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Abstract

It is often assumed that when natural language processing meets the
real world, the ideal of aiming for complete and correct interpretations
has to be abandoned. However, our experience with TACITUS, espe-
cially in the MUC-3 evaluation, has shown that principled techniques
for syntactic and pragmatic analysis can be bolstered with methods for
achieving robustness. We describe and evaluate a method for dealing
with unknown words and a method for filtering out sentences irrele-
vant to the task. We describe three techniques for making syntactic
analysis more robust—an agenda-based scheduling parser, a recovery
technique for failed parses, and a new technique called terminal sub-
string parsing. For pragmatics processing, we describe how the method
of abductive inference is inherently robust, in that an interpretation
is always possible, so that in the absence of the required world knowl-
edge, performance degrades gracefully. Each of these techniques have
been evaluated and the results of the evaluations are presented.

1 Introduction

If automatic text processing is to be a useful enterprise, it must be demon-
strated that the completeness and accuracy of the information extracted is
adequate for the application one has in mind. While it is clear that certain
applications require only a minimal level of competence from a system, it
is also true that many applications require a very high degree of complete-
ness and accuracy, and an increase in capability in either area is a clear



advantage. Therefore we adopt an extremely high standard against which
the performance of a text processing system should be measured: it should
recover all information that is implicitly or explicitly present in the text,
and it should do so without making mistakes.

This standard is far beyond the state of the art. It is an impossibly high
standard for human beings, let alone machines. However, progress toward
adequate text processing is best served by setting ambitious goals. For this
reason we believe that, while it may be necessary in the intermediate term
to settle for results that are far short of this ultimate goal, any linguistic
theory or system architecture that is adopted should not be demonstrably
inconsistent with attaining this objective. However, if one is interested, as
we are, in the potentially successful application of these intermediate-term
systems to real problems, it is impossible to ignore the question of whether
they can be made efficient enough and robust enough for actual applications.

1.1 The TACITUS System

The TACITUS text processing system has been under development at SRI
International for the last six years. This system has been designed as a
first step toward the realization of a system with very high completeness
and accuracy in its ability to extract information from text. The general
philosophy underlying the design of this system is that the system, to the
maximum extent possible, should not discard any information that might be
semantically or pragmatically relevant to a full, correct interpretation. The
effect of this design philosophy on the system architecture is manifested in
the following characteristics:

e TACITUS relies on a large, comprehensive lexicon containing detailed
syntactic subcategorization information for each lexical item.

e TACITUS produces a parse and semantic interpretation of each sen-
tence using a comprehensive grammar of English in which different
possible predicate-argument relations are associated with different syn-
tactic structures.

e TACITUS relies on a general abductive reasoning mechanism to un-
cover the implicit assumptions necessary to explain the coherence of
the explicit text.

These basic design decisions do not by themselves distinguish TACITUS
from a number of other natural-language processing systems. However, they



are somewhat controversial given the intermediate goal of producing systems
that are useful for existing applications. Criticism of the overall design with
respect to this goal centers on the following observations:

e The syntactic structure of English is very complex, and no grammar of
English has been constructed that has complete coverage of the syntax
one encounters in real-world texts. Much of the text that needs to be
processed will lie outside the scope of the best grammars available, and
therefore cannot be understood by a system that relies on a complete
syntactic analysis of each sentence as a prerequisite to other processing.

e Typical sentences in newspaper articles are about 25-30 words in length.
Many sentences are much longer. Processing strategies that rely on
producing a complete syntactic analysis of such sentences will be faced
with a combinatorially intractable task, assuming in the first place that
the sentences lie within the language described by the grammar.

e Any grammar that successfully accounts for the range of syntactic
structures encountered in real-world texts will necessarily produce
many ambiguous analyses of most sentences. Assuming that the sys-
tem can find the possible analyses of a sentence in a reasonable period
of time, it is still faced with the problem of choosing the correct one
from the many competing ones.

Designers of application-oriented text processing systems have adopted
a number of strategies for dealing with these problems. Such strategies
involve de-emphasizing the role of syntactic analysis (Jacobs et al., 1991),
producing partial parses with stochastic or heuristic parsers (de Marcken,
1990; Weischedel et al 1991) or resorting to weaker syntactic processing
methods such as conceptual or case-frame based parsing (e.g., Schank and
Riesbeck, 1981) or template matching techniques (Jackson et al., 1991). A
common feature shared by these weaker methods is that they ignore certain
information that is present in the text, which could be extracted by a more
comprehensive analysis. The information that is ignored may be irrelevant
to a particular application, or relevant in only an insignificant handful of
cases, and thus we cannot argue that approaches to text processing based
on weak or even nonexistent syntactic and semantic analysis are doomed to
failure in all cases and are not worthy of further investigation. However, it
is not obvious how such methods can scale up to handle fine distinctions



in attachment, scoping, and inference, although some recent attempts have
been made in this direction (Cardie and Lehnert, 1991).

In the development of TACITUS, we have chosen a design philosophy
that assumes that a complete and accurate analysis of the text is being
undertaken. In this paper we discuss how issues of robustness are approached
from this general design perspective. In particular, we demonstrate that

e a statistical keyword filter can select the sentences to be processed,
with a great savings in time and little loss of relevant information.

e useful partial analyses of the text can be obtained in cases in which
the text is not grammatical English, or lies outside the scope of the
grammar’s coverage,

e substantially correct parses of sentences can be found without explor-
ing the entire search space for each sentence,

e useful pragmatic interpretations can be obtained using general rea-
soning methods, even in cases in which the system lacks the necessary
world knowledge to resolve all of the pragmatic problems posed in a
sentence, and

e all of this processing can be done within acceptable bounds on com-
putational resources.

Our experience with TACITUS suggests that extension of the system’s
capabilities to higher levels of completeness and accuracy can be achieved
through incremental modifications of the system’s knowledge, lexicon and
grammar, while the robust processing techniques discussed in the following
sections make the system usable for intermediate term applications. We have
evaluated the success of the various techniques discussed here, and conclude
from this evaluation that TACITUS offers substantiation of our claim that
a text processing system based on principles of complete syntactic, semantic
and pragmatic analysis need not be too brittle or computationally expensive
for practical applications.

1.2 Evaluating the System

SRI International participated in the recent MUC-3 evaluation of text-
understanding systems (Sundheim, 1991). The methodology chosen for this



evaluation was to score a system’s ability to fill in slots in templates summa-
rizing the content of newspaper articles approximately one page in length
on Latin American terrorism. The template-filling task required identify-
ing, among other things, the perpetrators and victims of each terrorist act
described in the articles, the occupation of the victims, the type of physical
entity attacked or destroyed, the date, the location, and the effect on the
targets. Frequently, articles described multiple incidents, while other texts
were completely irrelevant.

An example of a relatively short terrorist report is the following from a
news report dated March 30, 1989:

A cargo train running from Lima to Lorohia was derailed before
dawn today after hitting a dynamite charge.

Inspector Eulogio Flores died in the explosion.

The police reported that the incident took place past midnight
in the Carahuaichi-Jaurin area.

Some of the corresponding database entries are as follows:

Incident: Date 30 Mar 89

Incident: Location Peru: Carahuaichi-Jaurin (area)
Incident: Type Bombing

Physical Target: Description “cargo train”

Physical Target: Effect Some Damage: “cargo train”
Human Target: Name “Eulogio Flores”

Human Target: Description  “inspector”: ”Eulogio Flores”
Human Target: Effect Death: “Eulogio Flores”

The fifteen participating sites were given a development corpus of 1300
such texts in October 1990. In early February 1991, the systems were tested
on 100 new messages (the TST1 corpus), and a workshop was held to debug
the testing procedure. In May 1991 the systems were tested on a new corpus
of 100 messages (TST2); this constituted the final evaluation. The results
were reported at a workshop at NOSC in May 1991.

The principal measures in the MUC-3 evaluation were recall and preci-
sion. Recall is the number of answers the system got right divided by the
number of possible right answers. It measures how comprehensive the sys-
tem is in its extraction of relevant information. Precision is the number of
answers the system got right divided by the number of answers the system



gave. It measures the system’s accuracy. For example, if there are 100 pos-
sible answers and the system gives 80 answers and gets 60 of them right, its
recall is 60% and its precision is 75%.

The database entries are organized into templates, one for each relevant
event. In an attempt to factor out some of the conditionality among the
database entries, recall and precision scores were given, for each system, for
three different sets of templates:

e Templates for events the system correctly identified (Matched Tem-
plates).

e Matched templates, plus templates for events the system failed to iden-
tify (Matched /Missing).

e All templates, including spurious templates the system generated.

The results for TACITUS on the TST2 corpus were as follows.

Recall Precision
Matched Templates — 44% 65%
Matched /Missing 25% 65%
All Templates 25% 48%

Our precision was the highest of any of the sites participating in the
evaluation. Our recall was somewhere in the middle.

We also ran our system, configured identically to the TST2 run, on the
first 100 messages of the development set. The results were as follows:

Recall Precision
Matched Templates — 46% 64%
Matched /Missing 37% 64%
All Templates 37% 53%

Here recall was considerably better, as would be expected since the mes-
sages were used for development.

Although pleased with these overall results, a subsequent detailed anal-
ysis of our performance on the first 20 messages of the 100-message test
set is much more illuminating for evaluating the success of the particular
robust processing strategies we have chosen. In the remainder of this paper,
we discuss the impact of the robust processing methods in the light of this
detailed analysis.



We will divide our discussion into four parts: handling unknown words,
our statistical relevance filter, syntactic analysis, and pragmatic interpre-
tation. The performance of each of these processes will be described for
Message 99 of TST1 (given in the Appendix) or on Message 100 of the de-
velopment set (given in Section 5). Then their performance on the first 20
messages of TST2 will be summarized.

2 Handling Unknown Words

When an unknown word is encountered, three processes are applied sequen-
tially.

1. Spelling Correction. A standard algorithm for spelling correction is
applied, but only to words longer than four letters.

2. Hispanic Name Recognition. A statistical trigram model for distin-
guishing between Hispanic surnames and English words was developed
and is used to assign the category Last-Name to some of the words that
are not spell-corrected.

3. Morphological Category Assignment. Words that are not spell-corrected
or classified as last names, are assigned a category on the basis of mor-
phology. Words ending in “-ing” or “-ed” are classified as verbs. Words
ending in “ly” are classified as adverbs. All other unknown words are
taken to be nouns. This misses adjectives entirely, but this is generally
harmless, because the adjectives incorrectly classified as nouns will still
parse as prenominal nouns in compound nominals. The grammar will
recognize an unknown noun as a name in the proper environment.

There were no unknown words in Message 99, since all the words used
in the TST1 set had been entered into the lexicon.

In the first 20 messages of TST2, there were 92 unknown words. Each of
the heuristics either did or did not apply to the word. If it did, the results
could have been correct, harmless, or wrong. An example of a harmless
spelling correction is the change of “twin-engined” to the adjective “twin-
engine”. A wrong spelling correction is the change of the verb “nears” to
the preposition “near”. An example of a harmless assignment of Hispanic
surname to a word is the Japanese name “Akihito”. A wrong assignment is
the word “panorama’”. A harmless morphological assignment of a category



to a word is the assignment of Verb to “undispute” and “originat”. A wrong
assignment is the assignment of Noun to “upriver”.
The results were as follows:

Unknown Applied Correct Harmless Wrong

Spelling 92 25 8 12 5
Surname 67 20 8 10 2
Morphological 47 47 29 11 7

If we look just at the Correct column, only the morphological assignment
heuristic is at all effective, giving us 62%, as opposed to 32% for spelling
correction and 40% for Hispanic surname assignment. However, harmless
assignments are often much better than merely harmless; they often allow
a sentence to parse that otherwise would not, thereby making other infor-
mation in the sentence available to pragmatic interpretation. If we count
both the Correct and Harmless columns, then spelling correction is effec-
tive 80% of the time, Hispanic surname assignment 90% of the time, and
morphological assignment 86%.

Using the three heuristics in sequence meant that 85% of the unknown
words were handled either correctly or harmlessly.

3 Statistical Relevance Filter

The relevance filter works on a sentence-by-sentence basis and decides whether
the sentence should be submitted to further processing. It consists of two
subcomponents—a statistical relevance filter and a keyword antifilter.

The statistical relevance filter was developed from our analysis of the
training data. We went through the 1300-text development set and iden-
tified the relevant sentences. For each unigram, bigram, and trigram, we
determined an n-gram-score by dividing the number of occurrences in the
relevant sentences by the total number of occurrences. A subset of these
n-grams was selected as being particularly diagnostic of relevant sentences.
A sentence score was then computed as follows. It was initialized to the
n-gram score for the first diagnostic n-gram in the sentence. For subsequent
nonoverlapping, diagnostic n-grams it was updated by the formula

sentence score < sentence score + (1 — sentence score)
* next n-gram score

This formula normalizes the sentence score to between 0 and 1. Because
of the second term of this formula, each successive n-gram score “uses up”



some portion of the distance remaining between the current sentence score
and 1.

Initially, a fixed threshold for relevance was used, but this gave poor
results. The threshold for relevance is now therefore contextually determined
for each text, based on the average sentence score for the sentences in the
text, by the formula

.3+ .65 * (1— average sentence score)

Thus, the threshhold is lower for texts with many relevant sentences, as
seems appropriate. This cutoff formula was chosen so that we would identify
85% of the relevant sentences and overgenerate by no more than 300%. The
component is now apparently much better than this.

The keyword antifilter was developed in an effort to capture those sen-
tences that slip through the statistical relevance filter. The antifilter is based
on certain keywords. If a sentence in the text proves to contain relevant in-
formation, the next few sentences will be declared relevant as well if they
contain those keywords.

In Message 99, the statistical filter determined nine sentences to be rel-
evant. All of these were actually relevant except for one, Sentence 13. No
relevant sentences were missed. The keyword antifilter decided incorrectly
that two other sentences were relevant, Sentences 8 and 9. This behavior is
typical.

In the first 20 messages of the TST2 set, the results were as follows:
There were 370 sentences. The statistical relevance filter produced the fol-
lowing results:

Actually  Actually

Relevant Irrelevant
Judged Relevant 42 33
Judged Irrelevant 9 286

Thus, recall was 82% and precision was 56%. These results are excellent.
They mean that by using this filter alone we would have processed only 20%
of the sentences in the corpus, processing less than twice as many as were
actually relevant, and missing only 18% of the relevant sentences.

The results of the keyword antifilter were as follows:

Actually  Actually

Relevant Irrelevant
Judged Relevant 5 57
Judged Irrelevant 4 229




Clearly, the results here are not nearly as good. Recall was 55% and precision
was 8%. This means that to capture half the remaining relevant sentences,
we had to nearly triple the number of irrelevant sentences we processed.
Using the filter and antifilter in sequence, we had to process 37% of the
sentences. Our conclusion is that if the keyword antifilter is to be retained,
it must be refined considerably.

Incidentally, of the four relevant sentences that escaped both the filter
and the antifilter, two contained only redundant information that could have
been picked up elsewhere in the text. The other two contained information
essential to 11 slots in templates, lowering overall recall by about 1%.

4 Syntactic Analysis

Robust syntactic analysis requires a very broad coverage grammar and
means for dealing with sentences that do not parse, whether because they
fall outside the coverage of the grammar or because they are too long for the
parser. The grammar used in TACITUS is that of the DTALOGIC system,
developed in 1980-81 essentially by constructing the union of the Linguis-
tic String Project Grammar (Sager, 1981) and the DIAGRAM grammar
(Robinson, 1982) which grew out of SRI's Speech Understanding System
research in the 1970s. Since that time it has been considerably enhanced.
It consists of about 160 phrase structure rules. Associated with each rule is
a “constructor” expressing the constraints on the applicability of that rule,
and a “translator” for producing the logical form.

The grammar is comprehensive and includes subcategorization, senten-
tial complements, adverbials, relative clauses, complex determiners, the
most common varieties of conjunction and comparison, selectional constraints,
some coreference resolution, and the most common sentence fragments. The
parses are ordered according to heuristics encoded in the grammar.

The parse tree is translated into a logical representation of the mean-
ing of the sentence, encoding predicate-argument relations and grammatical
subordination relations. In addition, it regularizes to some extent the role
assignments in the predicate-argument structure, and handles arguments
inherited from control verbs.

Our lexicon contains about 20,000 entries, including about 2000 personal
names and about 2000 location, organization, or other names. This number
does not include morphological variants, which are handled in a separate
morphological analyzer.
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The syntactic analysis component was remarkably successful in the MUC-
3 evaluation. This was due primarily to three innovations.

e An agenda-based scheduling chart parser.

e A recovery heuristic for unparsable sentences that found the best se-
quence of grammatical fragments.

e The use of “terminal substring parsing” for very long sentences.

Each of these techniques will be described in turn, with statistics on their
performance in the MUC-3 evaluation.

4.1 Performance of the Scheduling Parser and the Grammar

The fastest parsing algorithms for context-free grammars make use of pre-
diction based on left context to limit the number of nodes and edges the
parser must insert into the chart. However, if robustness in the face of pos-
sibly ungrammatical input or inadequate grammatical coverage is desired,
such algorithms are inappropriate. Although the heuristic of choosing the
longest possible substring beginning at the left that can be parsed as a sen-
tence could be tried (e.g. Grishman and Sterling, 1989), sometimes, the
best fragmentary analysis of a sentence can only be found by parsing an in-
termediate or terminal substring that excludes the leftmost words. For this
reason, we feel that bottom-up parsing without strong constraints based on
left context is required for robust syntactic analysis.

Bottom-up parsing is favored for its robustness, and this robustness de-
rives from the fact that a bottom-up parser will construct nodes and edges
in the chart that a parser with top-down prediction would not. The obvious
problem is that these additional nodes do not come without an associated
cost. Moore and Dowding (1991) observed a ninefold increase in time re-
quired to parse sentences with a straightforward CKY parser as opposed
to a shift-reduce parser. Prior to November 1990, TACITUS employed a
simple, exhaustive, bottom-up parser with the result that sentences of more
than 15 to 20 words were impossible to parse in reasonable time. Since the
average length of a sentence in the MUC-3 texts is approximately 27 words,
such techniques were clearly inappropriate for the application.

We addressed this problem by adding an agenda mechanism to the
bottom-up parser, based on Kaplan (1973), as described in Winograd (1983).
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The purpose of the agenda is to allow us to order nodes (complete con-
stituents) and edges (incomplete constituents) in the chart for further pro-
cessing. As nodes and edges are built, they are rated according to various
criteria for how likely they are to figure in a correct parse. This allows us to
schedule which constituents to work with first so that we can pursue only
the most likely paths in the search space and find a parse without exhaus-
tively trying all possibilities. The scheduling algorithm is simple: explore
the ramifications of the highest scoring constituents first.

In addition, there is a facility for pruning the search space. The user can
set limits on the number of nodes and edges that are allowed to be stored
in the chart. Nodes are indexed on their atomic grammatical category (i.e.,
excluding features) and the string position at which they begin. Edges are
indexed on their atomic grammatical category and the string position where
they end. The algorithm for pruning is simple: Throw away all but the n
highest scoring constituents for each category/string-position pair.

It has often been pointed out that various standard parsing strategies
correspond to various scheduling strategies in an agenda-based parser. How-
ever, in practical parsing, what is needed is a scheduling strategy that en-
ables us to pursue only the most likely paths in the search space and to find
the correct parse without exhaustively trying all possibilities. The literature
has not been as illuminating on this issue.

We designed our parser to score each node and edge on the basis of three
criteria:

e The length of the substring spanned by the constituent.

e Whether the constituent is a node or an edge, that is, whether the
constituent is complete or not.

e The scores derived from the preference heuristics that have been en-
coded in DIALOGIC over the years, described and systematized in
Hobbs and Bear (1990).

However, after considerable experimentation with various weightings,
we concluded that the length and completeness factors failed to improve
the performance at all over a broad range of sentences. Evidence suggested
that a score based on preference factor alone produces the best results. The
reason a correct or nearly correct parse is found so often by this method is
that these preference heuristics are so effective.

In Message 99, of the 11 sentences determined to be relevant, only Sen-
tence 14 did not parse. This was due to a mistake in the sentence itself,
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the use of “least” instead of “at least”. Of the 10 sentences that parsed, 5
were completely correct, including the longest, Sentence 7 (27 words in 77
seconds). There were three mistakes (Sentences 3, 4, and 9) in which the
preferred multiword senses of the phrases “in front of” and “Shining Path”
lost out to their decompositions. There were two attachment mistakes. In
Sentence 3 the relative clause was incorrectly attached to “front” instead of
“embassy”, and in Sentence 8, “in Peru” was attached to “attacked” instead
of “interests”. All of these errors were harmless. In addition, in Sentence 5,
“and destroyed the two vehicles” was grouped with “Police said ...” instead
of “the bomb broke windows”; this error is not harmless. In every case
the grammar prefers the correct reading. We believe the mistakes were due
to a problem in the scheduling parser that we discovered the week of the
evaluation but felt was too deep and far-reaching to attempt to fix at that
point.

In the first 20 messages of the test set, 131 sentences were given to the
scheduling parser, after statistically based relevance filtering. A parse was
produced for 81 of the 131 sentences, or 62%. Of these, 43 (or 33%) were
completely correct, and 30 more had three or fewer errors. Thus, 56% of
the sentences were parsed correctly or nearly correctly.

These results naturally vary depending on the length of the sentences.
There were 64 sentences of under 30 morphemes (where by “morpheme” we
mean a word stem or an inflectional affix). Of these, 37 (58%) had com-
pletely correct parses and 48 (75%) had three or fewer errors. By contrast,
the scheduling parser attempted only 8 sentences of more than 50 mor-
phemes, and only two of these parsed, neither of them even nearly correctly.

Of the 44 sentences that would not parse, nine were due to problems in
lexical entries. Eighteen were due to shortcomings in the grammar, primar-
ily involving adverbial placement and less than fully general treatment of
conjunction and comparatives. Six were due to garbled text. The causes of
eleven failures to parse have not been determined. These errors are spread
out evenly across sentence lengths. In addition, seven sentences of over 30
morphemes hit the time limit we had set, and terminal substring parsing,
as described below, was invoked.

A majority of the errors in parsing can be attributed to five or six causes.
Two prominent causes are the tendency of the scheduling parser to lose
favored close attachments of conjuncts and adjuncts near the end of long
sentences, and the tendency to misanalyze the string

[[Noun Noun]yp Verbyans NP|g

13



as
[Noun]|np [Noun Verbgitrans () NP]S/NPv

again contrary to the grammar’s preference heuristics. We believe that most
of these problems are due to the fact that the work of the scheduling parser
is not distributed evenly enough across the different parts of the sentence,
and we expect that this difficulty could be solved with relatively little effort.

Our results in syntactic analysis are quite encouraging since they show
that a high proportion of a corpus of long and very complex sentences can be
parsed nearly correctly. However, the situation is even better when one con-
siders the results for the best-fragment-sequence heuristic and for terminal
substring parsing.

4.2 Recovery from Failed Parses

When a sentence does not parse, we attempt to span it with the longest,
best sequence of interpretable fragments. The fragments we look for are
main clauses, verb phrases, adverbial phrases, and noun phrases. They are
chosen on the basis of length and their preference scores, favoring length over
preference score. We do not attempt to find fragments for strings of less than
five morphemes. The effect of this heuristic is that even for sentences that
do not parse, we are able to extract nearly all of the propositional content.
For example, sentence (14) of Message 99 in the TST1 corpus,

The attacks today come after Shining Path attacks during which
least 10 buses were burned throughout Lima on 24 Oct.

did not parse because of the use of “least” instead of “at least”. Hence, the
best fragment sequence was sought. This consisted of the two fragments
“The attacks today come after Shining Path attacks” and “10 buses were
burned throughout Lima on 24 Oct.” The parses for both these fragments
were completely correct. Thus, the only information lost was from the three
words “during which least”. Frequently such information can be recaptured
by the pragmatics component. In this case, the burning would be recognized
as a consequence of an attack, and inconsistent dates would rule out “the
attacks today”.

In the first 20 messages of the TST2 corpus, a best sequence of fragments
was sought for the 44 sentences that did not parse for reasons other than
timing. A sequence was found for 41 of these; the other three were too short,
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with problems in the middle. The average number of fragments in a sequence
was two. This means that an average of only one structural relationship was
lost. Moreover, the fragments covered 88% of the morphemes. That is, even
in the case of failed parses, 88% of the propositional content of the sentences
was made available to pragmatics. Frequently the lost propositional content
is from a preposed or postposed, temporal or causal adverbial, and the actual
temporal or causal relationship is replaced by simple logical conjunction of
the fragments. In such cases, much useful information is still obtained from
the partial results.

For 37% of the 41 sentences, correct syntactic analyses of the fragments
were produced. For 74%, the analyses contained three or fewer errors. Cor-
rectness did not correlate with length of sentence.

These numbers could probably be improved. We favored the longest
fragment regardless of preference scores. Thus, frequently a high-scoring
main clause was rejected because by tacking a noun onto the front of that
fragment and reinterpreting the main clause bizarrely as a relative clause,
we could form a low-scoring noun phrase that was one word longer. We
therefore plan to experiment with combining length and preference score in
a more intelligent manner.

4.3 Terminal Substring Parsing

For sentences of longer than 60 words and for faster, though less accurate,
parsing of shorter sentences, we developed a technique we are calling termi-
nal substring parsing. The sentence is segmented into substrings, by break-
ing it at commas, conjunctions, relative pronouns, and certain instances of
the word “that”. The substrings are then parsed, starting with the last one
and working back. For each substring, we try either to parse the substring
itself as one of several categories or to parse the entire set of substrings
parsed so far as one of those categories. The best such structure is selected,
and for subsequent processing, that is the only analysis of that portion of
the sentence allowed. The categories that we look for include main, subor-
dinate, and relative clauses, infinitives, verb phrases, prepositional phrases,
and noun phrases.

A simple example is the following, although we do not apply the tech-
nique to sentences or to fragments this short.

George Bush, the president, held a press conference yesterday.

This sentence would be segmented at the commas. First “held a press con-
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ference yesterday” would be recognized as a VP. We next try to parse both
“the president” and “the president, VP”. The string “the president, VP”
would not be recognized as anything, but “the president” would be recog-
nized as an NP. Finally, we try to parse both “George Bush” and “George
Bush, NP, VP”. “George Bush, NP, VP” is recognized as a sentence with
an appositive on the subject.

This algorithm is superior to a more obvious algorithm we had been con-
sidering earlier, namely, to parse each fragment individually in a left-to-right
fashion and then to attempt to piece the fragments together. The latter al-
gorithm would have required looking inside all but the last of the fragments
for possible attachment points. This problem of recombining parts is in gen-
eral a difficulty that is faced by parsers that produce phrasal rather than
sentential parses (e.g., Weischedel et al., 1991). However, in terminal sub-
string parsing, this recombining is not necessary, since the favored analyses
of subsequent segments are already available when a given segment is being
parsed.

The effect of this terminal substring parsing technique is to give only
short inputs to the parser, without losing the possibility of getting a single
parse for the entire long sentence. Suppose, for example, we are parsing a
60-word sentence that can be broken into six 10-word segments. At each
stage, we will only be parsing a string of ten to fifteen “words”, the ten
words in the segment, plus the nonterminal symbols dominating the favored
analyses of the subsequent segments. When parsing the sentence-initial 10-
word substring, we are in effect parsing at most a “15-word” string covering
the entire sentence, consisting of the 10 words plus the nonterminal symbols
covering the best analyses of the other five substrings. In a sense, rather
than parsing one very long sentence, we are parsing six fairly short sentences,
thus avoiding the combinatorial explosion.

Although this algorithm has given us satisfactory results in our develop-
ment work, its numbers from the MUC-3 evaluation do not look good. This
is not surprising, given that the technique is called on only when all else has
already failed. In the first 20 messages of the test set, terminal substring
parsing was applied to 14 sentences, ranging from 34 to 81 morphemes in
length. Only one of these parsed, and that parse was not good. However,
sequences of fragments were found for the other 13 sentences. The average
number of fragments was 2.6, and the sequences covered 80% of the mor-
phemes. None of the fragment sequences was without errors. However, eight
of the 13 had three or fewer mistakes. The technique therefore allowed us to
make use of much of the information in sentences that have hitherto been
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beyond the capability of virtually all parsers.

5 Robust Pragmatic Interpretation

When a sentence is parsed and given a semantic interpretation, the relation-
ship between this interpretation and the information previously expressed in
the text as well as the interpreter’s general knowledge must be established.
Establishing this relationship comes under the general heading of pragmatic
interpretation. The particular problems that are solved during this step
include

e Making explicit information that is only implicit in the text. This
includes, for example, explicating the relationship underlying a com-
pound nominal, or explicating causal consequences of events or states
mentioned explicitly in the text.

e Determining the implicit entities and relationships referred to metonymi-
cally in the text.

e Resolving anaphoric references and implicit arguments.

e Viewing the text as an instance of a schema that makes its various
parts coherent.

TACITUS interprets a sentence pragmatically by proving that its logical
form follows from general knowledge and the preceding text, allowing a
minimal set of assumptions to be made. In addition, it is assumed that the
set of events, abstract entities, and physical objects mentioned in the text is
to be consistently minimized. The best set of assumptions necessary to find
such a proof can be regarded as an explanation of its truth, and constitutes
the implicit information required to produce the interpretation (Hobbs et al.,
1990). The minimization of objects and events leads to anaphora resolution
by assuming that objects that share properties are identical, when it is
consistent to do so.

In the MUC-3 domain, explaining a text involves viewing it as an in-
stance of one of a number of explanatory schemas representing terrorist
incidents of various types (e.g. bombing, arson, assassination) or one of
several event types that are similar to terrorist incidents, but explicitly ex-
cluded by the task requirements (e.g. an exchange of fire between military
groups of opposing factions). This means that assumptions that fit into
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incident schemas are preferred to assumptions that do not, and the schema
that ties together the most assumptions is the best explanation.

In this text interpretation task, the domain knowledge performs two
primary functions:

1. It relates the propositions expressed in the text to the elements of the
underlying explanatory schemas.

2. It enables and restricts possible coreferences for anaphora resolution.

It is clear that much domain knowledge may be required to perform these
functions successfully, but it is not necessarily the case that more knowledge
is always better. If axioms are incrementally added to the system to cover
cases not accounted for in the existing domain theory, it is possible that they
can interact with the existing knowledge in such a way that the reasoning
process becomes computationally intractable, and the unhappy result would
be failure to find an interpretation in cases in which the correct interpreta-
tion is entailed by the system’s knowledge. In a domain as broad and diffuse
as the terrorist domain, it is often impossible to guarantee by inspection that
a domain theory is not subject to such combinatorial problems.

The goal of robustness in interpretation therefore requires one to address
two problems: a system must permit a graceful degradation of performance
in those cases in which knowledge is incomplete, and it must extract as much
information as it can in the face of a possible combinatorial explosion.

The general approach of abductive text interpretation addresses the first
problem through the notion of a “best interpretation.” The best expla-
nation, given incomplete domain knowledge, can succeed at relating some
propositions contained in the text to the explanatory schemas, but may
not succeed for all propositions. The combinatorial problems are addressed
through a particular search strategy for abductive reasoning described as
incremental refinement of minimal information proofs.

The abductive proof procedure as employed by TACITUS (Stickel, 1988)
will always be able to find some interpretation of the text. In the worst
case—the absence of any commonsense knowledge that would be relevant to
the interpretation of a sentence—the explanation offered would be found by
assuming each of the literals to be proved. Such a proof is called a “minimal
information proof” because no schema recognition or explication of implicit
relationships takes place. However, the more knowledge the system has, the
more implicit information can be recovered.
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Because a minimal information proof is always available for any sentence
of the text that is internally consistent, it provides a starting point for incre-
mental refinement of explanations that can be obtained at next to no cost.
TACITUS explores the space of abductive proofs by finding incrementally
better explanations for each of the constituent literals. A search strategy
is adopted that finds successive explanations, each of which is better than
the minimal information proof. This process can be halted at any time in a
state that will provide at least some intermediate results that are useful for
subsequent interpretation and template filling.

Consider again Message 100 from the MUC-3 development corpus:

A cargo train running from Lima to Lorohia was derailed before
dawn today after hitting a dynamite charge.

Inspector Eulogio Flores died in the explosion.

The police reported that the incident took place past midnight
in the Carahuaichi-Jaurin area.

The correct interpretation of this text requires recovering certain implicit
information that relies on commonsense knowledge. The compound nominal
phrase “dynamite charge” must be interpreted as “charge composed of dy-
namite.” The interpretation requires knowing that dynamite is a substance,
that substances can be related via compound nominal relations to objects
composed of those substances, that things composed of dynamite are bombs,
that hitting bombs causes them to explode, that exploding causes damage,
that derailing is a type of damage, and that planting a bomb is a terror-
ist act. The system’s commonsense knowledge base must be rich enough
to derive each of these conclusions if it is to recognize the event described
as a terrorist act, since all derailings are not the result of bombings. This
example underscores the need for fairly extensive world knowledge in the
comprehension of text. If the knowledge is missing, the correct interpre-
tation cannot be found. (A few simple heuristics can capture some of the
information, but at the expense of accuracy.)

However, if there is missing knowledge, all is not necessarily lost. If, for
example, the knowledge was missing that hitting a bomb causes it to ex-
plode, the system could still hypothesize the relationship between the charge
and the dynamite to reason that a bomb was placed. When processing the
next sentence, the system may have trouble figuring out the time and place
of Flores’s death if it can’t associate the explosion with hitting the bomb.
However, if the second sentence were “The Shining Path claimed that their
guerrillas had planted the bomb,” the partial information would be sufficient
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to allow “bomb” to be resolved to dynamite charge, thereby connecting the
event described in the first sentence with the event described in the second.

It is difficult to evaluate the pragmatic interpretation component indi-
vidually, since to a great extent its success depends on the adequacy of the
syntactic analysis it operates on. However, in examining the first 20 mes-
sages of the MUC-3 test set in detail, we attempted to pinpoint the reason
for each missing or incorrect entry in the required templates.

There were 269 such mistakes, due to problems in 41 sentences. Of these,
124 are attributable to pragmatic interpretation. We have classified their
causes into a number of categories, and the results are as follows.

Reason Mistakes
Simple Axiom Missing 49
Combinatorics 28
Unconstrained Identity Assumptions 25
Complex Axioms or Theory Missing 14
Underconstrained Axiom 8

An example of a missing simple axiom is that “bishop” is a profession.
An example of a missing complex theory is one that assigns a default causal-
ity relationship to events that are simultaneous at the granularity reported
in the text. An underconstrained axiom is one that allows, for example,
“damage to the economy” to be taken as a terrorist incident. Unconstrained
identity assumptions result from the knowledge base’s inability to rule out
identity of two different objects with similar properties, thus leading to incor-
rect anaphora resolution. “Combinatorics” simply means that the theorem-
prover timed out, and the minimal-information proof strategy was invoked
to obtain a partial interpretation.

It is difficult to evaluate the precise impact of the robustness strategies
outlined here. The robustness is an inherent feature of the overall approach,
and we did not have a non-robust control to test it against. However, the
implementation of the minimal information proof search strategy virtually
eliminated all of our complete failures due to lack of computational resources,
and cut the error rate attributable to this cause roughly in half.

6 Conclusion

We felt that the treatment of unknown words was for the most part ade-
quate. The statistical relevance filter was extremely successful. The keyword
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antifilter, on the other hand, is apparently far too coarse and needs to be
refined or eliminated.

We felt syntactic analysis was a stunning success. At the beginning of
this effort, we despaired of being able to handle sentences of the length and
complexity of those in the MUC-3 corpus, and indeed many sites abandoned
syntactic analysis altogether. Now, however, we feel that the syntactic anal-
ysis of material such as this is very nearly a solved problem. The coverage
of our grammar, our scheduling parser, and our heuristic of using the best
sequence of fragments for failed parses combined to enable us to get a very
high proportion of the propositional content out of every sentence. The mis-
takes that we found in the first 20 messages of TST2 can, for the most part,
be attributed to about five or six causes, which could be remedied with a
moderate amount of work.

On the other hand, the results for terminal substring parsing, our method
for dealing with sentences of more than 60 morphemes, are inconclusive, and
we believe this technique could be improved.

In pragmatics, much work remains to be done. A large number of fairly
simple axioms need to be written, as well as some more complex axioms. In
the course of our preparation for MUC-3, we made sacrifices in robustness
for the sake of efficiency, and we would like to re-examine the trade-offs. We
would like to push more of the problems of syntactic and lexical ambiguity
into the pragmatics component, rather than relying on syntactic heuristics.
We would also like to further constrain factoring, which now sometimes
results in the incorrect identification of distinct events.

It is often assumed that when natural language processing meets the real
world, the ideal of aiming for complete and correct interpretations has to
be abandoned. However, our experience with TACITUS, especially in the
MUC-3 evaluation, has shown that principled techniques for syntactic and
pragmatic analysis can be bolstered with methods for achieving robustness,
yielding a system with some utility in the short term and showing promise
of more in the long term.
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Appendix

Message 99 of the TST1 corpus:

Police have reported that terrorists tonight bombed the embassies
of the PRC and the Soviet Union.
The bombs caused damage but no injuries.

A car-bomb exploded in front of the PRC embassy, which is in the
Lima residential district of San Isidro.

Meanwhile, two bombs were thrown at a USSR embassy vehicle that
was parked in front of the embassy located in Orrantia district, near
San Isidro.

Police said the attacks were carried out almost simultaneously and
that the bombs broke windows and destroyed the two vehicles.

No one has claimed responsibility for the attacks so far.

Police sources, however, have said the attacks could have been car-
ried out by the Maoist “Shining Path” group or the Guevarist “Tu-
pac Amaru Revolutionary Movement” (MRTA) group.

The sources also said that the Shining Path has attacked Soviet
interests in Peru in the past.

In July 1989 the Shining Path bombed a bus carrying nearly 50
Soviet marines into the port of El Callao.
Fifteen Soviet marines were wounded.

Some 3 years ago two marines died following a Shining Path bomb-
ing of a market used by Soviet marines.

In another incident 3 years ago, a Shining Path militant was killed
by Soviet embassy guards inside the embassy compound.

The terrorist was carrying dynamite.

The attacks today come after Shining Path attacks during which
least 10 buses were burned throughout Lima on 24 Oct.
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