATA values.

 By adopting this suggestion, the two layer temporal aggregate examples above

will be changed to something as follows:

• twice a month

<TIMEX3 tid=“t1” type=“SET” value=“2X” temporalFunction=“true”

anchorTimeID=“t2”>

twice

</TIMEX3>

<TIMEX3 tid=“t2” type=“SET” value=“P1M”>

a month

</TIMEX3>

• three days every month

<TIMEX3 tid=“t3” type=“SET” value=“P3D” temporalFunction=“true”

anchorTimeID=“t4”>

three days

</TIMEX3>

<TIMEX3 tid=“t4” type=“SET” value=“P1M” >

every month

</TIMEX3>

74

4.7 Evaluation

We evaluate the coverage of the temporal aggregates ontology against the temporal

aggregates expressions extracted from the ACE (Automatic Content Extraction)

corpus 26(Doddington et. al., 2004). There are a total of 219 temporal aggregate

expressions extracted from the corpus, many of which were found difficult to

annotate by TIMEX2 (Ferro, 2001), an annotation schema for temporal expressions

that provides the basis for the TIMEX3 tag element of TimeML. In fact, in the

previous section we proposed a different annotation schema to improve set (i.e.,

temporal aggregate) expression annotations in TimeML.

Among all those temporal aggregate expressions, 11 expressions cannot be

fully represented by the current temporal aggregate ontology, so the coverage is 208 /

219 = 95.0%. Table 4.1 lists all those difficult temporal aggregate expressions

associated with their frequencies in the corpus. We can see that the difficulties are

mainly due to the terms in the expressions that convey vagueness or uncertainty, such

as “almost”, “several”, “nearly”, and “recent”. Although an underlying theory of

vagueness is required to fully solve this problem, we can still represent the

expressions if we can give them ad-hoc definitions, for example, “several” as 2 to 5.

Section 6 describes our work on modeling and extracting vague event durations from

text, as well as how to represent and reason about them.

26 Thanks to Laurie Gerber for collecting and sharing the temporal aggregate data from the corpus.

75

Temporal Aggregate Expressions Frequency

almost every night 3

almost weekly 1

every several hundred thousand years 1

nearly every day 2

recent days 1

recent years 1

several summers 1

the last several nights 1

Table 4.1 Difficult Temporal Aggregate Expressions from the ACE corpus

76

Chapter 5

Temporal Arithmetic Mixing Months and Days

Temporal arithmetic involves the computation of adding durations to dates/times,

subtracting durations from dates/times, and computing durations between date/time

pairs. Such arithmetic (sometimes is also referred as date arithmetic when only dates

are of interest) is very useful in many different domains, such as artificial intelligence

(Bettini et al., 2002), databases (Chandra and Segev, 1994), time series management

systems (Dreyer et al., 1994), agents (Mallya et al., 2004), and Web services (Pan and

Hobbs, 2004).

 As long as we stay within the year-month system or the day-hour-minute-

second system, temporal arithmetic is just arithmetic and requires only a few simple

axioms or rules to encode. However, when we mix months and days, problems arise.

For example, consider that January 31, 2006 plus 2 months equals March 31, 2006.

But if we add the months one at a time, we may get a different result: January 31,

2006 plus one month is February 28, 2006, but February 28, 2006 plus one month

would seem to be March 28, 2006. If we want to avoid results like this, we need, in

some sense, to keep track of the history of the computation.

77

 This motivating example is based on the documentation for Java methods add()

and roll() of the class Calendar27, where they explained the behavior of the methods

using the above example and claimed that, “as most users will intuitively expect”, the

final date after adding the second month should be March 31, 2006, not March 28,

2006, and this is what you will get when you use the temporal arithmetic methods in

Java. (In what follows, we will refer to this kind of intuition as the “history-dependent

intuition”.)

However, different people may have different intuitions regarding how the

computation should work. Some people may believe adding one month to February

28 should always be March 28, no matter where February 28 was originally computed

from. (In what follows, we will refer to this kind of intuition as the “history-

independent intuition”.) This intuition results in much simpler arithmetic rules, where

when adding durations to dates, simply add each of their fields (temporal units)

respectively, and handle overflow when needed. In fact, this approach is what XML

Schema is currently using in their algorithm for adding “durations” to “dateTimes”28

(Biron and Malhotra, 2004). But they didn’t consider at all the alternative (maybe

even more popular) intuition (the “history-dependent intuition”) we described in the

above motivating example.

27 http://java.sun.com/j2se/1.4.2/docs/api/java/util/Calendar.html
28 http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes

78

Biron and Malhotra (2004) also warn that there are cases where the properties

of commutativity and associativity cannot hold using the algorithm in XML Schema,

and give one example as follows:

 (2000-03-30 + P1D) + P1M = 2000-03-31 + P1M = 2000-04-30

 (2000-03-30 + P1M) + P1D = 2000-04-30 + P1D = 2000-05-01

This example shows that adding one month and one day to March 30, 2000 in

different orders using their algorithm would give different destination dates.

Many real-world applications, on the other hand, use a fixed number of days

for each month (e.g., car rental companies usually count 28 days as one month), but

they also cannot avoid the problem raised when mixing months and days. For

example, Stonebraker (1990) pointed out that the yield calculation on financial bonds

uses a calendar that has 30 days in every month for date arithmetic, but 365 days in

the year for the actual yield calculation, which inevitably causes inconsistency.

To avoid this problem, Malhotra et. al. (2005) proposed, for XQuery and

XPath, deriving two new (totally ordered) subtypes, “yearMonthDuration” (in the

year-month system) and “dayTimeDuration” (in the day-hour-minute-second system),

from the (partially ordered) datatype “duration”. But in this case, temporal arithmetic

can only be carried out in the two separate systems, and months and days cannot be

computed together.

 Both the “history-independent intuition” and the approach with a fixed

number of days for each month can be encoded straightforwardly with a few simple

79

axioms or rules. However, to our knowledge, there has been no serious effort for

doing temporal reasoning based on the “history-dependent intuition”, which may be

the most popular intuition, but the most difficult to model.

 In this chapter, we present our work on creating a complete set of rules that

can handle temporal arithmetic mixing months and days for the “history-dependent

intuition” (including the motivating example), proposing a notion (called “days lost”

DL) to concisely keep track of the history of the computation and explain possible

inconsistencies in terms of different desired arithmetic properties.

 In Section 5.1 we describe these desired properties for temporal arithmetic

computation. The notion of “days lost” is introduced in Section 5.2, and in Section

5.3 we present the temporal arithmetic rules with examples.

 Since the problem arises only when months and days are mixed, in this paper

we only consider dates with months and days, and all other fields of a date/time (e.g.,

year, hour) will be omitted in the examples and rules. First, we introduce some

notation and assumptions for later examples and rules.

Notation:

• (m, d)DL denotes a date with a month “m”, a day “d”, and days lost “DL” (see

Section 5.2 for the details on “days lost”). For example, (2, 28)3 means February

28th with 3 days lost. DL is omitted when DL = 0.

80

• [m, d] denotes a duration with “m” months and “d” days. For example, [3, 2]

means 3 months and 2 days.

• #(m) denotes the number of days in a month “m”. For example #(3) = 31, since

there are 31 days in March.

Assumptions:

• The year is 2007, so the number of days in February is 28.

• Dates and durations are in canonical forms, i.e.,

 For dates: 1 ≤ m ≤ 12

 1 ≤ d ≤ last day of the current month, i.e., #(m)

 For durations: 1 ≤ m < 12

 1 ≤ d < last day of the destination month

5.1 Desired Properties for Temporal Arithmetic Computation

Before creating the rules for temporal arithmetic computation satisfying the “history-

dependent intuition”, a list of desired properties which we hope can hold during the

computation are generated first, and these properties were also used to guide the

creation of the rules. The desired properties are as follows, with the most desired ones

at the top.

81

(1) Motivating example for the “history-dependent intuition”:

 (1, 31) + [1, 0] + [1, 0] = (2, 28) + [1, 0] = (3, 31)

(2) Addition-Simplicity property:

 (m1, d1) + [m2, d2] = (m1+m2, d1+d2), if d1+d2 ≤ #(m1+m2)

(3) Subtraction-Simplicity property:

 (m1, d1) – [m2, d2] = (m1-m2, d1-d2), if m1 > m2, d1 > d2, d1-d2 ≤ #(m1-m2).

(4) Subtraction property:

 (m1, d1) + [m2, d2] = (m3, d3) <=> (m3, d3) - [m2, d2] = (m1, d1)

 <=> (m3, d3) - (m1, d1) = [m2, d2]

(5) Commutativity property:

 (m1, d1) + [m2, d2] + [m3, d3] = (m1, d1) + [m3, d3] + [m2, d2]

(6) Associativity property:

 {(m1, d1) + [m2, d2]} + [m3, d3] = (m1, d1) + {[m3, d3] + [m2, d2]}

Property (1) is actually an instance of associativity, because

 {(1, 31) + [1, 0]} + [1, 0] = (2, 28) + [1, 0] = (3, 31)

 (1, 31) + {[1, 0] + [1, 0]} = (1, 31) + [2, 0] = (3, 31)

82

5.2 Meaning of “Day Lost (DL)”

In order to keep track of the history of the temporal arithmetic computation for the

“history-dependent intuition”, we introduce a notion, called “days lost (DL)”. Its

meaning is as follows:

 (1) If the day of the month is the end of the month (e.g., (2, 28)3), the days lost

(“DL”) means the number of days lost in the current month. For example, adding 1

month to January 31st results in February 28th, and 3 days are “lost” in the

computation. Thus we use (2, 28)3 to “remember” that 3 days were lost in February.

 (2) If the day of the month is not the end of the month (e.g., (3, 2)3), the days

lost (“DL”) is just a record of the number of days lost in the past. For example,

adding 1 month and 2 days to January 31st results in March 2nd, where 3 days were

“lost” in February.

 In fact, “days lost (DL)” not only is used to keep track of the history of the

computation, but also plays a crucial role in explaining the inconsistency of the

computation results with respect to different desired properties (e.g., commutativity

and associativity). For example, it can be used to explain the inconsistency described

in the introduction regarding the temporal arithmetic algorithm in XML Schema

(Biron and Malhotra, 2004):

 (2000-03-30 + P1D) + P1M = 2000-03-31 + P1M = 2000-04-30

 (2000-03-30 + P1M) + P1D = 2000-04-30 + P1D = 2000-05-01

83

The different results are actually due to the “one day lost” in the first computation

when adding 1 month (P1M) to 2000-03-31, since there are only 30 days (not 31 days)

in April. We will show in the next section how our rules can be used to deal with such

inconsistency.

 It can be argued that February 28th is ambiguous, since it can mean either the

28th day of February, or the last day of February. The notion of “day lost (DL)” can

actually be used to capture all the different ambiguities. For example, (2, 28)3 means

the last day of February, whereas (2, 28) means the 28th day of February.

5.3 Temporal Arithmetic Rules

In this section, we describe a complete set of rules we created for temporal arithmetic

satisfying the “history-dependent intuition”, including adding durations to dates,

subtracting durations from dates, and computing duration between two dates. Each

rule is presented with one representative example, and additional examples are shown

to demonstrate how to use multiple rules together in the computation. All the rules

can be straightforwardly translated into FOL axioms, so that they can be incorporated

into OWL-Time to give them access to the full ontology of time for temporal

reasoning. One FOL translation of a temporal arithmetic rule is shown in Section 5.4.

5.3.1 Adding Durations to Dates

There are three sets of rules for adding durations to dates: add-decompose, add-month,

and add-day. In the following table, the rules are shown in the left column with index

84

numbers (e.g., (1.1)), and one representative example is shown for each line of the

rules in the right column for the demonstration and justification purpose.

Temporal Arithmetic Rule Example
(1) Add-decompose:

 (m1, d1)DL + [m2, d2]

(1.1) = (m1, d1) DL + [m2, 0] + [0, d2]

(2) Add-month: // N = #(m1+m2)

 (m1, d1) DL + [m2, 0]

 = if (d1 = #(m1))

(2.1) (m1+m2, d1+DL), d1+DL ≤ N

(2.2) (m1+m2, N)d1+DL-N, d1+DL > N

 else (i.e., d1 < #(m1))

(2.3) (m1+m2, d1) , d1 ≤ N

(2.4) (m1+m2, N)d1-N, d1 > N

(3) Add-day: // N = #(m1)

 (m1, d1) DL + [0, d2]

 = if (d1 = #(m1))

(3.1) (m1+1, d2)DL

 else (i.e., d1 < #(m1))

(3.2) (m1, d1+d2) DL, d1+d2 < N

(3.3) (m1, d1+d2), d1+d2 = N

(3.4) (m1+1, d1+d2-N), d1+d2 > N

(2, 28)2 + [1, 2]

= (2, 28)2 + [1, 0] + [0, 2]

(2, 28)2 + [2, 0] = (4, 30)

(3, 31) + [1, 0] = (4, 30)1

(3, 2)3 + [1, 0] = (4, 2)

(1, 30) + [1, 0] = (2, 28)2

(2, 28)1 + [0, 1] = (3, 1)1

(3, 2)3 + [0, 20] = (3, 22)3

(3, 2)3 + [0, 29] = (3, 31)

(2, 20) + [0, 10] = (3, 2)

Table 5.1 Rules for Adding Durations to Dates

85

For any given duration, before it adds to a date, the add-decompose rule is applied

first to separate the months and days by decomposing the duration into two sub-

durations with only months and days respectively, and then months are first added to

the date using add-month rules, then the days are added using add-day rules.

 Two more examples of adding durations to dates are also shown below. The

first one is from the motivating example, and the second one demonstrates the

complete procedure (3 steps) for adding durations to dates, when durations have both

months and days (the rule applied for each step of the computation is also shown with

a corresponding rule index number):

Ex.1. (1, 31) + [1, 0]

 = (2, 28)3 // add-month (2.2)

 (2, 28)3 + [1, 0]

 = (3, 31) // add-month (2.1)

Ex.2. (1, 29) + [1, 2]

 = (1, 29) + [1, 0] + [0, 2] // add-decompose (1.1)

 = (2, 28)1 + [0, 2] // add-month (2.4)

 = (3, 2)1 // add-day (3.1)

5.3.2 Subtracting Durations from Dates

There are three sets of rules for subtracting durations from dates: sub-decompose,

sub-day, and sub-month:

86

Temporal Arithmetic Rule Example
(1) Sub-decompose

 (m1, d1)DL - [m2, d2]

(1.1) = (m1, d1) DL - [0, d2] - [m2, 0]

(2) Sub-day

 (m1, d1) DL - [0, d2]

(2.1) = (m1, d1-d2) DL, d1 > d2

(2.2) (m1-1, d1+#(m1-1)-d2) DL, d1 ≤ d2

(3) Sub-month // N = #(m1-m2)

 (m1, d1) DL - [m2, 0]

 = if (d1 = #(m1))

(3.1) (m1-m2, d1+DL), d1+DL ≤ N

(3.2) (m1-m2, N)d1+DL-N, d1+ DL > N

 else (i.e., d1 < #(m1))

(3.3) (m1-m2, N)d1-N, d1 > N

(3.4) (m1-m2, d1), d1 ≤ N

(2, 28)2 - [1, 2]

= (2, 28)2 - [0, 2] - [1, 0]

(4, 30)1 – [0, 15] = (4, 15)1

(3, 2)3 – [0, 10] = (2, 20)3

(2, 28)2 – [1, 0] = (1, 30)

(4, 30)1 – [2, 0] = (2, 28)3

(3, 30)2 – [1, 0] = (2, 28)2

(5, 16) – [1, 0] = (4, 16)

Table 5.2 Rules for Subtracting Durations from Dates

For any given duration, before it subtracts from a date, the sub-decompose rule is

applied first to separate the months and days by decomposing the duration into two

sub-durations with only days and months respectively, and then days are subtracted

first from the date using sub-day rules, then the months are subtracted using sub-

month rules.

 Two more examples of subtracting durations from dates are also shown below.

The first one is from the motivating example, and the second one demonstrates the

87

complete procedure (3 steps) for subtracting durations from dates, when durations

have both months and days:

Ex.3. (3, 31) - [1, 0]

 = (2, 28)3 // sub-month (3.2)

 (2, 28)3 - [1, 0]

 = (1, 31) // sub-month (3.1)

Ex.1. and Ex.3. show that the temporal arithmetic rules work for the motivating

example with the “history-dependent intuition” (desired property 1), and the first part

of the “subtraction property” (desired property 2) also holds for the motivating

example, because

 (1, 31) + [1, 0] = (2, 28)3 <=> (2, 28)3 - [1, 0] = (1, 31)

 (2, 28)3 + [1, 0] = (3, 31) <=> (3, 31) - [1, 0] = (2, 28)3

 (1, 31) + [1, 0] + [1, 0] = (3, 31) <=> (3, 31) - [1, 0] - [1, 0] = (1, 31)

Ex.4. (3, 2)1 - [1, 2]

 = (3, 2)1 - [0, 2] - [1, 0] // sub-decompose (1.1)

 = (2, 28)1 - [1, 0] // sub-day (2.2)

 = (1, 29) // sub-month (3.1)

88

Ex.2. and Ex.4. also show that the first part of the “subtraction property” (desired

property 2) holds for this example whose duration has both months and days, because

 (1, 29) + [1, 2] = (3, 2) 1 <=> (3, 2) 1 - [1, 2] = (1, 29)

5.3.3 Computing Duration between Two Dates

There is only one set of rules for computing duration between two dates:

Temporal Arithmetic Rule Example
(1) Sub-between-dates

(m2, d2)DL2 – (m1, d1)DL1

= if (d1 = #(m1))

(1.1) [m2-m1, d2-(d1+DL1)], d2 >= d1+DL1

(1.2) [m2-m1-1, (d2+DL2)+#(m2-1)-(d1+DL1)],

 d2 < d1+DL1, d2 < #(m2)

(1.3) [m2-m1, 0], d2 < d1+DL1, d2 = #(m2)

 else (i.e., d1 < #(m1))

(1.4) [m2-m1, d2-d1], d2 >= d1

(1.5) [m2-m1-1, d2], d2 < d1, d2 < #(m2), #(m2-1) ≤ d1

(1.6) [m2-m1-1, d2+#(m2-1)-d1],

 d2 < d1, d2 < #(m2), #(m2-1) > d1

(1.7) [m2-m1, 0], d2 < d1, d2 = #(m2)

(5, 31) - (2, 28)2 = [3, 1]

(3, 2)3 - (1, 31) = [1, 2]

(4, 30)1- (2, 28)3 = [2, 0]

(3, 20)2- (2, 10) = [1, 10]

(3, 2) - (1, 28) = [1, 2]

(3, 2) - (1, 20) = [1, 10]

(2, 28)1 - (1, 29) = [1, 0]

Table 5.3 Rules for Computing Duration between Dates

Two more examples of computing duration between two dates are also shown below.

The first one is from the motivating example, and the second one demonstrates the

89

procedure for computing durations between two dates, when durations have both

months and days:

Ex.5. (3, 31) - (2, 28)3 = [1, 0] // sub-between-dates (1.1)

 (2, 28)3 - (1, 31) = [1, 0] // sub-between-dates (1.3)

 (3, 31) - (1, 31) = [2, 0] // sub-between-dates (1.1)

Ex.1., Ex.3., and Ex.5. show the complete “subtraction property” (desired property 2)

holds for the motivating example, because

 (1, 31) + [1, 0] = (2, 28)3 <=> (2, 28)3 - [1, 0] = (1, 31)

 <=> (2, 28)3 - (1, 31) = [1, 0]

 (2, 28)3 + [1, 0] = (3, 31) <=> (3, 31) - [1, 0] = (2, 28)3

 <=> (3, 31) - (2, 28)3 = [1, 0]

They also show the “associativity property” holds for the motivating example,

because

 {(1, 31) + [1, 0]} + [1, 0] = (3, 31) <=> (1, 31) + {[1, 0] + [1, 0]}

 = (1, 31) + [2, 0] = (3, 31)

90

Ex.6. (3, 2)1 - (1, 29) = [1, 2] // sub-between-dates (1.5)

Ex.2., Ex.4., and Ex.6. also show that the complete “subtraction property” (desired

property 2) holds for this example, because

 (1, 29) + [1, 2] = (3, 2) 1 <=> (3, 2) 1 - [1, 2] = (1, 29)

 <=> (3, 2)1 - (1, 29) = [1, 2]

Ex.7. (1, 31) + [1, 2] + [2, 0]

 = (1, 31) + [1, 0] + [0, 2] + [2, 0] // add-decompose (1.1)

= (2, 28)3 + [0, 2] + [2, 0] // add-month (2.2)

 = (3, 2)3 + [2, 0] // add-day (3.1)

 = (5, 2) // add-month (3.4)

 (1, 31) + [2, 0] + [1, 2]

 = (3, 31) + [1, 2] // add-month (2.1)

= (3, 31) + [1, 0] + [0, 2] // add-decompose (1.1)

 = (4, 30)1 + [0, 2] // add-month (2.2)

 = (5, 2) 1 // add-day (3.1)

Ex.7. shows that the “commutativity property” hold for this example, if the

supplemental information (days lost “DL”) is ignored.

Ex.8. In the introduction, we showed the following example from XML Schema

(Biron and Malhotra, 2004) that demonstrates the case where the properties of

commutativity and associativity cannot hold using their temporal arithmetic algorithm:

91

 (2000-03-30 + P1D) + P1M = 2000-03-31 + P1M = 2000-04-30

 (2000-03-30 + P1M) + P1D = 2000-04-30 + P1D = 2000-05-01

Can our rules handle this problem? The computation is as follows.

 (3, 30) + [0, 1] + [1, 0]

 = (3, 31) + [1, 0] // add-day (3.3)

 = (4, 30)1 // add-month (2.2)

 (3, 30) + [1, 0] + [0, 1]

 = (4, 30) + [0, 1] // add-month (2.3)

 = (5, 1) // add-day (3.1)

The rules not only compute the results exactly based on the “history-dependent

intuition”, but also include supplemental information (days lost “DL”) for explaining

the reason why the commutativity property doesn’t hold: there was “one day lost” in

the first computation when one month is added to March 31.

 In fact, the commutativity property would hold, if we specify that (4, 30)1

“equals” to (5, 1). More generally, the commutativity and associativity properties

hold with our temporal arithmetic rules, if we define the month-day equality “more

softly” and take into account the effect of “days lost” (assume overflow is properly

handled):

 (m1, d1) DL1 = (m2, d2) DL2, if m1 = m2 AND (d1 = d2 OR d1 + DL1 = d2 + DL2)

92

5.4 Translating Rules to FOL Axioms

All the above temporal arithmetic rules can be straightforwardly translated into FOL

axioms in OWL-Time to give them access to the full ontology of time for temporal

reasoning. For example, the rule “add-month (2.1)”

(m1, d1) DL + [m2, 0] = (m1+m2, d1+DL),

if (d1 = #(m1)) AND d1+DL ≤ #(m1+m2)

can be translated as:

(∀ T, t1, t3, m1, m2, m3, d1, d3, DL, DL3, n1, n3) dateOf(t1, m1, d1, DL)

 ∧ durationOf(T, m2, 0) ∧ begins(t1, T) ∧ ends(t3, T)

 ∧ dateOf(t3, m3, d3, DL3) ∧ Hath(n1, *Day*, m1)

 ∧ Hath(n3, *Day*, m3) ∧ d1 = n1 ∧ d1+DL ≤ n3

 ⊃ m3 = m1+m2 ∧ d3 = d1+DL ∧ DL3 = 0

93

Chapter 6

Vague Event Durations

Consider the sentence from a news article:

 George W. Bush met with Vladimir Putin in Moscow.

How long did the meeting last? Our first inclination is to say we have no idea. But in

fact we do have some idea. We know the meeting lasted more than ten seconds and

less than one year. As we guess narrower and narrower bounds, our chances of being

correct go down. Just how accurately can we make duration judgments like this? How

much agreement can we expect among people? Will it be possible to extract this kind

of information from text automatically?

 The uncertainty of temporal durations has been recognized as one of the most

significant issues for temporal reasoning (Allen and Ferguson, 1994; Chittaro and

Montanari, 2000). For example, we have to know how long a battery remains charged

to decide when to replace it or to predict the effects of actions which refer to the

battery charge as a precondition (Chittaro and Montanari, 2000).

 As part of our commonsense knowledge, we can estimate roughly how long

events of different types last and roughly how long situations of various sorts persist.

For example, we know government policies typically last somewhere between one

94

and ten years, while weather conditions fairly reliably persist between three hours and

one day.

 There is much temporal information in text that has hitherto been largely

unexploited, implicitly encoded in the descriptions of events and relying on our

knowledge of the range of usual durations of types of events. This chapter describes

our work of an exploration into how this information can be captured automatically.

 Missing durations is one of the most common sources of incomplete

information for temporal reasoning in natural language applications, because very

often explicit duration information (e.g., “a five-day meeting”, “I have lived here for

three years”) is missing in natural language texts. Thus, this work can be very

important in applications in which the time course of events is to be extracted from

text. For example, whether two events overlap or are in sequence often depends very

much on their durations. If a war started yesterday, we can be pretty sure it is still

going on today. If a hurricane started last year, we can be sure it is over by now.

 Although there has been much work on formalizing temporal information

(Allen 1984; Moens and Steedman, 1988; Zhou and Fikes, 2002; Han and Lavie,

2004) and on temporal anchoring and event ordering in text (Hitzeman et al., 1995;

Mani and Wilson, 2000; Filatova and Hovy, 2001; Boguraev and Ando, 2005; Mani

et al., 2006), to our knowledge, there has been no serious published empirical effort to

model and learn the vague and implicit duration information in natural language, such

as the typical durations of events, and to perform reasoning over this information.

(Cyc apparently has some fuzzy duration information, although it is not generally

95

available; Rieger (1974) discusses the issue for less than a page; there has been work

in fuzzy logic on representing and reasoning with imprecise durations (Godo and Vila,

1995; Fortemps, 1997), but these make no attempt to collect human judgments on

such durations or to extract them automatically from text.)

 Our goal is to be able to extract this event duration information from text

automatically, and to that end we first annotated the events in news articles with

bounds on their durations. For reliability, narrow bounds of duration are needed if we

want to infer whether event e is happening at time t, while wide bounds of duration

are needed to infer whether event e is not happening at time t.

 The corpus that we have annotated currently contains all the 48 non-Wall-

Street-Journal (non-WSJ) news articles (2132 event instances), as well as 10 WSJ

articles (156 event instances), from the TimeBank corpus annotated in TimeML. The

non-WSJ articles (mainly political and disaster news) include both print and

broadcast news that are from a variety of news sources, such as ABC, AP, CNN and

VOA. All the annotated data has already been integrated into the TimeBank corpus29.

The events annotated in the TimeBank corpus are typically verbs, although

event nominals, such as “crash” in “...killed by the crash”, will also be annotated as

events; they also cover a subset of the states in a document, including those that are

either transient or explicitly marked as participating in a temporal relation.

 This chapter is organized as follows. In Section 6.1 we first describe our

annotation guidelines, including the annotation strategy and assumptions, and the

29 The annotated data is available at http://www.isi.edu/~pan/EventDuration/annotations/

96

representative event classes we have categorized to minimize discrepant judgments

between annotators. The method for measuring inter-annotator agreement when the

judgments are intervals on a scale will be described in Section 6.2. In Section 6.3 we

will show that machine learning techniques applied to the annotated data considerably

outperform a baseline and approach human performance. We will discuss how to

integrate our event duration annotations to TimeML in Section 4.

6.1 Annotation Guidelines and Events Classes

Every event to be annotated was already identified in the TimeBank corpus.

Annotators are asked to provide lower and upper bounds on the duration of the event,

and a judgment of level of confidence in those estimates on a scale from one to ten.

An interface was built to facilitate the annotation. Graphical output is displayed to

enable us to visualize quickly the level of agreement among different annotators for

each event. For example, here is the output of the annotations (3 annotators) for the

“finished” event (underlined) in the sentence

After the victim, Linda Sanders, 35, had finished her cleaning and was waiting

for her clothes to dry, ...

97

This graph shows that the first annotator believes that the event lasts for minutes

whereas the second annotator believes it could only last for several seconds. The third

annotates the event to range from a few seconds to a few minutes. The confidence

level of the annotators is generally subjective but as all three are higher than 5, it

shows reasonable confidence. A logarithmic scale is used for the output (see Section

6.2.1 for details).

6.1.1 Annotation Instructions

Annotators are asked to make their judgments as intended readers of the article, using

whatever world knowledge is relevant to an understanding of the article. They are

asked to identify upper and lower bounds that would include 80% of the possible

cases. For example, rainstorms of 10 seconds or of 40 days and 40 nights might occur,

but they are clearly anomalous and should be excluded. There are two strategies for

considering the range of possibilities:

 1. Pick the most probable scenario, and annotate its upper and lower bounds.

 2. Pick the set of probable scenarios, and annotate the bounds of their upper

and lower bounds.

 We deem the second to be the preferred strategy.

 The judgments are to be made in context. First of all, information in the syntactic

environment needs to be considered before annotating. For example, there is a

difference in the duration of the watching events in the phrases “watch a movie” and

“watch a bird fly”.

98

 Moreover, the events need to be annotated in light of the information provided

by the entire article. This means annotators should read the entire article before

starting to annotate. One may learn in the last paragraph, for example, that the

demonstration event mentioned in the first paragraph lasted for three days, and that

information should be used for annotation.

 However, they should not use knowledge of the future when annotating a

historical article. For example, an article from the fall of 1990 may talk about the

coming war against Iraq. Today we know exactly how long that lasted. But annotators

are asked to try to put themselves in the shoes of the 1990 readers of that article, and

make their judgments accordingly. This is because we want people’s estimates of

typical durations of events, rather than the exact durations.

 Annotation can be made easier and more consistent if coreferential and near-

coreferential descriptions of events are identified initially. Annotators are asked to

give the same duration ranges for such cases. For example, in the sentence “during

the demonstration, people chanted antigovernment slogans”, annotators should give

the same durations for the “demonstration” and “chanted” events.

6.1.2 Analysis

When the articles were completely annotated by the three annotators, the results were

analyzed and the differences were reconciled. Differences in annotation could be due

to the differences in interpretations of the event; however, we found that the vast

majority of radically different judgments can be categorized into a relatively small

99

number of classes. Some of these correspond to aspectual features of events, which

have been intensively investigated (e.g., Vendler, 1967; Dowty, 1979; Moens and

Steedman, 1988; Passonneau, 1988; Giorgi and Pianesi, 1997; Madden and Zwaan,

2003; Smith, 2005).

 We then developed guidelines to make annotators aware of these cases and to

guide them in making the judgments (see the next section). There is a residual of

gross discrepancies in annotators’ judgments that result from differences of opinion,

for example, about how long a government policy is typically in effect. But the

number of these discrepancies was surprisingly small.

 These guidelines were then used to annotate a test set. It was shown that the

agreement in the test set was greater than the agreement obtained when annotations

were performed without the guidelines. (See Section 6.2.3 for the experimental

results.)

6.1.3 Event Classes

Action vs. State: Actions involve change, such as those described by words like

“speaking”, “gave”, and “skyrocketed”. States involve things staying the same, such

as being dead, being dry, and being at peace. When we have an event in the passive

tense, sometimes there is an ambiguity about whether the event is a state or an action.

For example, in

 Three people were injured in the attack.

100

does the word “injured” describe an action or a state? This matters because they will

have different durations. The state begins with the action and lasts until the victim is

healed. There are some general diagnostic tests to distinguish them (Vendler, 1967;

Dowty, 1979); for example, action verbs are fine in the progressive form but stative

verbs are usually odd when used in the progressive form. Another test can be applied

to this specific case: Imagine someone says the sentence after the action had ended

but the state was still persisting. Would they use the past or present tense? In the

“injured” example, it is clear we would say “Three people were injured in the attack”,

whereas we would say “Three people are injured from the attack.” Our annotation

interface handles events of this type by allowing the annotators to specify which

interpretation they are giving. If the annotator feels it’s too ambiguous to distinguish,

annotations can be given for both interpretations.

 Although “retired” usually indicates a state, in the following example

 Farkas was ordered home and retired.

it looks more like an action by his company of retiring Farkas.

Aspectual Events: Some events are aspects of larger events, such as their start or

finish. Although they may seem instantaneous, we believe they should be considered

to happen across some interval, i.e., the first or last sub-event of the larger event. For

example, in

After the victim, Linda Sanders, 35, had finished her cleaning and was waiting

for her clothes to dry,…

101

the “finished” event should be considered as the last sub-event of the larger event (the

“cleaning” event), since it actually involves opening the door of the washer, taking

out the clothes, closing the door, and so on. All this takes time. This interpretation

will also give us more information on typical durations than simply assuming such

events are instantaneous.

 In the following example

 General Abacha's supporters began a two day rally in the capital.

the gathering of people marks the “beginning” of the rally, and it generally takes time

for a crowd of people to get together to start a rally.

Reporting Events: These are everywhere in the news. They can be direct quotes,

taking exactly as long as the sentence takes to read, or they can be summarizations of

long press conferences. We need to distinguish different cases:

 Quoted Report: This is when the reported content is quoted. The duration of

the event should be the actual duration of the utterance of the quoted content. The

time duration can be easily verified by saying the sentence out loud and timing it. For

example, in

 “It looks as though they panicked,” a detective said of the robbers.

the saying probably took between 1 and 3 seconds; it’s very unlikely it took more

than 10 seconds.

 Unquoted Report: When the reporting description occurs without quotes, the

report could be as short as the duration of the actual utterance of the reported content

102

(lower bound), and as long as the duration of a briefing or press conference (upper

bound).

 If the sentence is very short, then it's likely that it is one complete sentence

from the speaker's remarks, and a short duration should be given; if it is a long,

complex sentence, then it's more likely to be a summary of a long discussion or press

conference, and a longer duration should be given. For example, consider

 The police said it did not appear that anyone else was injured.

A Brooklyn woman who was watching her clothes dry in a laundromat was

killed Thursday evening when two would-be robbers emptied their pistols into

the store, the police said.

If the first sentence were quoted text, it would be very much the same. Hence the

duration of the “said” event should be short. In the second sentence everything that

the spokesperson (here the police) has said is compiled into a single sentence by the

reporter, and it is unlikely that the spokesperson said only a single sentence with all

this information. Thus, it is reasonable to give longer duration to this “said” event.

Multiple Events: Many occurrences of verbs and other event descriptors refer to

multiple events, especially, but not exclusively, if the subject or object of the verb is

plural. For example, in

 Iraq has destroyed its long-range missiles.

both single (i.e., destroyed one missile) and aggregate (i.e., destroyed all missiles)

events happened. This was a significant source in disagreements in our first round of

103

annotation. Since both judgments provide useful information, our current annotation

interface allows the annotator to specify the event as multiple, and give durations for

both the single and aggregate events.

 In the following example

Seventy-five million copies of the rifle have been built since it entered

production in February 1947.

“built” and “production” are both multiple events. The annotators were asked to give

durations for both the single (i.e., built/produce one rifle) and aggregate (i.e.,

built/produce seventy-five million copies of the rifle) events.

Events Involving Negation: Negated events didn't happen, so it may seem strange to

specify their duration. But whenever negation is used, there is a certain class of events

whose occurrence is being denied. Annotators should consider this class, and make a

judgment about the likely duration of the events in it. In addition, there is the interval

during which the nonoccurrence of the events holds. For example, in

He was willing to withdraw troops in exchange for guarantees that Israel

would not be attacked.

there is the typical amount of time of “being attacked”, i.e., the duration of a single

attack, and a longer period of time of “not being attacked”. The first is probably from

seconds to minutes and the second from months to years. Similarly to multiple events,

annotators are asked to give durations for both the event negated and the negation of

that event.

104

Appearance Events. Verbs like “seem” and “appear” usually indicate appearance

events. The duration of this kind of events depends on the duration of the validity or

availability of the evidence that causes one to have some impression at the time. Such

an event begins when enough evidence has accumulated for one to make that guess or

judgment, and it ends when either the evidence is contradicted or certainty is

achieved. For example, in

It appears that the destruction of this city in 2700 B.C. was related to the

eruption of the volcano.

the “appears” event lasts from when the archaeologist discovers enough evidence to

make the conjecture until the time the conjecture is refuted or confirmed.

Positive Infinite Durations: These are states which continue essentially forever once

they begin, for example,

 He is dead.

Here the state continues for an infinite amount of time, and we allow this as a

possible annotation.

6.2 Inter-Annotator Agreement

Although the graphical output of the annotations enables us to visualize quickly the

level of agreement among different annotators for each event, a quantitative

measurement of the agreement is needed.

105

 The kappa statistic (Krippendorff, 1980; Siegel and Castellan, 1988; Carletta,

1996; Eugenio and Glass, 2004), which factors out the agreement that is expected by

chance, has become the de facto standard to assess inter-annotator agreement. It is

computed as follows:

)(1
)()(

EP
EPAP

−
−

=κ

P(A) is the observed agreement among the annotators, and P(E) is the expected

agreement, which is the probability that the annotators agree by chance.

 In order to compute the kappa statistic for our task, we have to compute P(A)

and P(E) first. But those computations are not straightforward.

 P(A): What should count as agreement among annotators for our task?

 P(E): What is the probability that the annotators agree by chance for our task?

6.2.1 What Should Count as Agreement?

Determining what should count as agreement is not only important for assessing

inter-annotator agreement, but is also crucial for later evaluation of machine learning

experiments. For example, for a given event with a known gold standard duration

range from 1 hour to 4 hours, if a machine learning program outputs a duration of 3

hours to 5 hours, how should we evaluate this result?

 We first need to decide what scale is most appropriate. One possibility is just

to convert all the temporal units to seconds. However, this way would not correctly

capture our intuitions about the relative relations between duration ranges. For

106

example, the difference between 1 second and 20 seconds is significant; while the

difference between 1 year 1 second and 1 year 20 seconds is negligible. Consider the

range from 1 year to 5 years and the range from 1 second to 5 seconds. The distance

between 1 year and 5 years in seconds would be much larger than that between 1

second and 5 seconds, but intuitively, they represent the same level of uncertainty. In

order to handle this problem, we use a logarithmic scale for our data. After first

converting from temporal units to seconds, we then take the natural logarithms of

these values. This logarithmic scale also conforms to the half orders of magnitude

(HOM) (Hobbs, 2000; Hobbs and Kreinovich, 2001) which has been shown to have

utility in several very different linguistic contexts.

 In the literature on the kappa statistic, most authors address only category data

(either in nominal scales or ordinal scales); some can handle more general data, such

as data in interval scales or ratio scales (Krippendorff, 1980; Carletta, 1996).

However, none of the techniques directly apply to our data, which is range duration

from a lower bound to an upper bound.

 In fact, what coders annotate for a given event is not just a range, but a

duration distribution for the event, where the area between the lower bound and the

upper bound covers about 80% of the entire distribution area. Since it’s natural to

assume the most likely duration for such distribution is its mean (average) duration,

and the distribution flattens out toward the upper and lower bounds, we use the

normal or Gaussian distribution to model our duration distributions.

107

 In order to determine a normal distribution, we need to know two parameters:

the mean and the standard deviation. For our duration distributions with given lower

and upper bounds, the mean is the average of the bounds. Under the assumption that

the area between lower and upper bounds covers 80% of the entire distribution area,

the lower and upper bounds are each 1.28 standard deviations from the mean. Then

the standard deviation can be computed using either the upper bound (Xupper) or the

lower bound (Xlower) as follows:

28.128.1 −
−

=
−

=
μμ

σ lowerupper XX
, where

2
lowerupper XX +

=μ

With this data model, the agreement between two annotations can be defined as the

overlapping area between two normal distributions.30 The agreement among many

annotations is the average overlap of all the pairwise overlapping areas. For example,

for a given event, suppose the two annotations are:

 1) Lower: 10 minutes; upper: 30 minutes

 2) Lower: 10 minutes; upper 2 hours

After converting to seconds and to the natural logarithmic scale, they become:

 1) Lower: 6.39692; upper: 7.49554

 2) Lower: 6.39692; upper: 8.88184

We then compute their means and standard deviations:

 1) μ 1 = 6.94623; σ 1 = 0.42861

 2) μ 2 = 7.63938; σ 2 = 0.96945

30 This idea is due to Hoa Trang Dang.

108

The distributions and their overlap are then as in Figure 6.1. The overlap or

agreement is 0.508706.

Figure 6.1 Example for Overlap of Judgments

6.2.2 Expected Agreement

What is the probability that the annotators agree by chance for our task? The first

quick response to this question may be 0, if we consider all the possible durations

from 1 second to 1000 years or even positive infinity.

 However, not all the durations are equally possible. As in (Krippendorff, 1980;

Siegel and Castellan, 1988), we assume there exists one global distribution for our

task (i.e., the duration ranges for all the events), and “chance” annotations would be

consistent with this distribution. Thus, the baseline will be an annotator who knows

the global distribution and annotates in accordance with it, but does not read the

specific article being annotated. Therefore, we must compute the global distribution

of the durations, in particular, of their means and their widths. This will be of interest

109

not only in determining expected agreement, but also in terms of what it says about

the genre of news articles and about fuzzy judgments in general.

 We first compute the distribution of the means of all the annotated durations.

Its histogram is shown in Figure 6.2, where the horizontal axis represents the mean

values in the natural logarithmic scale and the vertical axis represents the number of

annotated durations with that mean.

Figure 6.2 Distribution of means of annotation durations

There are two peaks in this distribution. One is from 5 to 7 in the natural logarithmic

scale, which corresponds to about 1.5 minutes to 30 minutes. The other is from 14 to

17 in the natural logarithmic scale, which corresponds to about 8 days to 6 months.

One could speculate that this bimodal distribution is because daily newspapers report

short events that happened the day before and place them in the context of larger

110

trends. The lowest point between the two peaks occurs at 11 which roughly

corresponds to one day.

 We also compute the distribution of the widths (i.e., Xupper – Xlower) of all the

annotated durations, and its histogram is shown in Figure 6.3, where the horizontal

axis represents the width in the natural logarithmic scale and the vertical axis

represents the number of annotated durations with that width.

Figure 6.3 Distribution of widths of annotation durations

The peak of this distribution occurs at 2.5 in the natural logarithmic scale. This shows

that for annotated durations, the most likely uncertainty factor from a mean (average)

duration is 3.5:

 5.325.1 === e
lower

upper

X
X μ

μ
, since

 25.125.2)log()log()log(===−
μ

μ upper
upper

X
X

111

This is the half orders of magnitude factor that Hobbs and Kreinovich (2001) argue

gives the optimal granularity; making something 3 to 4 times bigger changes the way

we interact with it.

 Since the global distribution is determined by the above mean and width

distributions, we can then compute the expected agreement, i.e., the probability that

the annotators agree by chance, where the chance is actually based on this global

distribution. Two approaches were used to approximate this probability, both of

which use a normal distribution to approximate the global distribution.

 The first approach is to compute a fixed global normal distribution with the

mean as the mean of the mean distribution and the standard deviation as the mean

standard deviation (this can be straightforwardly computed from the width

distribution). We then compute the expected agreement by averaging all the

agreement scores (overlaps) between this fixed distribution and each of the annotated

duration distributions.

 The second approach is to generate 1000 normal distributions whose means

are randomly generated from the mean distribution and standard deviations are

randomly computed from the width distribution. We then compute the expected

agreement by averaging all the agreement scores (overlaps) between these 1000

random distributions.

 In a sense, both of these capture the way an annotator might annotate if he or

she did not read the article but only guessed on the basis of the global distribution. As

it turns out, the results of the two approaches of computing the expected agreement

112

are very close; they differ by less than 0.01: P(E)1 = 0.1439, P(E)2 = 0.1530. We will

use the results of the second approach as the baseline in the next section.

6.2.3 Inter-Annotator Agreement Experiments

In order to see how effective our guidelines are, we conducted experiments to

compare the inter-annotator agreement before and after annotators read the guidelines.

 The data for the evaluation was split into two sets. The first set contained 13

articles (521 events, 1563 annotated durations) which were all political and disaster

news stories from ABC, APW, CNN, PRI, and VOA. The annotators annotated

independently before reading the guidelines. The annotators were only given short

instructions on what to annotate and one sample article with annotations. The second

set (test set) contained 5 articles (125 events, 375 annotated durations) which were

also political and disaster news stories from the same news sources. The annotators

annotated independently after reading the guidelines.

 The comparison is shown in Figure 6.4. Agreement is measured by the area of

overlap in two distributions and is thus a number between 0 and 1. The graphs show

the answer to the question “If we set the threshold for agreement at x, counting

everything above x as agreement, what is the percentage y of inter-annotator

agreement?” The horizontal axis represents the overlap thresholds, and the vertical

axis represents the agreement percentage, i.e., the percentage of annotated durations

that agree for given overlap thresholds. There are three lines in the graph. The top one

with circles represents the after-guidelines agreement; the middle one with triangles

113

represents the before-guidelines agreement; and the lowest one with squares

represents the expected (baseline) agreement. This graph shows that, for example, if

we define agreement to be a 10% overlap or better (an overlap threshold of 0.1), we

can get 0.8 agreement after reading the guidelines, 0.72 agreement before reading the

guidelines, and 0.36 expected agreement with only the knowledge of the global

distribution. From this graph, we can see that our guidelines are indeed effective in

improving the inter-annotator agreement.

 Table 6.1 shows more detailed experimental results. For each overlap

threshold, it shows the expected (baseline) agreement, the before-guidelines

agreement, and the after-guidelines agreement, and also the kappa statistic computed

from the after-guidelines agreement (P(A)) and the expected (baseline) agreement

(P(E)).

Figure 6.4 Inter-Annotator Agreements Comparison

114

Overlapping

Threshold

Expected

Agreement

Before-G.

Agreement

After-G.

Agreement

Kappa (After-

G. Agreement)
Factor

0.1 0.36 0.72 0.80 0.69 28.50

0.2 0.28 0.59 0.70 0.58 13.46

0.3 0.22 0.52 0.67 0.58 8.17

0.4 0.17 0.43 0.58 0.49 5.47

0.5 0.12 0.31 0.45 0.38 3.86

0.6 0.08 0.22 0.35 0.29 2.86

0.7 0.05 0.15 0.23 0.19 2.23

0.8 0.02 0.10 0.10 0.08 1.65

0.9 0.01 0.07 0.04 0.03 1.28

1.0 0.00 0.05 0.03 0.03 1.00

Table 6.1 Inter-Annotator Agreement with Different Overlapping Thresholds

Moreover, Table 6.1 also shows a factor value that represents how far apart the means

of two annotations can be in order to overlap with the given overlap threshold,

assuming the width of the two annotations is the mean width, 2.6 on the natural

logarithmic scale as computed from the width distribution shown in Figure 6.3.

 For example, when the overlap threshold is 0.1, the factor value is 28.5, which

means if one annotator guesses the mean duration for a given event is 1 minute, the

other annotator will have 0.8 probability of guessing a mean duration from about 2

seconds (1 minutes / 28.5) to 28.5 minutes and their duration distributions will have at

least 10% overlap. This also shows that if someone guesses 1 minute for a given

event, it’s not very likely (with a 0.2 probability) that the event will last more than

28.5 minutes or less than 2 seconds on average. Obviously, as Table 6.1 shows, if we

want tighter bounds on the duration, our reliability will go down.

115

 This factor is very useful for temporal reasoning tasks where we need to know

whether given events have already ended or not.

6.3 Learning Event Durations

6.3.1 Features

In this section, we describe the lexical, syntactic, and semantic features that we

considered in learning event durations.

6.3.1.1 Local Context

For a given event, the local context features include a window of n tokens to its left

and n tokens to its right, as well as the event itself, for n = {0, 1, 2, 3}. The best n

determined via cross validation turned out to be 0, i.e., the event itself with no local

context. But we also present results for n = 2 in Section 6.3.2 to evaluate the utility of

local context.

 A token can be a word or a punctuation mark. Punctuation marks are not

removed, because they can be indicative features for learning event durations. For

example, the quotation mark is a good indication of quoted reporting events, and the

duration of such events most likely lasts for seconds or minutes, depending on the

length of the quoted content. However, there are also cases where quotation marks are

used for other purposes, such as emphasis of quoted words and titles of artistic works.

 For each token in the local context, including the event itself, three features

are included: the original form of the token, its lemma (or root form), and its part-of-

116

speech (POS) tag. The lemma of the token is extracted from parse trees generated by

the CONTEX parser (Hermjakob and Mooney, 1997) which includes rich context

information in parse trees, and the Brill tagger (Brill, 1992) is used for POS tagging.

 The context window doesn’t cross the boundaries of sentences. When there

are not enough tokens on either side of the event within the window, “NULL” is used

for the feature values.

 The local context features extracted for the “signed” event in sentence (1) is

shown in Table 6.2 (with a window size n = 2). The feature vector is [signed, sign,

VBD, the, the, DT, plan, plan, NN, Friday, Friday, NNP, on, on, IN].

 (1) The two presidents on Friday signed the plan.

Features Original Lemma POS

Event signed sign VBD

1token-after the the DT

2token-after plan plan NN

1token-before Friday Friday NNP

2token-before on on IN

Table 6.2 Local context features for the “signed” event in sentence (1) with n = 2

6.3.1.2 Syntactic Relations

The information in the event’s syntactic environment is very important in deciding

the durations of events. For example, there is a difference in the durations of the

“watch” events in the phrases “watch a movie” and “watch a bird fly”.

 For a given event, both the head of its subject and the head of its object are

extracted from the parse trees generated by the CONTEX parser. Similarly to the

117

local context features, for both the subject head and the object head, their original

form, lemma, and POS tags are extracted as features. When there is no subject or

object for an event, “NULL” is used for the feature values.

 For the “signed” event in sentence (1), the head of its subject is “presidents”

and the head of its object is “plan”. The extracted syntactic relation features are

shown in Table 6.3, and the feature vector is [presidents, president, NNS, plan, plan,

NN].

Features Original Lemma POS

Subject presidents president NNS

Object plan plan NN

Table 6.3 Syntactic relation features for the “signed” event in sentence (1)

6.3.1.3 WordNet Hypernyms

Events with the same hypernyms may have similar durations. For example, events

“ask” and “talk” both have a direct WordNet hypernym of “communicate”, and most

of the time they do have very similar durations in the corpus.

 However, closely related events don’t always have the same direct hypernyms.

For example, “see” has a direct hypernym of “perceive”, whereas “observe” needs

two steps up through the hypernym hierarchy before reaching “perceive”. Such

correlation between events may be lost if only the direct hypernyms of the words are

extracted.

 It is useful to extract the hypernyms not only for the event itself, but also for

the subject and object of the event. For example, events related to a group of people

118

or an organization usually last longer than those involving individuals, and the

hypernyms can help distinguish such concepts. For example, “society” has a “group”

hypernym (2 steps up in the hierarchy), and “school” has an “organization” hypernym

(3 steps up). The direct hypernyms of nouns are not always general enough for such

purpose, but a hypernym at too high a level can be too general to be useful. For our

learning experiments, we extract the first 3 levels of hypernyms from WordNet.

 Hypernyms are only extracted for the events and their subjects and objects,

not for the local context words. For each level of hypernyms in the hierarchy, it’s

possible to have more than one hypernym, for example, “see” has two direct

hypernyms, “perceive” and “comprehend”. For a given word, it may also have more

than one sense in WordNet. In such cases, as in (Gildea and Jurafsky, 2002), we only

take the first sense of the word and the first hypernym listed for each level of the

hierarchy. A word disambiguation module might improve the learning performance.

But since the features we need are the hypernyms, not the word sense itself, even if

the first word sense is not the correct one, its hypernyms can still be good enough in

many cases. For example, in one news article, the word “controller” refers to an air

traffic controller, which corresponds to the second sense in WordNet, but its first

sense (business controller) has the same hypernym of “person” (3 levels up) as the

second sense (direct hypernym). Since we take the first 3 levels of hypernyms, the

correct hypernym is still extracted.

 When there are less than 3 levels of hypernyms for a given word, its

hypernym on the previous level is used. When there is no hypernym for a given word

119

(e.g., “go”), the word itself will be used as its hypernyms. Since WordNet only

provides hypernyms for nouns and verbs, “NULL” is used for the feature values for a

word that is not a noun or a verb.

 For the “signed” event in sentence (1), the extracted WordNet hypernym

features for the event (“signed”), its subject (“presidents”), and its object (“plan”) are

shown in Table 6.4, and the feature vector is [write, communicate, interact,

corporate_executive, executive, administrator, idea, content, cognition].

Feature 1-hyper 2-hyper 3-hyper

Event write communicate interact

Subject corporate executive executive administrator

Object idea content cognition

Table 6.4 WordNet hypernym features in sentence (1)

6.3.2 Learning Binary Event Durations

The distribution of the means of the annotated durations in Figure 6.2 is bimodal,

dividing the events into those that take less than a day and those that take more than a

day. Thus, in our first machine learning experiment, we have tried to learn this

coarse-grained event duration information as a binary classification task.

6.3.2.1 Inter-Annotator Agreement, Baseline, and Upper Bound

Before evaluating the performance of different learning algorithms, the inter-

annotator agreement, the baseline and the upper bound for the learning task are

assessed first.

120

 Table 6.5 shows the inter-annotator agreement results among 3 annotators for

binary event durations. The experiments were conducted on the same data sets as in

Section 6.2.3. Two kappa values are reported with different ways of measuring

expected agreement (P(E)), i.e., whether or not the annotators have prior knowledge

of the global distribution of the task.

P(A) P(E) Kappa

0.528 0.740
0.877

0.500 0.755

Table 6.5 Inter-Annotator Agreement for Binary Event Durations

The human agreement before reading the guidelines (0.877) is a good estimate of the

upper bound performance for this binary classification task. The baseline for the

learning task is always taking the most probable class. Since 59.0% of the total data is

“long” events, the baseline performance is 59.0%.

6.3.2.2 Data

The original annotated data can be straightforwardly transformed for this binary

classification task. For each event annotation, the most likely (mean) duration is

calculated first by averaging (the logs of) its lower and upper bound durations. If its

most likely (mean) duration is less than a day (about 11.4 in the natural logarithmic

scale), it is assigned to the “short” event class, otherwise it is assigned to the “long”

event class. (Note that these labels are strictly a convenience and not an analysis of

the meanings of “short” and “long”.)

121

 We divide the total annotated non-WSJ data (2132 event instances) into two

data sets: a training data set with 1705 event instances (about 80% of the total non-

WSJ data) and a held-out test data set with 427 event instances (about 20% of the

total non-WSJ data). The WSJ data (156 event instances) is kept for further test

purposes (see Section 6.3.2.4).

6.3.2.3 Experimental Results (non-WSJ)

Learning Algorithms. Three supervised learning algorithms were evaluated for our

binary classification task, namely, Support Vector Machines (SVM) (Vapnik, 1995),

Naïve Bayes (NB) (Duda and Hart, 1973), and Decision Trees C4.5 (Quinlan, 1993).

The Weka (Witten and Frank, 2005) machine learning package was used for the

implementation of these learning algorithms. Linear kernel is used for SVM in our

experiments.

 Each event instance has a total of 18 feature values, as described in Section

6.3.1, for the event only condition, and 30 feature values for the local context

condition when n = 2. For SVM and C4.5, all features are converted into binary

features (6665 and 12502 features).

Results. 10-fold cross validation was used to train the learning models, which were

then tested on the unseen held-out test set, and the performance (including the

precision, recall, and F-score31 for each class) of the three learning algorithms is

shown in Table 6.6. The significant measure is overall precision, and this is shown for

31 F-score is computed as the harmonic mean of the precision and recall: F = (2*Prec*Rec)/(Prec+Rec).

122

the three algorithms in Table 6.7, together with human agreement (the upper bound of

the learning task) and the baseline.

 We can see that among all three learning algorithms, SVM achieves the best

F-score for each class and also the best overall precision (76.6%). Compared with the

baseline (59.0%) and human agreement (87.7%), this level of performance is very

encouraging, especially as the learning is from such limited training data.

Class Algor. Prec. Recall F-Score

SVM 0.707 0.606 0.653

NB 0.567 0.768 0.652 Short

C4.5 0.571 0.600 0.585

SVM 0.793 0.857 0.823

NB 0.834 0.665 0.740
Long

C4.5 0.765 0.743 0.754

Table 6.6 Test Performance of Three Algorithms

Algorithm Precision

Baseline 59.0%

C4.5 69.1%

NB 70.3%

SVM 76.6%

Human Agreement 87.7%

Table 6.7 Overall Test Precision on non-WSJ Data

Feature Evaluation. The best performing learning algorithm, SVM, was then used to

examine the utility of combinations of four different feature sets (i.e., event, local

123

context, syntactic, and WordNet hypernym features). The detailed comparison is

shown in Table 6.8.

Event Only (n = 0) Event Only + Syntactic Event + Syn + Hyper
Class

Prec. Rec. F Prec. Rec. F Prec. Rec. F

Short 0.742 0.465 0.571 0.758 0.587 0.662 0.707 0.606 0.653

Long 0.748 0.908 0.821 0.792 0.893 0.839 0.793 0.857 0.823

Overall

Prec.
74.7% 78.2% 76.6%

 Local Context (n = 2) Context + Syntactic Context + Syn + Hyper

Short 0.672 0.568 0.615 0.710 0.600 0.650 0.707 0.606 0.653

Long 0.774 0.842 0.806 0.791 0.860 0.824 0.793 0.857 0.823

Overall

Prec.
74.2% 76.6% 76.6%

Table 6.8 Feature Evaluation with Different Feature Sets using SVM

We can see that most of the performance comes from event word or phrase itself. A

significant improvement above that is due to the addition of information about the

subject and object. Local context does not help and in fact may hurt, and hypernym

information also does not seem to help32. It is of interest that the most important

information is that from the predicate and arguments describing the event, as our

linguistic intuitions would lead us to expect.

6.3.2.4 Test on WSJ Data

The last section describes the experimental results with the learned model trained and

tested on data from the same genre, i.e., non-WSJ articles. In order to evaluate

32 In the two cases using Hyper, the learning algorithm with and without local context gives identical results,
probably because the other features dominate.

124

whether the learned model can perform well on data from different news genres, we

tested it on the unseen WSJ data (156 event instances). The performance (including

the precision, recall, and F-score for each class) is shown in Table 6.9. The precision

(75.0%) is very close to the test performance on the non-WSJ data, and indicates the

significant generalization capacity of the learned model.

Class Prec. Rec. F

Short 0.692 0.610 0.649

Long 0.779 0.835 0.806

Overall Prec. 75.0%

Table 6.9 Test Performance on WSJ data

6.3.3 Learning the Most Likely Temporal Unit

These encouraging results prompted us to try to learn more fine-grained event

duration information, viz., the most likely temporal units of event durations (cf.

(Rieger 1974)’s ORDERHOURS, ORDERDAYS).

 For each original event annotation, we can obtain the most likely (mean)

duration by averaging its lower and upper bound durations, and assigning it to one of

seven classes (i.e., second, minute, hour, day, week, month, and year) based on the

temporal unit of its most likely duration.

125

 However, human agreement on this more fine-grained task is low (44.4%).

This is understandable. An annotation of [30 minutes, 1 hour] and [35 minutes, 2

hours] will not match, even the area of their overlap is 52.72%33.

 Based on this observation, instead of evaluating the exact agreement between

annotators, an “approximate agreement” is computed for the most likely temporal

unit of events. In “approximate agreement”, temporal units are considered to match if

they are the same temporal unit or an adjacent one. For example, “second” and

“minute” match, but “minute” and “day” do not.

 We conducted an experiment for learning this multi-classification task. The

same data sets as in the binary classification task were used. The only difference was

that the class for each instance was now labeled with one of the seven temporal unit

classes.

 The baseline for this multi-classification task is always taking the temporal

unit which with its two neighbors spans the greatest amount of data. Since the

“week”, “month”, and “year” classes together take up largest portion (51.5%) of the

data, the baseline is always taking the “month” class, where both “week” and “year”

are also considered a match. Table 6.10 shows the inter-annotator agreement results

for most likely temporal unit when using “approximate agreement”. Human

agreement (the upper bound) for this task increases from 44.4% to 79.8%.

33 A natural logarithmic scale is used for the overlap/agreement computation, as shown in Section 3.1.

126

P(A) P(E) Kappa

0.151 0.762
0.798

0.143 0.764

Table 6.10 Inter-Annotator Agreement for Most Likely Temporal Unit

10-fold cross validation was also used to train the learning models, which were then

tested on the unseen held-out test set. The performance of the three algorithms is

shown in Table 6.11. The best performing learning algorithm is again SVM with

67.9% test precision. Compared with the baseline (51.5%) and human agreement

(79.8%), this again is a very promising result, especially for a multi-classification task

with such limited training data. It is reasonable to expect that when more annotated

data becomes available, the learning algorithm will achieve higher performance when

learning this and more fine-grained event duration information.

 Algorithm Precision

Baseline 51.5%

C4.5 56.4%

NB 65.8%

SVM 67.9%

Human Agreement 79.8%

Table 6.11 Overall Test Precisions

Although the coarse-grained duration information may look too coarse to be useful,

computers have no idea at all whether a meeting event takes seconds or centuries, so

even coarse-grained estimates would give it a useful rough sense of how long each

event may take. More fine-grained duration information is definitely more desirable

127

for temporal reasoning tasks. But coarse-grained durations to a level of temporal units

can already be very useful.

6.4 Integrating Vague Event Durations to TimeML

This section describes our work on integrating annotations of typical durations of

events to TimeML, which can enrich the expressiveness of TimeML, and provides

natural language applications that exploit TimeML with this additional implicit event

duration information for their temporal information processing tasks.

6.4.1 Event Classes in TimeML

Our event duration annotations can be integrated into the EVENT tag. In TimeML

each event belongs to one of the seven event classes, i.e., reporting, perception,

aspectual, I-action, I-state, state, occurrence. TimeML annotation guidelines34 give

detailed description for each of the classes:

 Reporting. This class describes the action of a person or an organization

declaring something, narrating an event, informing about an event, etc (e.g., say,

report, tell, explain, state).

 Perception. This class includes events involving the physical perception of

another event (e.g., see, watch, view, hear).

 Aspectual. In languages such as English and French, there is a grammatical

device of aspectual predication, which focuses on different facets of event history, i.e.,

34http://www.cs.brandeis.edu/~jamesp/arda/time/timeMLdocs/annguide12wp.pdf

128

initiation, reinitiation, termination, culmination, continuation (e.g., begin, stop, finish,

continue).

 I-Action. An I-Action is an Intensional Action. It introduces an event

argument (which must be in the text explicitly) describing an action or situation from

which we can infer something given its relation with the I-Action (e.g., attempt, try,

promise).

 I-State. This class of events are similar to the previous class. This class

includes states that refer to alternative or possible worlds (e.g., believe, intend, want).

 State. This class describes circumstances in which something obtains or holds

true (e.g., on board, kidnapped, peace).

 Occurrence. This class includes all the many other kinds of events describing

something that happens or occurs in the world (e.g., die, crash, build, sell).

6.4.2 Integrating Event Duration Annotations

Our event duration annotations can be integrated into TimeML by adding two more

attributes to the EVENT tag for the lower bound and upper bound duration

annotations (e.g., the lowerBoundDuration and upperBoundDuration attributes).

 To minimize changes of the existing TimeML specifications caused by the

integration, we can try to share as much as possible our event classes as described in

Section 2.2 with the existing ones in TimeML as described in Section 3.

 We can see that four event classes are shared with very similar definitions, i.e.,

reporting, aspectual, state, and action/occurrence. For the other three event classes

129

that only belong to TimeML (i.e., perception, I-action, I-state), the I-action and

perception classes can be treated as special subclasses of the action/occurrence class,

and the I-state class as a special subclass of the state class.

 However, there are still three classes that only belong to the event duration

annotations (i.e., multiple, negation, and positive infinite). The positive infinite class

can be treated as a special subclass of the state class with a special duration

annotation for positive infinity.

 Each multiple event has two annotations. For example, for

 Iraq has destroyed its long-range missiles.

there is the time it takes to destroy one missile and the duration of the interval in

which all the individual events are situated – the time it takes to destroy all its

missiles.

 Since the single event is usually more likely to be encountered in multiple

documents, and thus the duration of the single event is usually more likely to be

shared and re-used, to simplify the specification, we can take only the duration

annotation of the single events for the multiple event class, and the single event can

be assigned with one of the seven TimeML event classes. For example, the

“destroyed” event in the above example is assigned with the occurrence class in

TimeBank.

 The events involving negation can be simplified similarly. Since the event

negated is usually more likely to be encountered in multiple documents, we can take

only the duration annotation of the negated event for this class. For example, in

130

 He was willing to withdraw troops in exchange for guarantees that Israel

 would not be attacked.

the event negated is the “being attacked” event and it is assigned with the occurrence

class in TimeBank. Alternatively, TimeML could be extended to treat negations of

events as states.

 The format used for annotated durations is consistent with that for the value of

the DURATION type in TimeML. For example, the sentence

 The official said these sites could only be visited by a special team of U.N.

 monitors and diplomats.

can be marked up in TimeML as:

The official <EVENT eid=“e63” class=“REPORTING”> said </EVENT>

these sites <SIGNAL sid=“s65” >could</SIGNAL> only be <EVENT

eid=“e64” class=“OCCURRENCE”> visited </EVENT> by a special

team of <ENAMEX TYPE=“ORGANIZATION”> U.N. </ENAMEX> monitors

and diplomats.

If we annotate the “said” event with the duration annotation of [5 seconds, 5 minutes],

and the “visited” event with [10 minutes, 1 day], the extended mark-up becomes:

The official <EVENT eid=“e63” class=“REPORTING” lowerBound-

Duration=“PT5S” upperBoundDuration=“PT5M”> said </EVENT> these

sites <SIGNAL sid=“s65” >could</SIGNAL> only be <EVENT eid=“e64”

class=“OCCURRENCE” lowerBoundDuration=“PT10M” upperBound-

Duration=“P1D”> visited </EVENT> by a special team of <ENAMEX

TYPE=“ORGANIZATION”> U.N. </ENAMEX> monitors and diplomats.

131

6.5 Representing and Reasoning about Vague Event Durations

Vague event durations can be represented in FOL with a simple predicate, for

example, “vagueDuration” (where T is an interval, D1 and D1 are the descriptions of

the lower and upper bound durations):

 vagueDuration(T, D1, D2) ⊃ Interval(T) ∧ DurationDescription(D1)

 ∧ DurationDescription(D2)

More axioms can be added to support the reasoning on the vague event durations.

This can be translated into OWL very straightforwardly (XSD durations can be used

in the place of duration descriptions):

 <owl:ObjectProperty rdf:ID=“vagueDurationOf”>
 <rdfs:domain rdf:resource=“#Interval” />
 <rdfs:range rdf:resource=“#VagueDuration” />
 </owl:ObjectProperty>

 <owl:Class rdf:ID=“VagueDuration”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#lowerDuration” />
 <owl:cardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:cardinality>
 </owl:Restriction>

</rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#upperDuration” />
 <owl:cardinality rdf:datatype=“&xsd;nonNegativeInteger”>1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID=“lowerDuration”>
 <rdfs:domain rdf:resource=“#VagueDuration “ />
 <rdfs:range rdf:resource=“#DurationDescription” />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID=“upperDuration”>
 <rdfs:domain rdf:resource=“#VagueDuration “ />
 <rdfs:range rdf:resource=“#DurationDescription” />
 </owl:DatatypeProperty>

In terms of reasoning about this vague event durations, Section 7 describes sets of

mapping axioms to map subsets of the problems that can be represented by the time

132

ontology in FOL to temporal constraint-based formalisms for more efficient temporal

reasoning. Since temporal constraint-based formalisms usually specify a range of

durations as constraints, they are very suitable for temporal reasoning with vague

durations.

 If we want to capture the probabilistic properties of vague event durations that

are modeled by the normal distribution, we would need to incorporate probability into

FOL and OWL. However, results of (Halpern, 1990; Abadi and Halpern, 1994) show

that in general it is impossible to have complete axiomatization (deductive system) of

FOL of probability, though a complete axiomatization system can be obtained for

some special cases. A probabilistic extension to OWL for uncertainty modeling is

proposed in (Ding and Peng, 2004).

133

Chapter 7

More Efficient Reasoning with Temporal Constraint-Based

Formalisms

Due to the undecidability and high computational complexity of FOL theorem

proving, sets of mapping axioms have been developed in order to map subsets of the

problems that can be represented in the time ontology in FOL to different temporal

constraint-based formalisms for more efficient temporal reasoning. This will allow

applications that require efficient temporal reasoning to use our ontology when the

problem (or part of the problem) can be mapped to a temporal constraint-based

formalism by the mapping axioms.

 Temporal constraint-based formalisms usually specify a range of durations as

constraints. Thus it is naturally a very suitable formalism for reasoning about vague

event durations described in Section 6.

 Section 7.1 describes different kinds of temporal constraint-based formalisms.

The mapping axioms are discussed in Section 7.2 for each of the formalisms.

134

7.1 Temporal Constraint-Based Formalisms

There are two types of temporal constraints: qualitative and quantitative. Qualitative

constraints specify temporal relations between temporal entities, and quantitative

constraints place absolute or duration bounds to temporal entities.

 Both interval algebra (Allen, 1983) and point algebra (Vilain and Kautz, 1986)

can be represented and reasoned with qualitative temporal networks. While it’s

generally NP-complete to decide consistency for interval algebra constraint networks,

polynomial time can be achieved for point algebra constraint networks.

Quantitative temporal constraint satisfaction problems (TCSPs) involve a set

of variables {x1, …, xn} with continuous domains. Each variable represents a time

point. A unary constraint restricts the domain of variable xi to the given set of

intervals, for example, (a1 ≤ xi ≤ b1) ∨ … ∨ (an ≤ xi ≤ bn). A binary constraint restricts

the duration of (xj - xi) to the given set of intervals, for example, (a1 ≤ xj - xi ≤ b1) ∨ …

∨ (an ≤ xj - xi ≤ bn). For example, Ex 7.1 can be formulated as a TCSP, as shown in

Figure 7.1 (Dechter et al., 1991). It can answer queries like “what are the possible

times at which Fred left home?”. The general reasoning in TCSPs is NP-hard.

 [Ex 7.1] (Dechter et al., 1991) John travels to work either by car (30-40

minutes) or by bus (at least 60 minutes). Fred travels to work either by car

(20-30 minutes) or in a carpool (40-50 minutes). Today John left home

between 7:10 and 7:20 AM, and Fred arrived at work between 8:00 and 8:10

135

AM. We also know that John arrived at work 10-20 minutes after Fred left

home.

Figure 7.1 A TCSP Example

Polynomial solutions exist for a special kind of TCSPs -- Simple Temporal

Problems (STPs) (Dechter et al., 1991). A STP is a TCSP where all the constraints

specify a single interval, i.e., no disjunction is allowed. For example, Ex 7.1 can be

simplified to a STP by removing alternatives (disjunctions) from the constraints, i.e.,

John only used a car and Fred only used a carpool.

Disjunctive Temporal Problems (DTPs) extends STPs by allowing disjunctive

constraints and TCSPs by allowing constraints with arbitrary arity (e.g., constraints

with three or more variables) (Stergiou and Koubarakis, 1998). For example, to

represent the constraint “two intervals A and B cannot overlap”, four variables are

needed, i.e., AS, AE, BS, BE for the start and end times of the intervals, and the DTP

constraint is: (AE – BS) ≤ 0 ∨ (BE – AS) ≤ 0. A DTP can be viewed as a collection of

alternative STPs. Efficient techniques have been proposed to solve DTPs with exact

solutions (Tsamardinos and Pollack, 2003) or approximate solutions (Moffitt and

136

Pollack, 2005). Planning and scheduling tasks are the applications that they are most

concerned with.

 Although DTPs are more expressive than STPs and TCSPs, they can only

represent duration constraints (plus simple relations as before/after/at given time

points, which can be converted to their representation), and there are no calendar or

clock concepts involved. It cannot represent temporal aggregates or any non-temporal

properties either.

 TCSP-based framework has also been applied to temporal reasoning for

natural language (Han and Lavie, 2004), where not only the durations but also the

calendar and granularities are modeled as a two-level constraint satisfaction problem:

at the higher level is a TCSP relating different temporal objects (variables), and

within each temporal variable is a model of the calendar – a unary TCSP describing

constraints among different temporal units. However, it cannot represent arbitrary

temporal aggregates in their current framework (Han et al., 2006). A special-purpose

reasoner, which is a conventional TCSP solver with the aid of the calendar model, has

to be used to draw inferences on given temporal expressions.

 A formal framework for the definition and representation of time granularities

was proposed in (Bettini et al., 2000) especially for temporal database applications.

This framework has also been extended to TCSPs (Bettini et al., 2002) for more

general temporal reasoning tasks. The framework extends STPs with multiple time

granularities, for example, the difference between two variables is 5 to 10 business

days and they must be in the same month. They also propose a sound and complete

137

algorithm to solve the problem, and the algorithm is exponential in terms of the

involved granularities, but polynomial in terms of the variables and constraints in the

network.

 Morris and Khatib (1998) have proposed a constraint-based formulation of

reasoning problems with repeating events. The problem (e.g., a set or sequence of

subintervals Ii) is characterized with five properties: number of subintervals,

subinterval duration, gap duration (the duration between consecutive subintervals),

period (the duration between consecutive subinterval start times), and extent (the

duration from the start of the earliest subinterval to the end of the latest). Each

property defines a type of quantitative constraint for a repeating event. Ex 7.2

formalizes the constraint on I that the number of subintervals is between 3 and 5, the

duration of each subinterval is between 4 and 7 time units, the gap between

subintervals is between 2 and 3 time units, and the extent is between 30 and 50 time

units.

[Ex 7.2] (Morris and Khatib, 1998) The following is a set of constraints for a

repeating event I:

 Number: 3 ≤ nI ≤ 5

 Sub-interval duration: 4 ≤ di ≤ 7, i = 1 … |I|

 Gap duration: 2 ≤ gi ≤ 3, i = 1 … |I| - 1

 Extent: 30 ≤ eI ≤ 50

138

The complexity of different classes of the problem is discussed, and an

efficient algorithm is proposed for the class of the problem with binary and convex

constraints 35 (Morris and Khatib, 2000). Qualitative constraints have also been

integrated into the formulation to represent temporal relations. However, the

formulation can only handle one layer regular temporal aggregates (either with a

fixed gap, or the gap distribution is known). It cannot represent multi-layered

temporal aggregates or ones with an irregular gap (e.g., a weekly meeting on any

business days).

7.2 Mapping Axioms to Temporal Constraint-Based Formalisms

The mapping axioms have been created for each of the different temporal constraint-

based formalisms for more efficient temporal reasoning. As discussed in the previous

section, some formalisms (e.g., STP) have polynomial solutions, some don’t but may

still have very efficient reasoning algorithms.

 For each of the mapping axioms, when the conditions on the left hand side

hold, the problem can be mapped to an equivalent one on the right hand side in the

corresponding temporal constraint-based formalism.

• STP, assuming “second” is the basic temporal unit (polynomial solutions

exist):

35 A convex constraint means the range of possible values is a single interval.

139

 Vague duration between two instants:

 Interval(T) ∧ begins(t1,T) ∧ ends(t2,T) ∧ seconds(T) = n ∧ n1 ≤ n ≤ n2
36

 ⇒ n1 ≤ (t2 – t1) ≤ n2

When the duration between two instants (i.e., t1 and t2) is n seconds and n is in a

range of [n1, n2], the problem can be mapped to a STP problem where the two instants

are two temporal variables and their difference is in the range of [n1, n2]. Polynomial

solutions exist for this problem.

• TCSP, assuming “second” is the basic temporal unit:

 Alternative vague durations between two instants:

 Interval(T) ∧ begins(t1,T) ∧ ends(t2,T) ∧ seconds(T) = n

 ∧ (n1 ≤ n ≤ n2 ∨ n3 ≤ n ≤ n4)

 ⇒ n1 ≤ (t2 – t1) ≤ n2 ∨ n3 ≤ (t2 – t1) ≤ n4

TCSP is STP with disjunctions. When the duration between two instants (i.e., t1 and t2)

is n seconds and n is in a range of [n1, n2] or [n3, n4], the problem can be mapped to a

TCSP problem where the two instants are two temporal variables and their difference

is in the range of [n1, n2] or [n3, n4].

36 Prob(n1 ≤ n ≤ n2) = 0.8 would be more accurate in terms of the vague event durations defined in
Section 6. But here we want to keep it in the standard first-order logic without probability reasoning.

140

• Bettini et al. (2002) with multiple granularities (polynomial solutions exist):

 Vague duration between two instants with one granularity:

 Interval(T) ∧ begins(t1,T) ∧ ends(t2,T) ∧ duration(T,G) = n

 ∧ TemporalUnit(G) ∧ n1 ≤ n ≤ n2

 ⇒ (t2 – t1) |= [n1, n2] G

This formalism is STP with one granularity. When the duration between two instants

(i.e., t1 and t2) is n with a granularity (temporal unit) of G and n is in a range of [n1,

n2], the problem can be mapped to a formalism in (Bettini et al. 2002) with one

granularity where the two instants are two temporal variables and their difference is

in the range of [n1, n2] with granularity (temporal unit) of G. Polynomial solutions

exist for this problem.

 The definition of the notation “[m, n] G” is (Bettini et al., 2002):

 Let m,n ∈ Z ∪ {−∞,+∞} with m ≤ n and G a granularity. Then [m, n] G,

called a temporal constraint with granularity (TCG), is the binary relation on positive

integers defined as follows: for positive integers t1 and t2, (t1, t2) |= [m, n] G ((t1, t2)

satisfies [m, n] G) if and only if (1) ⎡ ⎤Gt1 and ⎡ ⎤Gt2 are both defined, and (2) m ≤

(⎡ ⎤Gt2 − ⎡ ⎤Gt1) ≤ n, where the ⎡ ⎤Gx function returns the index of the granule of G

with the bottom granularity.

 For example, the pair (t1, t2) satisfies [0, 0] Day if t1 and t2 are within the same

day; (t1, t2) satisfies [-1, 1] Hour if t1 and t2 are at most one hour apart; (t1, t2) satisfies

[1, 1] Month if t2 is in the next month with respect to t1.

141

 Vague duration between two instants with multiple granularities:

 Interval(T) ∧ begins(t1, T) ∧ ends(t2, T) ∧ durationOf(T,y,m,w,d,h,n,s)

 ∧ y1 ≤ y ≤ y2 ∧ m1 ≤ m ≤ m2 ∧ w1 ≤ w ≤ w2 ∧ d1 ≤ d ≤ d2 ∧ h1 ≤ h ≤ h2

 ∧ n1 ≤ n ≤ n2 ∧ s1 ≤ s ≤ s2

 ⇒ (t2 – t1) |= [y1, y2] Year ∧ (t2 – t1) |= [m1, m2] Month

 ∧ (t2 – t1) |= [w1, w2] Week ∧ (t2 – t1) |= [d1, d2] Day

 ∧ (t2 – t1) |= [h1, h2] Hour ∧ (t2 – t1) |= [n1, n2] Minute

 ∧ (t2 – t1) |= [s1, s2] Second

This formalism is STP with multiple granularities. When the duration between two

instants (i.e., t1 and t2) is with multiple granularities (i.e., y years in a range of [y1, y2],

m months in a range of [m1, m2], w weeks in a range of [w1, w2], d days in a range of

[d1, d2], h hours in a range of [h1, h2], n seconds in a range of [n1, n2], and s seconds in

a range of [s1, s2]), the problem can be mapped to a formalism in (Bettini et al. 2002)

with multiple granularities where the two instants are two temporal variables and their

difference is in the corresponding range for each granularity. Polynomial solutions

exist for this problem.

 Vague duration between two instants with gap granularities, e.g., weekday37

 weekday(y,x) ≡ [Monday(y,x) ∨ Tuesday(y,x) ∨ Wednesday(y,x)

 ∨ Thursday(y,x) ∨ Friday(y,x)]

37 In (Bettini et al., 2002), weekdays are business days (“b-day”)

142

The statement of “the duration between t1 and t2 is x business days” can be converted

to an equivalent temporal aggregate statement: “x business days between t1 and t2”.

Thus, the mapping axiom is

 everyp(s, s0, weekday1) ∧ card(s) = x ∧ x1 ≤ x ≤ x2 ∧ first(T1,s) ∧ last(T2,s)

 ∧ begins(t1,T1) ∧ ends(t2,T2) ∧ timeOf(t1,y1,m1,d1,h1,n1,s1,z1)

 ∧ timeOf(t2,y2,m2,d2,h2,n2,s2,z2)

 ⇒ (t2 – t1) |= [x1, x2] b-day

 where (∀ d) [weekday1(d) ≡ (∃ w) [weekday(d,w)]]

This formalism is STP with gap granularities. When the duration between two

instants (i.e., t1 and t2) is x with a gap granularity, e.g., weekday, and x is in a range of

[x1, x2], the problem can be mapped to a formalism in (Bettini et al. 2002) with gap

granularities where the two instants are two temporal variables and their difference is

in the range of [x1, x2] with the gap granularity, e.g., weekday. Polynomial solutions

exist for this problem.

• Morris and Khatib (1998) for repeating events, assuming “second” is the

basic temporal unit:

 n: number of subintervals, n1 ≤ n ≤ n2

 d: subinterval duration, d1 ≤ d ≤ d2

 g: gap duration, g1 ≤ g ≤ g2

 p: period, p1 ≤ p ≤ p2

 e: extent, e1 ≤ e ≤ e2

143

 tseq(s) ⊃ card(s) = n

 ⊃ (∃ n1,n2) n1 ≤ n ≤ n2]

 tseq(s) ⊃ [(∀ T,d) member(T,s) ∧ seconds(T) = d

 ⊃ (∃ d1,d2) d1 ≤ d ≤ d2]

 tseq(s) ⊃ [(∀T, T1,T2,t1,t2,g) member(T1,s) ∧ member(T2,s) ∧ nth(T1,n,s)

 ∧ nth(T2,n+1,s) ∧ ends(t1,T1) ∧ begins(t2,T2)

 ∧ timeBetween(T,t1,t2) ∧ seconds(T) = g

 ⊃ (∃ g1,g2) g1 ≤ g ≤ g2]

 tseq(s) ⊃ [(∀T,T1,T2,t1,t2,p) member(T1,s) ∧ member(T2,s) ∧ nth(T1,n,s)

 ∧ nth(T2,n+1,s) ∧ begins(t1,T1) ∧ begins(t2, T2)

 ∧ timeBetween(T,t1,t2) ∧ seconds(T) = p

 ⊃ (∃ p1,p2) p1 ≤ p ≤ p2]

 tseq(s) ⊃ [(∀T,T1,T2,t1,t2,e) first(T1,s) ∧ first(T1,s) ∧ last(T2,s) ∧ begins(t1,T1)

 ∧ ends(t2,T2) ∧ timeBetween(T,t1,t2) ∧ seconds(T) = e

 ⊃ (∃ e1,e2) e1 ≤ e ≤ e2]

There are five properties to specify for a given problem with repeating events (i.e.,

temporal aggregates): number of subintervals (i.e., the cardinality/size of a temporal

sequence) is n and it’s in a range of [n1, n2]; subinterval duration (i.e., the duration of

each member of a temporal sequence) is d seconds and d is in a range of [d1, d2]; gap

duration (i.e., the duration between consecutive members of a temporal sequence) is g

seconds and g is in a range of [g1, g2]; period (i.e., the duration between start times of

consecutive members of a temporal sequence) is p seconds and p is in a range of [p1,

144

p2]; and extent (i.e., the duration from the start of the first member of a temporal

sequence to the end of the last member) is e seconds and e is in a range of [e1, e2].

 We will use the STP version of Ex 7.1 (i.e., remove disjunctions) to show the

represention of the problem in OWL-Time, and illustrate how to apply the mapping

axioms to map it to STP constraints. The STP version of Ex 7.1 is as follows:

“John travels to work by car (30-40 minutes). Fred travels to work in a

carpool (40-50 minutes). Today John left home between 7:10 and 7:20 AM,

and Fred arrived at work between 8:00 and 8:10 AM. We also know that John

arrived at work 10-20 minutes after Fred left home.”

The sentence-by-sentence representation of the problem in OWL-Time is:

“John travels to work by car (30-40 minutes)”:

Interval(T1) ∧ begins(t1,T1) ∧ ends(t2,T1) ∧ duration(T1,*Minute*) = n1

∧ 30 ≤ n1 ≤ 40

“Fred travels to work in a carpool (40-50 minutes)”:

Interval(T2) ∧ begins(t3,T2) ∧ ends(t4,T2) ∧ duration(T2,*Minute*) = n2

∧ 40 ≤ n2 ≤ 50

“Today John left home between 7:10 and 7:20 AM”:

timeOf(t1,y,m,d,7,n3,0) ∧ 10 ≤ n3 ≤ 20

“Fred arrived at work between 8:00 and 8:10 AM”:

timeOf(t4,y,m,d,8,n4,0) ∧ 0 ≤ n4 ≤ 10

“John arrived at work 10-20 minutes after Fred left home”:

145

Interval(T5) ∧ begins(t3,T5) ∧ ends(t2,T5) ∧ duration(T5,*Minute*) = n5

∧ 10 ≤ n5 ≤ 20

The following axioms can be straightforwardly mapped to STP constraints (assuming

“minute” is the basic temporal unit):

Interval(T1) ∧ begins(t1,T1) ∧ ends(t2,T1) ∧ duration(T1,*Minute*) = n1 ∧ 30 ≤ n1 ≤ 40

⇒ Interval(T1) ∧ begins(t1,T1) ∧ ends(t2,T1) ∧ minutes(T1) = n1 ∧ 30 ≤ n1 ≤ 40

 ⇒ 30 ≤ (t2 – t1) ≤ 40

Interval(T2) ∧ begins(t3,T2) ∧ ends(t4,T2) ∧ duration(T2,*Minute*) = n2 ∧ 40 ≤ n2 ≤ 50

⇒ Interval(T2) ∧ begins(t3,T2) ∧ ends(t4,T2) ∧ minutes(T2) = n2 ∧ 40 ≤ n2 ≤ 50

 ⇒ 30 ≤ (t4 – t3) ≤ 40

Interval(T5) ∧ begins(t3,T5) ∧ ends(t2,T5) ∧ duration(T5,*Minute*) = n5 ∧ 10 ≤ n5 ≤ 20

 ⇒ Interval(T5) ∧ begins(t3,T5) ∧ ends(t2,T5) ∧ minutes(T5) = n5 ∧ 10 ≤ n5 ≤ 20

 ⇒ 10 ≤ (t2 – t3) ≤ 20

The following axioms can be mapped to STP constraints, if we add 7:00 AM (t0), as

in the original example:

timeOf(t1,y,m,d,7,n3,0) ∧ 10 ≤ n3 ≤ 20 ∧ timeOf(t0,y,m,d,7,0,0)

 ⇒ Interval(T3) ∧ begins(t0,T3) ∧ ends(t1,T1) ∧ duration(T3,*Minute*) = n3

∧ 10 ≤ n3 ≤ 20

 ⇒ 10 ≤ (t1 – t0) ≤ 20

timeOf(t4,y,m,d,8,n4,0) ∧ 0 ≤ n4 ≤ 10 ∧ timeOf(t0,y,m,d,7,0,0)

 ⇒ Interval(T4) ∧ begins(t0,T4) ∧ ends(t4,T4) ∧ duration(T4,*Minute*) = n4

146

∧ 60 ≤ n4 ≤ (60+10)

 ⇒ 60 ≤ (t4 – t0) ≤ 70

All the above constraints correspond to all the temporal constraints represented in the

temporal constraint network in Figure 7.1 (STP version without disjunctions).

147

Chapter 8

Conclusion

In this dissertation, we have developed a rich ontology of temporal concepts

represented in both FOL and OWL Web Ontology Language, which can be used for

the Semantic Web, natural language, and many other applications from different

domains. It covers a very complete set of temporal concepts by extending Hobbs

(2002)’s work with more complex temporal phenomena, such as temporal aggregates,

temporal arithmetic mixing months and days, and vague event durations. Mapping

rules have also been developed to map subsets of the problems that can be

represented by the ontology in FOL to different kinds of temporal constraint-based

formalisms for more efficient temporal reasoning. A time zone resource is developed

in OWL for the entire world. In the future, when a rule language for the Semantic

Web is endorsed by W3C, the FOL axioms in the ontology can be straightforwardly

translated to that rule language, and the Semantic Web applications can then benefit

more from the ontology’s deep temporal reasoning capacity.

 The temporal aggregate part of the ontology is rich enough to handle both

complex multiple-layered and conditional temporal aggregates in FOL and OWL,

which is very useful for representing recurrent events. A systematic way of mapping

recurrence sets in iCalendar to temporal sequences in OWL-Time is developed to

148

gives it access to the full ontology of time for temporal reasoning. To the best of our

knowledge, it is the first attempt to develop a set of rules for doing temporal

arithmetic mixing months and days based on the “history-dependent intuition” with

consideration of different desired arithmetic properties, such as the subtraction,

commutativity and associativity properties.

 In this thesis we have also addressed a problem – modeling and extracting

vague event durations from text -- that has heretofore received very little attention in

the field. It is information that can have a substantial impact on applications where

the temporal placement of events is important, and the exact and explicit duration

information is not available.

In fact, it is representative of a set of problems – making use of the vague

information in text – that has largely eluded empirical approaches in the past. We

have explicated the linguistic categories of the phenomena that give rise to grossly

discrepant judgments among annotators, and give guidelines on resolving these

discrepancies. We have also described a method for measuring inter-annotator

agreement when the judgments are intervals on a scale; this should extend from time

to other kinds of vague but substantive information. This is the first empirical effort

to learn the implicit and vague event durations from natural language text, and we

have shown that the learning performance is very impressive. The vague event

duration annotations have also been integrated into the TimeBank corpus for more

widely usage. As future work, we can try some unsupervised machine learning

approaches (e.g., some information extraction methods) to extract the vague event

149

durations from larger corpora, e.g., the Web. Then we can compare the distributions

of event durations between the two approaches.

150

References

Abadi, M. and J. Y. Halpern. 1994. Decidability and expressiveness for first-order
logics of probability. Information and Computation,112(1):1-36.

Agarwal, P. 2005. Ontological considerations in GIScience. International Journal of
Geographical Information Science, vol. 19, pp. 501-535.

Allen, J. F. 1984. Towards a general theory of action and time. Artificial Intelligence
23, pp. 123-154.

Allen, J. F. and Ferguson, G. 1994. Actions and events in interval temporal logic.
Journal of Logic and Computation, 4(5):531-579.

Allen, J. F. and Ferguson, G. 1997. Actions and events in interval temporal logic. In
Spatial and Temporal Reasoning. O. Stock, ed., Kluwer, Dordrecht, Netherlands,
205-245.

Attard, M. and M. Montebello. 2006. DoNet: a semantic domotic framework,
Proceedings of the 15th international conference on World Wide Web (WWW),
Edinburgh, Scotland.

van Benthem, J. 1983. The Logic of Time. Kluwer Academic Publishers.

van Benthem, J. 1995. Temporal Logic, in D. M. Gabbay, C. J. Hogger, and J. A.
Robinson, Handbook of Logic in Artificial Intelligence and Logic Programming,
Volume 4, Oxford: Clarendon Press, pages 241-350.

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The Semantic Web. Scientific
American, 284(5):34–43.

Bettini, C., Jajodia, S., Wang, X. S. 2000. Time Granularities in Databases, Data
Mining, and Temporal Reasoning, Springer-Verlag.

Bettini, C., Wang, S. X. and Jajodia, S.. 2002. Solving multi-granularity temporal
constraint networks, Artificial Intelligence, vol. 140, pp. 107-152.

151

Biron, P. V. and Malhotra, A. 2004. XML Schema Part 2: Datatypes Second Edition.
W3C Recommendation. http://www.w3.org/TR/xmlschema-2/

Boguraev, B. and R. K. Ando. 2005. TimeML-Compliant Text Analysis for Temporal
Reasoning. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI).

Boley, H.; Tabet, S.; and Wagner, G. 2001. Design rationale of RuleML: A markup
language for semantic web rules. In Proceedings of the International Semantic Web
Working Symposium.

Bry, F., F.-A. Rieß, and S. Spranger. 2005. CaTTS: Calendar Types and Constraints
for Web Applications. In Proceedings of the 14th international conference on
World Wide Web (WWW).

Bulcao Neto, R. F. and M. G. C. Pimentel. 2005. Toward a domain-independent
semantic model for context-aware computing. In Proceedings of the 3rd Latin
American Web Congress (LA-WEB).

Carletta, J. 1996. Assessing agreement on classification tasks: the kappa statistic.
Computational Lingustics, 22(2):249–254.

Chandra, R., Segev, A., and Stonebraker, M. 1994. Implementing Calendars and
Temporal Rules in Next Generation Databases”. In Proceedings of the Tenth
International Conference on Data Engineering, pages 264–273, Houston, Texas.

Chen, H.; Finin, T.; and Joshi, A. 2003. An ontology for context-aware pervasive
computing environments. Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review, 2003.

Chen, H.; Perich, F.; Chakraborty, D.; Finin, T.; and Joshi, A. 2004. Intelligent agents
meet semantic web in a smart meeting room. In Proceedings of the third
International Joint Conference on Autonomous Agents and Multi Agent Systems.

Chen, H., F. Perich, T. Finin, and A. Joshi. 2004. SOUPA: Standard Ontology for
Ubiquitous and Pervasive Applications. In Proceedings of First Annual
International Conference on Mobile and Ubiquitous Systems: Networking and
Services (MobiQuitous).

152

Chittaro, L. and A. Montanari. 2000. Temporal Representation and Reasoning in
Artificial Intelligence: Issues and Approaches. Annals of Mathematics and
Artificial Intelligence, vol. 28, no.1-4, pp. 47-106.

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and
Psychological Measurements, 20:37–46.

Dawson, F. Stenerson, D. 1998. Internet Calendaring and Scheduling Core Object
Specification (iCalendar), RFC2445, Internet Society.

Dechter, R., I. Meiri and J. Pearl (1991). Temporal constraint networks. Artificial
Intelligence 49: 61-95.

Díaz, O.; Iturrioz, J.; Irastorza, A. 2005. Improving portlet interoperability through
deep annotation. In Proceedings of the 14th international conference on World
Wide Web.

Ding, Z. and Y. Peng. 2004. A Probabilistic Extension to Ontology Language OWL.
In Proceedings of the 37th Hawaii International Conference on System Sciences
(HICSS-37).

Dobson, G. and Sommerville, I. 2006. Disambiguating Availability Specification
through the use of OWL. In Proceedings of the 2nd International Workshop on
Service-Oriented Computing: Consequences for Engineering Requirements
(SOCCER).

Doddington, G., A. Mitchell, M. Przybocki, L. Ramshaw, S. Strassel, R. Weischedel.
2004. The Automatic Content Extraction (ACE) Program – Tasks, Data, and
Evaluation, In Proceedings of LREC, pp. 837-840.

Dowty, D. 1979. Word Meaning and Montague Grammar, Dordrecht, Reidel.

Dowty, D. 1982. Tenses, time-adverbs, and compositional semantic theory,
Linguistics and Philosophy, 5, 23-55.

Dreyer, W, Dittrich, A. Koa, and Schmidt, D. 1994. Research Perspectives for Time
Series Management Systems. SIGMOD RECORD, Vol. 23, No. 1, pp. 10-15.

153

Dumas, M.; O’Sullivan J.; Heravizadeh, M.; Edmond, D.; and Hofstede, A. 2001.
Towards a semantic framework for service description. In Proceedings of the IFIP
Conference on Database Semantics, Hong Kong.

Eugenio, B. D. and Glass, M. 2004. The Kappa statistic: a second look.
Computational Linguistics, 30(1):95–101.

Ferro, L. 2001. Instruction Manual for the Annotation of Temporal Expressions.
Mitre Technical Report MTR 01W0000046, the MITRE Corporation, McLean,
Virginia.

Filatova, E. and E. Hovy. 2001. Assigning Time-Stamps to Event-Clauses.
Proceedings of ACL Workshop on Temporal and Spatial Reasoning.

Fortemps, P. 1997. Jobshop Scheduling with Imprecise Durations: A Fuzzy
Approach. IEEE Transactions on Fuzzy Systems Vol. 5 No. 4.

Freksa, C. 1992. Temporal Reasoning based on Semi-Intervals. Artificial Intelligence,
Vol. 54:199-227.

Galton, A. 1984. The Logic of Aspect, Clarendon Press Oxford.

Genesereth, M. 1991. “Knowledge Interchange Format'', In Proceedings of the
Second International Conference on the Principles of Knowledge Representation
and Reasoning, Allen, J., Fikes, R., Sandewall, E. (eds), Morgan Kaufman
Publishers, pp 238-249.

Gildea, D. and D. Jurafsky. 2002. Automatic Labeling of Semantic Roles.
Computational Linguistics, 28(3):245-288.

Godo, L. and L. Vila. 1995. Possibilistic Temporal Reasoning based on Fuzzy
Temporal Constraints. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI).

Grosof, B., M. Kifer, and D. L. Martin. Rules in the Semantic Web Services
Language (SWSL): An overview for standardization directions. In Proceedings of
the W3C Workshop on Rule Languages for Interoperability.

Halpern, J. Y. 1990. An analysis of first-order logics of probability. Artificial
Intelligence, 46:311–350.

154

Han, B. and Lavie, A. 2004. A Framework for Resolution of Time in Natural
Language. TALIP Special Issue on Temporal Information Processing, 2004.

Han, B., D. Gates, and L. Levin. 2006. Understanding Temporal Expressions in
Emails. In Proceedings of Human Language Technology conference - North
American chapter of the Association for Computational Linguistics annual meeting
(HLT-NAACL).

Harabagiu, S. and Bejan, C. 2005. Question Answering Based on Temporal
Inference. In Proceedings of the AAAI-2005 Workshop on Inference for Textual
Question Answering, Pittsburgh, PA, USA, 2005.

Haring, G., Juiz, C., Kurz, C., Puigjaner, R., and Zottl, J. 2004. Framework for the
Performance Assessment of Architectural Options on Intelligent Distributed
Applicatio. Performance Metrics for Intelligent Systems (PerMIS '04), 2004.

Hayes, P. 1995. A Catalog of Temporal Theories. Tech report UIUC-BI-AI-96-01,
University of Illinois 1995.

Hitzeman, J., M. Moens, and C. Grover. 1995. Algorithms for Analyzing the
Temporal Structure of Discourse. In Proceedings of EACL. Dublin, Ireland.

Hobbs, J. R. 2000. Half Orders of Magnitude, KR-2000 Workshop on Semantic
Approximation, Granularity, and Vagueness, Breckenridge, Colorado.

Hobbs, J. R. and Kreinovich, V. 2001. Optimal Choice of Granularity in
Commonsense Estimation: Why Half Orders of Magnitude, In Proceedings of Joint
9th IFSA World Congress and 20th NAFIPS International Conference, Vacouver,
British Columbia, pp. 1343-1348.

Hobbs, J. R. 2002. Towards an Ontology for Time for the Semantic Web. In
Proceedings of LREC 2002 Workshop on Annotation Standards for Temporal
Information in Natural Language, pp. 28-35, Las Palmas, Spain.

Hobbs, J. R. and Pustejovsky, J. 2003. Annotating and reasoning about time and
events. In Proceedings of AAAI Spring Symposium on Logical Formalizations of
Commonsense Reasoning, Stanford, CA.

155

Hobbs, J. R. and Pan, F. 2004. An Ontology of Time for the Semantic Web. ACM
Transactions on Asian Language Processing (TALIP): Special issue on Temporal
Information Processing, Vol. 3, No. 1, pp. 66-85.

Hobbs, J. R. and Pan, F. 2006. Time Ontology in OWL. Ontology Engineering
Patterns Task Force of the Semantic Web Best Practices and Deployment Working
Group, World Wide Web Consortium (W3C). (http://www.w3.org/TR/owl-time/)

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M. 2004.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission. http://www.w3.org/Submission/SWRL/

Hritcu, C. and Buraga, S. C. 2005. A reference implementation of ADF (Agent
Developing Framework): semantic Web-based agent communication. In
Proceedings of the Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC).

Jurafsky, D. and Martin, J. 2000. Speech and Language Processing, Prentice Hall.

Kalman, J. A. 2001. Automated Reasoning with Otter, Rinton Press.

Kaykova, O., Khriyenko, O., Naumenko, A., Terziyan, V., Zharko, A. 2005. RSCDF:
A Dynamic and Context-Sensitive Metadata Description Framework for Industrial
Resources, In Eastern-European Journal of Enterprise Technologies, Vol. 3, No. 3.

Khushraj, D.; Lassila, O.; and Finin, T. 2004. Semantic Tuple Spaces, Processing in
Mobile Ad-Hoc Networks Proceedings of the International Conference on Mobile
and Ubiquitous Systems: Networking and Services, Boston, August 2004.

Krippendorf, K. 1980. Content Analysis: An introduction to its methodology. Sage
Publications.

Lenat, D. 1995. “Cyc: A Large-Scale Investment in Knowledge Infrastructure,”
Communications of the ACM, 38, no. 11.

Liu, J., C. Zhou, M. Tang. 2006. Research on the Workday Time Management Model
for Workflows in Business Service Grid Environment. In Proceedings of the Fifth
International Conference on Grid and Cooperative Computing Workshops
(GCCW).

156

Madden, C. J. and Zwaan, R. A. 2003. How does verb aspect constrain event
representations? Memory & Cognition, 31, 663-672.

Malhotra, A, Melton, J., and Walsh, N. 2005. XQuery 1.0 and XPath 2.0 Functions
and Operators. W3C Candidate Recommendation. http://www.w3.org/TR/xpath-
functions/

Mallya, A. U., Yolum, P., and Singh, M. P. 2004. Resolving commitments among
autonomous agents. In F. Dignum, editor, Advances in Agent Communication, In
Proceedings of the International Workshop on Agent Communication Languages,
Germany.

Mani, I. and G. Wilson. 2000. Robust Temporal Processing of News. In Proceedings
of the 38th Annual Meeting of the Association for Computational Linguistics
(ACL).

Mani, I., M. Verhagen, B. Wellner, C. M. Lee, and J. Pustejovsky. 2006. Machine
Learning of Temporal Relations. In Proceedings of COLING-ACL.

McDermott, D. 1982. A temporal logic for reasoning about processes and actions,
Cognitive Science, 6,101-155.

McGuinness, D. L. and Harmelen, F. v, 2004. OWL Web Ontology Language
Overview. World Wide Web Consortium (W3C) Recommendation.

McIlraith, S. A., Son, T. C. and Zeng, 2001. H. Semantic Web Services. IEEE
Intelligent Systems 16(2):46–53.

Medjahed, B., Bouguettaya, A. and Elmagarmid, A, 2003. Composing Web Services
on the Semantic Web. The Very Large Data Base Journal, Special Issue on the
Semantic Web,Springer Verlag, 12(4).

Miller, G. A. 1990. WordNet: an On-line Lexical Database. International Journal of
Lexicography 3(4).

Moens, M. and Steedman, M. 1988. Temporal Ontology and Temporal Reference.
Computational Linguistics 14(2): 15-28.

157

Moffitt, M. D. and Pollack, M. E. 2005. Applying Local Search to Disjunctive
Temporal Problems, Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI-2005).

Moldovan, D. and V. Rus. 2001. Logic Form Transformation of WordNet and its
Applicability to Question Answering. In Proceedings of ACL.

Moldovan, D. and A. Novischi. 2002. Lexical Chains for Question Answering. In
Proceedings of COLING.

Moldovan, D.; Harabagiu, S.; Girju, R.; Morarescu, P.; Lacatusu, F.; Novischi, A.;
Badulescu, A.; Bolohan, O. 2002. LCC Tools for Question Answering. In
Proceedings of the TREC-2002 Conference, NIST. Gaithersburg, MD.

Moldovan, D., C. Clark, and S. Harabagiu. 2005. Temporal Context Representation
and Reasoning. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI).

Motakis, I. and C. Zaniolo, 1997. Temporal Aggregation in Active Databases Rules.
In International Conference on the Management of Data, May.

Nevatia, R.; Hobbs, J. R.; Bolles, B. 2004. An Ontology for Video Event
Representation. IEEE Workshop on Event Detection and Recognition, June 2004.

Niles, I. and Pease, A. 2001. Towards a standard upper ontology. In Proceedings of
the 2nd International Conference on Formal Ontology in Information Systems
(FOIS-2001), 2001.

Qasemizadeh, B., Haghi, H. R., Kangavari, M. 2006. A Framework for Temporal
Content Modeling of Video Data Using an Ontological Infrastructure. In
Proceedings of the Second International Conference on Semantics, Knowledge,
and Grid (SKG).

OWL-S Coalition, 2004. OWL-S 1.1 Release. (http://www.daml.org/services/owl-
s/1.1/)

Pan, F. and Hobbs, J. R. 2003. A Time Zone Resource in OWL. Homepage at:
http://www.isi.edu/~pan/timezonehomepage.html

158

Pan, F. and Hobbs, J. R. 2004. Time in OWL-S. In Proceedings of AAAI Spring
Symposium on Semantic Web Services, Stanford University, CA.

Pan, F. 2005. A Temporal Aggregates Ontology in OWL for the Semantic Web. In
Proceedings of the AAAI Fall Symposium on Agents and the Semantic Web,
Arlington, Virginia.

Pan, F. and Hobbs, J. R. 2005. Temporal Aggregates in OWL-Time. In Proceedings
of the 18th International Florida Artificial Intelligence Research Society
Conference (FLAIRS), Clearwater Beach, Florida, pp. 560-565, AAAI Press.

Pan, F. 2005. Temporal Aggregates for Web Services on the Semantic Web. In
Proceedings of the IEEE International Conference on Web Services (ICWS),
Orlando, Florida, pp. 831-832, IEEE Computer Society.

Pan, F., R. Mulkar, and J. R. Hobbs. 2006. Learning Event Durations from Event
Descriptions. In Proceedings of the 21st International Conference on
Computational Linguistics and the 44th Annual Meeting of the Association for
Computational Linguistics (COLING-ACL), pp. 393-400, Sydney, Australia.

Pan, F., R. Mulkar, and J. R. Hobbs. 2006. Extending TimeML with Typical
Durations of Events. In Proceedings of Annotating and Reasoning about Time and
Events workshop at the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Association for Computational
Linguistics (COLING-ACL), pp. 38-45, Sydney, Australia.

Pan, F. and Hobbs, J. R. 2006. Temporal Arithmetic Mixing Months and Days. In
Proceedings of the 13th International Symposium on Temporal Representation and
Reasoning (TIME), pp. 212-217, Budapest, Hungary, IEEE Computer Society.

Pan, F., R. Mulkar, and J. R. Hobbs. 2006. An Annotated Corpus of Typical
Durations of Events. In Proceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC), pp. 77-82, Genoa, Italy.

Pan, F., R. Mulkar-Mehta, and J. R. Hobbs. 2007. Modeling and Learning Vague
Event Durations for Temporal Reasoning. In Proceedings of the Twenty-Second
Conference on Artificial Intelligence (AAAI), Nectar Track, pp. 1659-1662,
Vancouver, Canada.

159

Passonneau, R. J. 1988. A Computational Model of the Semantics of Tense and
Aspect. Computational Linguistics 14:2.44-60.

Patel-Schneider, P. F. 2005. A Proposal for a SWRL Extension towards First-Order
Logic, W3C member submission. http://www.w3.org/Submission/SWRL-FOL/

Pease, A. 2004. Standard Upper Ontology Knowledge Interchange Format. Available
at http://cvs.sourceforge.net/viewcvs.py/*checkout*/sigmakee/sigma/suo-
kif.pdf?rev=1.4

Prior, A. 1957. Time and Modality. Oxford: Oxford University Press.

Pustejovsky, J.; Gaizauskas, R.; Sauri, R.; Setzer, A.; Ingria, R. 2002. Annotation
Guideline to TimeML 1.0, available at http://time2002.org.

Pustejovsky, J.; Hanks, P.; Saurí, R.; See, A; Gaizauskas, R.; Setzer, A.; Radev, D.;
Sundheim, B.; Day, D.; Ferro, L.; and Lazo, M. 2003. The timebank corpus. In
Corpus Linguistics 2003, Lancaster, U.K.

Rieger, C. J. 1974. Conceptual memory: A theory and computer program for
processing and meaning content of natural language utterances. Stanford AIM-233.

Siegel, S. and Castellan, N. J. 1988. Jr. Nonparametric Statistics for the Behavioral
Sciences. McGraw-Hill, second edition.

van der Sluijs, K., G. Houben , J. Broekstra , S. Casteleyn. 2006. Hera-S: web design
using sesame, In Proceedings of the 6th international conference on Web
engineering, Palo Alto, California, USA

Smith, C. 1991. The Parameter of Aspect, Kluwer Academic Press, Dordrecht.

Smith, C. 2005. Aspectual entities and tense in discourse. In P. Kempchinsky and R.
Slabakova (eds.) Aspectual Inquiries. Kluwer, Dordrecht.

Steedman, M. 1997. Temporality. In J. van Benthem and A. ter Meulen, (eds.),
Handbook of Logic and Language, Elsevier North Holland, 1997, 895-935.

Steedman, M. 2002. The Productions of Time, Draft tutorial notes about temporal
semantics, Draft 4.1, July 2002.

160

Stonebraker, M. R. Extensibility. 1990. In M.R. Stonebraker, editor, Readings in
Database Systems. Morgan Kaufman.

Toivonen, S.; Denker, G. 2004. The Impact of Context on the Trustworthiness of
Communication: An Ontological Approach. ISWC Workshop on Trust, Security,
and Reputation on the Semantic Web.

Tsamardinos, I. and Pollack, M. E. 2003. Efficient Solution Techniques for
Disjunctive Temporal Reasoning Problems, Artificial Intelligence, 151(1-2):43-90.

Tuchinda, R.; Thakkar, S.; Gil, Y.; Deelman, E. 2004. Artemis: Integrating Scientific
Data on the Grid, Proceedings of Sixteenth Conference on Innovative Applications
of Artificial Intelligence (IAAI), San Jose, California.

Vendler, Z. 1967. Linguistics in Philosophy, Ithaca, Cornell University Press.

Verkuyl, H. 1989. Aspectual classes and aspectual composition, Linguistics and
Philosophy, 12, 39-94.

Weissenberg, N. and Gartmann, R. 2003. Ontology Architecture for Semantic
GeoServices for Olympia 2008, In: Bernard, L., A. Sliwinski and C. Senkler (Eds).
Münsteraner GI-Tage, Münster, 2003. IfGIprints 18. 267-283.

Welty, C. and R. Fikes. 2006. A reusable ontology for fluents in OWL. In
Proceedings of FOIS. pp. 226-236. Baltimore.

Witten, I. H. and E. Frank. 2005. Data Mining: Practical machine learning tools and
techniques, 2nd Edition, Morgan Kaufmann, San Francisco.

Wu, B., Z. Liu, R. George, and K. Shujaee. 2005. eWellness: Building a Smart
Hospital by Leveraging RFID Networks. In Proceedings of the 27th International
Conference of IEEE Engineering in Medicine and Biology Society (EMBS2005).

Zhou, Q. and Fikes, R. 2002. A Reusable Time Ontology. Proceeding of the AAAI
Workshop on Ontologies for the Semantic Web.

Zhu, H.; Madnick, S.E.; Siegel, M.D. 2004. Effective Data Integration in the
Presence of Temporal Semantic Conflicts, Proceedings of 11th International
Symposium on Temporal Representation and Reasoning (TIME 2004), pp109-114,
Normandie, France.

161

Appendices

Appendix A. Representation and Proof Steps for the Scheduling Use

Case

A use case on scheduling as shown on page 2:

Suppose someone has weekly telecons on Mondays at 2pm EST in Spring 2007.

You would like to make an appointment with him for 10am PST on 03/05/2007,

and expect the meeting to last 45 minutes. Will there be an overlap?

The sentence-by-sentence representation of the use case in OWL-Time is as

follows:

“weekly telecons on Mondays at 2pm EST in Spring 2007”:

 everyp(s,{T},Monday1) ∧ begins(t1,T) ∧ dateOf(t1,2007,1,8) ∧ ends(t2,T)

∧ dateOf(t2,2007,5,11) ∧ member(d,s) ∧ beginsOrIn(T1,d) ∧ begins(t3,T1)

∧ timeOf(t3,y,m,d,14,0,0,*EST*)

“10am PST on 03/05/2007”:

 timeOf(t4,2007,3,5,10,0,0,*PST*)

“45 minutes”:

 ProperInterval(T2) ∧ begins(t4,T2) ∧ duration(T2,*Minute*) = 45

“overlap”:

nonoverlap(T 1 ,T 2)38

 ≡ [intBefore(T 1 ,T 2) ∨ intAfter(T 1 ,T 2) ∨ intMeets(T 1 ,T 2)

38 The axiom is taken from (Hobbs and Pan, 2004).

162

 ∨ intMetBy(T 1 ,T 2)]

Where (∀ d) [Monday1(d) ≡ (∃ w) [Monday(d,w)]]

The proof steps of the problem:

everyp(s,{T},Monday1) ∧ member(d,s)

 ⇒ tseqp(s,Monday1) ∧ member(d, s)

 ⇒ Monday1(d)

begins(t1,T) ∧ dateOf(t1,2007,1,8) ∧ ends(t2,T) ∧ dateOf(t2,2007,5,11)

∧ timeOf(t4,2007,3,5,10,0,0,*PST*)

 ⇒ beginsOrIn(t4,T)

timeOf(t4,2007,3,5,10,0,0,*PST*)

 ⇒ dateOf(t4,2007,3,5) ∧ beginsOrIn(t4, d1) ∧ Monday1(d1)

timeOf(t4,2007,3,5,10,0,0,*PST*) ∧ ProperInterval(T2) ∧ begins(t4,T2)

∧ duration(T2,*Minute*) = 45

 ⇒ ends(t5,T2) ∧ timeOf(t5,2007,3,5,13,45,0,*EST*)

ProperInterval(T2) ∧ ends(t5,T2) ∧ timeOf(t5,2007,3,5,13,45,0,*EST*)

∧ timeOf(t3,2007,3,5,14,0,0,*EST*) ∧ ProperInterval(T3) ∧ begins(t3,T3)

 ⇒ before(t5,t3)

⇒ intBefore(T2,T3)

⇒ nonoverlap(T2,T3)

⇒ “There will be no overlap!”

163

Appendix B. Temporal Aggregates from the ACE Corpus

The following table includes all the 219 temporal aggregates extracted from the ACE

corpus. Each of the temporal aggregate expressions along with their frequencies

appeared in the corpus is shown in the table.

Expressions Freq Expressions Freq
a-year 1 every year 11
365 days in the year 1 every year in Russia 1
370 days 1 everyday 1
Annual 2 five nights a week 1
Each November 1 five times a day 1
Every Sunday 1 four or five times a day 1
Every day 1 four consecutive Sundays 1
Every week that passes 1 hourly 2
Every year 1 hours daily 1
Monday 2 monthly 6
a day 4 nearly every day 2
a month 11 night after night 1

a week 9
once every three hundred
thousand years 2

a year 11 once every decade 1
a-month 1 once every two 1
almost every night 3 per night 1
almost weekly 1 per week 1
an hour 3 practically every day 1
annual 30 recent days 1
annually 3 recent years 1
annuals 1 semiannual 1
daily 22 seven days a week 1
each July 1 several summers 1
each Thursday 1 six days a week 1
each day 3 the day 1
each of the last two seasons 2 the last several nights 1
each passing day 1 the past three summers 1

each year 8
the two half-days of
deliberations 1

164

evening 1 three nights in a row 1
every day of the trip 1 three times a week 1
every year 1 three weeks 1
every December 1 twice a day 1
every day 5 twice a month 1
every good afternoon 1 twice a year 1
every hour 2 twice-monthly 1
every month 3 two weeks 1
every morning 2 weekends 1
every night 1 weekly 13
every several hundred
thousand years 1 year after year 2
every six months 1 yearly 2

Here are the representations of some representative ones from the list above:

“annual” (similarly, “each year”, “every day”, “every December”, “weekly”, etc.)

everyp(s,s0,Year1), where Year1(y) ≡ (∃ n,x) calInt(y,n,*Year*,x)

“each passing day” ” (similarly, “Every week that passes”, “each of the last two

seasons”, “the past three summers”, etc.)

everyp(s,s0,Day1) ∧ last(t,s0) ∧ ends(nowfn(D),t)

where the function “nowfn” maps a document d into the instant or interval

viewed as “now” from the point of view of that document, and D is the

document this phrase occurs in.

“four consecutive Sundays” (similarly, “three nights in a row”, “two weeks”,

etc.)

everyp(s,s0,Sunday1) ∧ card(s,4)

“every six months”39 (similarly, “once every three hundred thousand years”, etc.)

 everyp(s,s0,SixMonth), where SixMonth(x) ≡ Interval(x) ∧ months(x) = 6

39 Alternatively, this (and other similar expressions) can be treated as a rate or frequency, which can be
represented by the axioms provided by Hobbs at http://www.isi.edu/~hobbs/bgt-time.text

	Dedication
	 Acknowledgments
	Chapter 1
	1.1 Time for the Semantic Web
	1.2 Time for Natural Language
	1.3 Applications of OWL-Time: the Current Usage
	1.4 Major Contributions
	1.5 Thesis Outline

	Chapter 2
	2.1 Ontology of Temporal Concepts
	2.2 Temporal Ontology for Natural Language
	2.3 Other Temporal Representation and Reasoning Formalisms

	Chapter 3
	3.1 Topological Temporal Relations
	3.2 Linking Time and Events
	3.3 Measuring Durations
	3.3.1 Temporal Units
	3.3.2 Concatenation and Hath
	3.3.3 The Structure of Temporal Units
	3.3.4 Duration Description

	3.4 Clock and Calendar
	3.4.1 Time Zones
	3.4.2 Time Zone Resource in OWL
	3.4.3 Clock and Calendar Units
	3.4.4 Calendar-Clock Description

	Chapter 4
	4.1 Temporal Aggregates in FOL
	4.1.1 Temporal Sequences
	4.1.2 Temporal Sequences and Their Elements
	4.1.3 Everynthp

	4.2 Embedding iCalendar Recurrence Sets in OWL-Time
	4.2.1 Reify Recurrence Rules
	4.2.2 Map Recurrence Sets

	4.3 Natural Language Examples in FOL
	4.4 Temporal Aggregates in OWL
	4.4.1 Temporal Sequences and Their Members
	4.4.2 Temporal Aggregate Description

	4.5 Natural Language Examples in OWL
	4.6 Improving Set Expression Annotations in TimeML
	4.6.1 TimeML and Its Set Expression Annotations
	4.6.2 Suggestions for Improvements

	4.7 Evaluation

	Chapter 5
	5.1 Desired Properties for Temporal Arithmetic Computation
	5.2 Meaning of “Day Lost (DL)”
	5.3 Temporal Arithmetic Rules
	5.3.1 Adding Durations to Dates
	5.3.2 Subtracting Durations from Dates
	5.3.3 Computing Duration between Two Dates

	5.4 Translating Rules to FOL Axioms

	Chapter 6
	6.1 Annotation Guidelines and Events Classes
	6.1.1 Annotation Instructions
	6.1.2 Analysis
	6.1.3 Event Classes

	6.2 Inter-Annotator Agreement
	6.2.1 What Should Count as Agreement?
	6.2.2 Expected Agreement
	6.2.3 Inter-Annotator Agreement Experiments

	6.3 Learning Event Durations
	6.3.1 Features
	6.3.1.1 Local Context
	6.3.1.2 Syntactic Relations
	6.3.1.3 WordNet Hypernyms

	6.3.2 Learning Binary Event Durations
	6.3.2.1 Inter-Annotator Agreement, Baseline, and Upper Bound
	6.3.2.2 Data
	6.3.2.3 Experimental Results (non-WSJ)
	6.3.2.4 Test on WSJ Data

	6.3.3 Learning the Most Likely Temporal Unit

	6.4 Integrating Vague Event Durations to TimeML
	6.4.1 Event Classes in TimeML
	6.4.2 Integrating Event Duration Annotations

	6.5 Representing and Reasoning about Vague Event Durations

	Chapter 7
	7.1 Temporal Constraint-Based Formalisms
	7.2 Mapping Axioms to Temporal Constraint-Based Formalisms

	Chapter 8
	Appendices
	Appendix A. Representation and Proof Steps for the Scheduling Use Case
	 Appendix B. Temporal Aggregates from the ACE Corpus

