
Temporal Aggregates for Web Services on the Semantic Web

Feng Pan
Information Sciences Institute, University of Southern California

pan@isi.edu

Abstract

In this paper we describe how we encode our

temporal aggregates ontology in OWL for Web
services on the Semantic Web. We also present one
example to show how to use the ontology to represent
temporal aggregates information.

1. Introduction

 Temporal information is everywhere in Web
services [1,2,6], such as temporal availability of
services (e.g., “an advertised service is available from
01/01/2004 to 01/15/2005” [1]), temporal constraints
on the user’s preferences, and so on. Temporal
aggregates are very useful for Web services, for
example, “the customer service is available from 8am
to 5pm EST every working day between 01/01/2004 to
01/15/2005 [1]”.
 In response to this need, in conjunction with OWL-S
[5], a temporal ontology, OWL-Time [3,6] (formerly
DAML-Time), has been developed for describing the
temporal content of Web pages and the temporal
properties of Web services, as required for Semantic
Web applications. This paper more focuses on the
OWL encodings of the temporal aggregate ontology in
OWL-Time. The complete first-order logic (FOL)
axiomatization of the ontology can be found in [7].

2. Temporal Aggregates Ontology

 The predicate everynthp says that a temporal
sequence s consists of every nth element of the
temporal sequence s0 for which property p is true (see
[7] for its definition axiom): everynthp(s,s0,p,n)
 For example, everynthp(s,s0,Monday1,2) defines a
temporal sequence s of “every other Monday”. The
context temporal sequence s0 is useful not only to
constrain s in a particular segment of time, but also to
express complex multiple-layered temporal aggregates.
 The property p is not limited only to simple
temporal properties. In theory it can be any temporal
properties. For example, in conditional temporal

aggregates “every 3rd rainy day that’s not a holiday”, p
is the unary predicate representing “rainy day that’s not
a holiday”.
 In order to map easily between OWL-Time and
iCalendar, we have introduced the predicate
byTulistRecurs which is a special predicate for
handling temporal aggregates that only involve
temporal units (see [7] for its definition axiom):
byTulistRecurs (s,ls,s’,tu,tu’)
 It says that a temporal sequence s consists of a list
(ls) of elements with temporal unit tu of the temporal
sequence s’ whose temporal unit is tu’. For example,
byTulistRecurs (s,{1, 5, 20},s’,*Week*,*Year*)
defines a temporal sequence s of “every 1st, 5th and 20th
weeks of a sequence (s’) of years”.
 In order to encode the temporal aggregates ontology
from first-order logic axioms to OWL which is based
on description logic, we defined three classes: temporal
sequence, temporal sequence member, and temporal
aggregate description. The outline of the structure of
the classes is shown as follows. See [4] for the
complete OWL encodings of the ontology.

 TemporalSeq

-- hasMember → TemporalThing
-- hasTemporalAggregateDescription
 → TemporalAggregateDescription

TemporalSeqMember
 subClassOf: TemporalThing

-- isMemberOf → TemporalSeq (card = 1)
-- hasPosition → integer (card = 1)

TemporalAggregateDescription
-- hasStart → InstantThing
-- hasEnd → InstantThing
-- hasContextTemporalSeq → TemporalSeq
-- hasithTemporalUnit → positive integer (card >= 1)
-- hasTemporalUnit → TemporalUnit (card = 1)
-- hasContextTemporalUnit → TemporalUnit
-- hasPosition → integer
-- hasGap → positive integer
-- hasCount → positive integer

 “card” means cardinality. Only the cardinality of the
required properties is shown in the above outline. We
first defined temporal sequence. Since we want to have
a backward link pointing from the temporal sequence

member to its associated sequence, a TemporalSeq-
Member class is defined. It has a required pair of
properties: isMemberOf and hasPosition, so that it can
not only point back to the associated sequence but also
locate itself in the sequence.
 The most important class in the OWL encodings of
the temporal aggregates ontology is the temporal
aggregate description class. Analogous to the calendar-
clock description class [6], it specifies the temporal
aggregate description for temporal sequences, and it’s
associated with the temporal sequence class by
hasTemporalAggregateDescription property.
 The optional properties hasStart and hasEnd map
from the temporal aggregate description to the instant
thing, specifying the start and the end instants of a
temporal sequence. The calendar and clock properties
described in [6] can be used to specify the start and the
end times or dates the instants are in.
 The property hasContextTemporalSeq corresponds
to s0 in everynthp(s,s0,p,n) and s’ in byTulist-
Recurs(s,ls,s’,tu,tu’). When it’s not present,
context-free temporal aggregates (e.g. “every
Monday”) can be represented.
 The property hasithTemporalUnit corresponds to ls
in byTulistRecurs(s,ls,s’, tu,tu’). Thus it’s very
possible to have many such property values for a given
temporal sequence. For example, “every 3rd Monday,
Tuesday, and Friday”.
 The property hasTemporalUnit and hasContext-
TemporalUnit specify the temporal unit of the given
temporal sequence and the context temporal sequence
respectively. They correspond to tu and tu’ in
byTulistRecurs(s,ls,s’,tu,tu’).
 The property hasPosition specifies the position of
the element in the temporal sequence. It’s possible to
have negative positions. For example, “the last
Thursday in every November” would have
hasPosition value of -1.
 The property hasGap specifies the gap between the
elements in the temporal sequence. If it’s not present,
the default value of 1 will be used, for example, as in
“every Monday”. It corresponds to n in everynthp(s,
s0,p,n). The property hasCount specifies the
cardinality or the size of the temporal sequence.
 The following example shows how our ontology can
be used to represent a two-layered temporal sequence
(see [3,7] for the details about the FOL predicates).
More complex multiple-layered and conditional
temporal aggregates can be represented similarly.

Every other Monday in every 3rd month.

FOL:
 (∃ s,s1,s2) [everynthp(s2,s1,Month1,3)
 ∧ everynthp(s,s2,Monday1,2)]

 where (∀ m) [Month1(m) ≡ (∃ n,x) [calInt(m,n,*Month*,x)]]
 (∀ d) [Monday1(d) ≡ (∃ w) [Monday(d,w)]]

OWL:
 <time-entry:TemporalSeq rdf:ID="tseq">

<time-entry:hasTemporalAggregateDescription
 rdf:resource="#everyOtherMondayEvery3rdMonth" />

 </time-entry:TemporalSeq>

 <time-entry:TemporalSeq rdf:ID="tseq-every3rdMonth">

<time-entry:hasTemporalAggregateDescription
 rdf:resource="#every3rdMonth" />

 </time-entry:TemporalSeq>

 <time-entry:TemporalAggregateDescription
 rdf:ID="every3rdMonth">

<time-entry:hasTemporalUnit
 rdf:resource="&time-entry;unitMonth" />
<time-entry:hasGap rdf:datatype="&xsd;positiveInteger">3

 </time-entry:TemporalAggregateDescription>

 <time-entry:TemporalAggregateDescription
 rdf:ID="everyOtherMondayEvery3rdMonth">

<time-entry:hasContextTemporalSeq
 rdf:resource="#tseq-every3rdMonth" />
<time-entry:hasithTemporalUnit
 rdf:datatype="&xsd;positiveInteger">1
</time-entry:hasithTemporalUnit>
<time-entry:hasTemporalUnit
 rdf:resource="&time-entry;unitDay" />
<time-entry:hasContextTemporalUnit
 rdf:resource="&time-entry;unitMonth" />
<time-entry:hasGap rdf:datatype="&xsd;positiveInteger">2
</time-entry:hasGap>

 </time-entry:TemporalAggregateDescription>

3. References

[1] Dumas, M., J. O’Sullivan, M. Heravizadeh, D. Edmond,
and A. Hofstede. Towards a semantic framework for service
description. In Proceedings of the IFIP Conference on
Database Semantics, Hong Kong, April 2001.

[2] McIlraith, S. A., Son, T. C. and Zeng, H. Semantic Web
Services. IEEE Intelligent Systems 16(2):46–53, 2001.

[3] Hobbs, J. R. and Pan, F. An Ontology of Time for the
Semantic Web. ACM Transactions on Asian Language
Processing (TALIP) Vol. 3, No. 1, pp. 66-85, 2004.

[4] OWL encodings of the temporal aggregates ontology in
OWL-Time:
http://www.isi.edu/~pan/damltime/TemporalAggregates.owl

[5] OWL-S Coalition. OWL-S 1.1 Release.
 (http://www.daml.org/services/owl-s/1.1/)

[6] Pan, F. and Hobbs, J. R. Time in OWL-S. In Proceedings
of the AAAI Spring Symposium on Semantic Web Services,
Stanford University, CA, 2004.

[7] Pan, F. and Hobbs, J. R. Temporal Aggregates in OWL-
Time. In Proceedings of the 18th International Florida
Artificial Intelligence Research Society Conference
(FLAIRS), Clearwater Beach, Florida, 2005.

