
Domain-Independent Task Speci�cation in

the TACITUS Natural Language System

Mabry Tyson and Jerry R. Hobbs

Arti�cial Intelligence Center

SRI International

Abstract

Many seemingly very di�erent application tasks for natural lan-
guage systems can be viewed as a matter of inferring the instance of
a prespeci�ed schema from the information in the text and the knowl-
edge base. We have de�ned and implemented a schema speci�cation
and recognition language for the TACITUS natural language system.
This e�ort entailed adding operators sensitive to resource bounds to
the �rst-order predicate calculus accepted by a theorem-prover. We
give examples of the use of this schema language in a diagnostic task,
an application involving data base entry from messages, and a script
recognition task, and we consider further possible developments.

1 Interest Recognition as a Generalization

Natural language discourse functions in human life in a multitude of ways.
Its uses in the computers systems of today are much more restricted, but
still present us with a seemingly wide variety. Our contention, however, is
that beneath this variety one can identify a central core common to most
applications. By isolating this core and formalizing it in a concise fashion,
one can begin to develop a formal account of the links between a natural
language utterance and the roles it plays in the world, as determined by
the interests of the hearer. On a practical plane, such an e�ort allows
one to develop a module in which it is possible to specify with signi�cant
economy a wide variety of tasks for a natural language system. In this paper
we describe our implementation of such a module for the tacitus natural
language system at SRI International.

1

Processing in the tacitus system consists of two phases|an interpreta-
tion phase and an analysis phase. In the interpretation phase, an initial log-
ical representation is produced for a sentence by parsing and semantic trans-
lation. This is then elaborated by a \local pragmatics" component which, in
the current implementation, resolves referential expressions, interprets the
implicit relation in compound nominals, resolves some syntactic ambiguities,
and expands metonymies, and in the future will solve other local pragmat-
ics problems such as the resolution of quanti�er scope ambiguities as well
as the recognition of some aspects of discourse structure. This component
works by constructing logical expressions and calling on the kads theorem
prover1 to prove or derive them using a scheme of abductive inference. The
theorem prover makes use of axioms in a knowledge base of commonsense
and domain knowledge. Except for the domain knowledge in the knowledge
base, the interpretation phase is completely domain-independent.2

In the analysis phase, the interpreted texts are examined with respect to
the system's application or task. Rather than writing speci�c code to per-
form the analysis, we have devised a schema representation to describe the
analysis we wish to do. This declarative approach has allowed us to handle
very di�erent analysis tasks without reprogramming. In the knowledge base
are named schemas which specify the task and can be used to perform the
analysis. These are encoded in a schema representation language which is a
small extension of �rst-order predicate calculus. This language is described
in Section 2. In most applications, to perform the required task one has
to prove or derive from the knowledge base and the information contained
in the interpreted text some logical expression in the schema representation
language, stated in terms of canonical predicates, and then produce some
output action that is dependent on the proofs of that expression.

In order to investigate the generality of our approach to task speci�ca-
tion, we have implemented three seemingly very di�erent tasks involving
three very di�erent classes of texts. The �rst is a diagnostic task performed
on the information conveyed in casualty reports, or casreps, about break-
downs in mechanical devices on board ships. After the text is interpreted,
the user of the system may request a diagnosis of the cause of the problems
reported in the message. The schema for this task is described in Section
3.1. The second task is data base entry from text. A news report about

1See Stickel (1982, 1989).
2For a detailed description of the interpretation phase, see Hobbs and Martin (1987),

and Hobbs et al. (1988).

2

a terrorist incident is read and interpreted, and in the analysis phase, the
system extracts information in the text that can be entered into a data base
having a particular structure. This application is described in Section 3.2.
The third application illustrates our approach to a very common style of
text analysis in which the text is taken to instantiate a fairly rigid schema
or script. The system seeks to determine exactly how the incidents reported
in the texts map into these prior expectations. This mode of analysis is being
implemented for rainform messages, which are messages about submarine
sightings and pursuits. It is described in Section 3.3.

In Section 4, we brie
y discuss future research directions.
Before proceeding, we should note a feature of our representations. Events,

conditions, and, more generally, eventualities are rei�ed as objects that
can have properties. Predicates ending with exclamation points, such as
Adequate! take such eventualities as their �rst argument. WhereasAdequate
(lube-oil1) says that the lube oil is adequate, Adequate!(e; lube-oil1) says
that e is the condition of the lube oil's being adequate, or the lube oil's
adequacy. These eventualities may or may not exist in the real world. If
an eventuality e does exist in the real world, then the formula Rexists(e)
is true. This is to be distinguished from the existential quanti�er 9 which
asserts only existence in a Platonic universe, but not in the real world; it
asserts only the existence of possible objects. It is possible for the eventu-
alities to exist in modal contexts other than the real world, such as those
expressed by the properties Possible and Not-Rexists.3

2 Schemas

A schema is a metalogical expression that is a �rst-order predicate calcu-
lus form annotated by nonlogical operators for search control and resource
bounds. The task component of tacitus parses the schema for these oper-
ators and makes repeated calls to the kads theorem prover on (pure) �rst-
order predicate calculus forms. The two nonlogical operators are proving
and enumerated-for-all.

2.1 The PROVING operator

Since the �rst-order predicate calculus is undecidable, an attempt to prove
an arbitrary �rst-order predicate calculus formula may never terminate.

3See Hobbs (1985) for an elaboration on this notation.

3

While this limitation is discouraging, people manage to reason e�ectively
despite the theoretical limits. In part this is because they limit the e�ort
spent on problems and do the best they can within those limits. Hypotheses
are formed based on the information known or determined within the limi-
tations. Further investigation can then be done based on these hypotheses.
If that does not pan out, the hypotheses can be rejected. Although full
knowledge and proofs are desirable and in some cases necessary, it simply is
not always possible.

kads, our deduction engine, proves formulas in �rst-order predicate cal-
culus. An oversimpli�ed description of how kads works is that it �rst
skolemizes the formula, turning existentially quanti�ed variables in goal ex-
pressions into free variables and making universally quanti�ed variables into
functions (with the free variables as arguments). The prover then tries to
�nd bindings for those free variables that satisfy the resulting formula. If
any such set of bindings is found, then the original formula has been proven.

In interpreting natural language texts, a single formula passed to the
prover is rarely the entire problem. Interpretation requires a number of
such calls. Moreover, the bindings made in a proof often are used by the
system later in the interpretation process. If alternative bindings could have
been used to prove the formula, then they may be needed later if the �rst
set that was found leads to di�culties. kads is able to continue to look for
a proof and try further alternative variable bindings, even after it has found
one valid set.

The nonlogical operator, PROVING, is used in controlling the theorem
prover. An expression

(PROVING formula e�ort output-fn)

indicates to the the analysis module that it should instruct the prover to try
to prove the formula formula using a maximum amount of e�ort e�ort. The
results of that proof are then given to the output function output-fn to be
processed. The output function typically displays the results to the user but
may also, say, update a data base, send a mail message, or perform some
other action, depending upon what the user has programmed it to do.

At each iteration in one of the inner loops, the theorem prover checks to
see if the level of e�ort has been exceeded. If so, all sets of bindings that
have been found for which the formula is true are returned. If none have
been found, the proof has failed. If multiple proofs have been found, the
analysis module is given multiple sets of variable bindings.

Our particular implementation allows great latitude in how the e�ort is

4

described. Two obvious types of e�ort limitation are possible. One type
yields repeatable results; the other does not. An example of the �rst type
would be to express the e�ort limitations in, say, the number of uni�cations
performed. Given the same axiom set and the same problem, the prover
would always return the same results. An example of the second type would
be to limit the proof attempt to take only a certain amount of real time.
This type of limitation may yield di�erent results on di�erent runs. How-
ever, it has the advantage that it is easier to understand for users that are
not experts in theorem proving. Since one of the reasons for limiting the
deductive e�ort is to provide a responsive system, this type of limitation is
often desirable.

The output function is called when the theorem prover has exhausted
its resources or has determined that all the answers have been found. The
function is called with the formula that was passed o� to the theorem prover,
the resources that were allowed, and the list of answers that were returned by
the theorem prover. With the kads theorem prover, each answer contains
not only the set of substitutions that were used but also a representation of
the proof. However, the output functions that we have needed so far only
print messages based upon whether proofs were found and the substitutions
required for them. They typically are short formatting functions that call
upon another function to extract the substitutions from the answers.

2.2 The ENUMERATED-FOR-ALL Operator

The standard predicate logic quanti�ers sometimes seem somewhat unnat-
ural. Rather than simply proving existence, it is often much more natural
to �nd an example. Rather than proving a predicate is true for all possi-
ble variables, it is more natural to verify that the predicate is true for all
appropriate variable bindings.

Toward this end, we have implemented a quanti�er which we call ENUM-

ERATED-FOR-ALL. The syntax of this quanti�er is

(ENUMERATED-FOR-ALL variables hypothesis conclusion)

The semantics is similar to that of

8 (variables) [hypothesis � conclusion]

The di�erence is that, in the enumerated-for-all case, the formula

9 (variables)hypothesis

5

is passed o� to the prover to �nd all possible variable bindings for which the
hypothesis is true. The resulting expression for the enumerated-for-
all would be

conclusion1 ^ conclusion2 ^ : : :

Thus proving the enumerated-for-all expression is reduced to proving
this conjunction.4

As a simple example, consider

(ENUMERATED-FOR-ALL (x)
[x = 2 _ x = 3]
Prime(x))

The theorem prover would be called upon to prove

9 (x) [x = 2 _ x = 3]

and would return two sets of variable bindings. One would specify that x
could be 2 and the other would specify x could be 3.5 The result is that the
enumerated-for-all expression would be replaced by the expression
Prime(2) ^ Prime(3):

2.3 Combining ENUMERATED-FOR-ALL and PROVING

The enumerated-for-all and proving pseudo-operators can be com-
bined, as in

(PROVING (9 varlist2 (ENUMERATED-FOR-ALL

varlist1
(PROVING hypothesis e�ort

1
output-fn

1
)

conclusion))
e�ort

2

output-fn
2
)

In this case, the theorem prover �nds all satisfying variable binding sets
for 9 (varlist1) hypothesis that it can within the bounds of e�ort1. When
the prover �nishes, those sets of bindings are then passed to output-fn1 and
also applied to conclusion, and the conjunction of the resulting forms is
then proved within the limitations of e�ort2. Finally the bindings found in
these proofs are processed by output-fn2.

4This is also similar to Moore's restrictions on quanti�ers (Moore, 1981).
5Note that each of [2 = 2 _ 2 = 3] and [3 = 2 _ 3 = 3] is true.

6

3 Example Applications

3.1 Diagnosis Task

In the application of the tacitus system to the analysis of casreps, the sys-
tem is given the domain-speci�c knowledge of what the various components
of the mechanical assemblies are and how they are interconnected, both
physically and functionally. The text given to tacitus generally states the
symptoms of the failure and possibly the results of investigations on board.
The tacitus system interprets the text and builds up data structures con-
taining the information gathered from the text. The task component of
tacitus is then called upon to analyze that information.

The schema in Figure 1 is used to process the information. A search is
made �rst for conditions (represented by event variables) that are abnormal
but really exist and then for conditions that are normally present but do
not really exist. Whether conditions are normal or not is pre-speci�ed in
the domain-speci�c axioms. During the interpretation phase of tacitus,
all conditions that are mentioned in or implied by the text are determined
either to really exist or not. However, further deduction may be required
during the analysis stage to propagate the existence or nonexistence to other
conditions that are not directly mentioned in the text but can be deduced
from the state of the world described by the text.

Several details are left out for the sake of clarity. The declaration (not
shown) of this schema gives it a name so it can be identi�ed. In this case, this
particular schema was speci�ed to be the default one to be done whenever
the user asked to analyze the interpretation of the text. When the user
asks for analysis, he may specify the name of a di�erent schema to use.
Secondly, the speci�cation of the levels of e�ort have been removed. For
instance, e�ort1 is actually

(and (time-to-�rst-proof e�ort-for-problems)
(time-to-next-proof (� 0.5 e�ort-for-problems))
(ask-user t))

which speci�es that kads will be allowed to run on the �rst problem for an
amount of time indicated by e�ort-for-problems if it �nds no proof. If it has
found a proof, an additional half again as much time will be allowed to �nd
other proofs. If kads does not �nd a proof, it will ask the user whether it
should continue (if so, it acts as though it has used no resources up to that
point). The user may specify the e�ort-for-problems when he asks for an
analysis, but the schema declaration includes default values (in this case, 30
seconds).

7

1. (PROVING
2. (Some (e0)
3. (and ;; Look for those events that do exist but shouldn't

4. (ENUMERATED-FOR-ALL

5. (e1)
6. (PROVING (and (not (Normal e1)) (Rexists e1))
7. e�ort

1

8. casreps-problems-shouldnt-exist-print-fn)
9. (and (Could-Cause e0 e1)
10. (imply (Rexists e0) (Repairable e0))))
11. ;; Look for those events that don't exist but should

12. (ENUMERATED-FOR-ALL

13. (e2)
14. (PROVING (and (not (Rexists e2)) (Normal e2))
15. e�ort

2

16. casreps-problems-should-exist-print-fn)
17. (and (Could-Prohibit e0 e2)
18. (imply (Rexists e0) (Repairable e0)))))
19. e�ort

3

20. casreps-causes-print-fn)))

Figure 1: Schema for the casreps Domain

Line 1 indicates that we will be looking for some variable e0 (of type
ev, meaning it is an event variable) that will be the repairable cause of the
failure. Lines 6 through 8 are expanded into

9 (e1) [:Normal(e1) ^ Rexists(e1)]

which will be passed to the prover with a level of e�ort e�ort1. When that
level of e�ort has been expended, the function casreps-problems-shouldnt-
exist-print-fn informs the users of what conditions exist but normally do
not. Then if, say, A and B were found by the prover to be two separate
substitutions for e1 that satisfy the formula, they are substituted into the
expression in lines 9 and 10, giving

Could-Cause(e0; A) ^ [Rexists(e0) � Repairable(e0)]
^ Could-Cause(e0; B) ^ [Rexists(e0) � Repairable(e0)]

8

Lines 12 through 18 would be handled similarly. If C and D are found
to be valid substitutions for e2, then the conjunction that begins on line 3
would become

Could-Cause(e0; A) ^ [Rexists(e0) � Repairable(e0)]
^ Could-Cause(e0; B) ^ [Rexists(e0) � Repairable(e0)]
^ Could-Prohibit(e0; C) ^ [Rexists(e0) � Repairable(e0)]
^ Could-Prohibit(e0; D) ^ [Rexists(e0) � Repairable(e0)]

This would then be handed over to kads with an e�ort limitation of
e�ort3 in the form of

9 (e0) (Could-Cause(e0; A) ^ [Rexists(e0) � Repairable(e0)]
^Could-Cause(e0; B) ^ [Rexists(e0) � Repairable(e0)]
^Could-Prohibit(e0; C) ^ [Rexists(e0) � Repairable(e0)]
^Could-Prohibit(e0; D) ^ [Rexists(e0) � Repairable(e0)]):

Note that we are looking for a single cause for all of the problems. Whatever
bindings for e0 that kads �nds are then printed by casreps-causes-print-fn.

The analysis of the text

Unable to maintain lube oil pressure to the starting air compressor.

Inspection of oil �lter revealed metal particles.

results in the display of

An eventuality that shouldn't exist but does is

X425 (In! X425 metal-58 lube-oil1)
An eventuality that should exist but does not is

adequate-ness1 (Adequate! adequate-ness1 pressure1)

An eventuality that could cause the problems is

(Not-Rexists intact-ness1) (Intact! intact-ness1 bearings1)

The output indicates that metal particles were found in the lube oil but
should not have been while the pressure of the lube oil was inadequate. The
only cause that was found that could explain both problems was that the
\intactness" of some bearings didn't really exist, i.e., they were not intact.
In the second sentence, the fact that metal particles were in the oil �lter
was derived in the interpretation phase. (Note that it is not explicit in the
sentence.) The step from there to particles being in the oil was performed
in the analysis phase.

9

3.2 Data Base Entry from Messages

Another important application for a natural language understanding system
is to extract the information of interest contained in messages and enter it
into a data base. As our ability to interpret messages increases, this applica-
tion will come to take on greater signi�cance. We have been experimenting
with an implementation that analyzes news reports and enters speci�ed in-
formation about terrorist attacks into a data base.

For example, suppose the sentence is

Bombs have exploded at the o�ces of French-owned �rms in Cat-

alonia, causing serious damage.

The data base entry generated by the tacitus system from this is:

Incident Type: Bombing

Incident Country: Spain

Responsible Organization: |

Target Nationality: France

Target Type: Commercial

Property Damage: 3

where 3 is the code for serious damage.
We use a two-part strategy for this task. We �rst select a set of canonical

predicates, corresponding in a one-to-one fashion to the �elds in the data
base. Thus, among the canonical predicates are incident-type, incident-
country, and so on. The speci�cation of the schema then involves attempt-
ing to prove, from the axioms in the knowledge base and the information
provided by the interpretation of the sentence, expressions involving these
predicates. When such expressions are found, an appropriate action is in-
voked. For now, we simply print out the result, but in a real system a data
base entry routine would be called.

The schema we use is an expanded version of the schema in Figure 2. We
�rst must �nd all instances e1 of an incident (with its incident type) that we
can �nd within resource limits e�ort1. This is done in the hypothesis of the
�rst enumerated-for-all, lines 3 - 6. For each such e1, we must see
whether any of the canonical predicates expressing data base entries can be
inferred. This happens in the calls to proving in lines 9-12, 15-18, etc. The
dots in line 20 stand for further calls to prove expressions involving canonical
predicates. For every such entry found, a call is made to the appropriate
print function. A data base entry function could be placed here as well. The
conclusions for the enumerated-for-alls are all TRUE, because once

10

1. (PROVING
2. (ENUMERATED-FOR-ALL (e1)
3. (PROVING
4. (Some (it) (incident-type e1 it))
5. effort1
6. print-incident)
7. (and
8. (ENUMERATED-FOR-ALL (it)
9. (PROVING
10. (incident-type e1 it)
11. effort1
12. print-incident-type)
13. TRUE)
14. (ENUMERATED-FOR-ALL (tt)
15. (PROVING
16. (target-type e1 tt)
17. effort1
18. print-target-type)
19. TRUE)
20. . . .))
21. effort2
22. print-sentence-�nished)

Figure 2: Schema for the Data Base Domain

we print the information, there is nothing further we need to do with it in
this application.

The link between the way people express themselves in messages and
what the data base entry routines require is mediated by axioms. Among
the axioms required for the above example are the following:

8 (B;E;E3)
Bomb! (E3; B) ^ Explode! (E;B) ^ Rexists(E)

� Incident-type(E;BOMB)

If B is a bomb and E is the event of its exploding and E really exists in
the real world, then the incident type of E is BOMB.

11

8 (E4; E;E3; X)
At!(E4; E;X) ^ Bomb! (E3; B) ^ Explode! (E;B) ^ Rexists(E)

� 9 (E5)Target!(E5; X;E)

If a bomb explodes at X , then X is the target of the exploding incident.
From such axioms as these we can show, for example, that since the �rms

are owned by the French, the o�ces are, and since the o�ces are, France is
the target nationality.

The method for implementing a data base entry application is therefore
�rst to construct a schema such as the one above, and then to de�ne axioms
that encode the relationships between these canonical predicates and the
English words used in the message, or their corresponding predicates, and
other predicates that occur in the axioms in the knowledge base. After the
interpretation component has interpreted the message, the information in
this interpretation and the axioms in the knowledge base are used to infer
the canonical expressions in the schema.

3.3 Schema or Script Instantiation

Many times the texts of interest are very stylized or describe events or condi-
tions that are very stereotypical. Traditionally in AI, researchers have used
schemas or scripts in situations like this. \Understanding" the text is taken
to mean determining how the described events instantiate the schema.6

We have begun to examine what are called rainform messages with
this kind of processing in mind. rainform messages describe the sighting
and pursuit of enemy submarines. A sample is the following:

Visual sighting of periscope followed by attack with ASROC and

torpedoes. Submarine went sinker.

The sequences of events described by these messages are generally very
similar. A ship sights an enemy submarine or ship, approaches it, and
attacks it, and the enemy vessel either counterattacks or tries to
ee; in
either case there may be damage, and in the latter case the enemy may
escape.

For our purposes, we will assume the task is simply to show how the
events described instantiate this schema, although in a real application we
would want then to perform some further action. This task is, in a way,

6See, for example, Schank and Abelson (1977).

12

very similar to the data base entry task. We can describe the di�erent steps
of the schema in terms of canonical predicates and then try to infer these
expressions.

One important use schemas or scripts have been put to is in the as-
sumption of default values. Thus, the message might say, \Radar contact
gained." Here the assumption would be that contact was with an enemy
vessel. Our schema recognition module, working in conjunction with the
abductive inference scheme in kads, would handle this by attaching an as-
sumability cost to parts of the schema. Then if it could not be proven within
certain resources, it could simply be assumed.

4 Future Directions

We have worked out on paper the schemas for specifying two further tasks,
in more or less detail{the �rst in more, the second in less. The �rst task is
the translation of instructions for carrying out a procedure into a program in
some formal or programming language. In structure, this resembles the data
base entry task. The canonical predicates correspond to the constructions
the target language makes available; the schema encodes the syntax of the
target language; and axioms mediate between English expressions and target
language constructs. It is interesting to speculate whether this approach
could be extended to the case in which the target language is another natural
language.

The second task is relating an utterance to a presumed plan of the
speaker.7 This bears a greater resemblance to the diagnostic task. Very
roughly, for an utterance that is pragmatically an assertion, we must prove
that there is, as a possible subgoal in the plan the speaker is presumed to be
executing, the goal for the hearer to know the information that is asserted
in the utterance. In doing this, we establish the relation of the utterance to
that plan. Utterances that are pragmatically interrogatives and imperatives
can be similarly characterized. One needs, of course, to have the axioms
that will allow the system to reason about the speaker's plan.

Another area of future research we intend to pursue involves abolishing
the current distinction in the tacitus system between interpretation and
analysis. In people, interpretation is interest-driven. We often hear only
what we need to or what we want to. Our interests color our interpreta-
tions. Currently, interpretation in tacitus amounts to proving a logical

7See, for example, Cohen and Perrault (1979) and Perrault and Allen (1980).

13

expression closely related to the logical form of the sentence, by means of an
abductive inference scheme which is an extension of deduction. In this pa-
per we have shown how schema recognition can be viewed in a very similar
light. Therefore, we ought to be able to merge the two phases by attempt-
ing to prove the conjunction of the interpretation expression and the schema
formula. Then the best interpretation of the text will no longer be the one
that solves merely the linguistic problems most economically, but the one
that solves those and at the same time relates the text to the hearer's in-
terests most economically. Of course, many details need to be worked out
before this idea turns into an implementation. Nevertheless, the intuition
behind it|that to interpret an utterance is to integrate its information in
the simplest and most coherent fashion with the rest of what one knows and
cares about|seems right.

Acknowledgments

The authors have pro�ted from discussions with Mark Stickel, Douglas Ap-
pelt, Douglas Edwards, and Douglas Moran about this work. The research
was funded by the Defense Advanced Research Projects Agency under O�ce
of Naval Research contract N00014-85-C-0013.

References

[1] Cohen, Philip, and C. Raymond Perrault, 1979. \Elements of a Plan-
based Theory of Speech Acts", Cognitive Science, Vol. 3, No. 3, pp. 177-
212.

[2] Hobbs, Jerry R., 1985. \Ontological Promiscuity", Proceedings, 23rd An-
nual Meeting of the Association for Computational Linguistics, pp. 61-69.
Chicago, Illinois, July 1985.

[3] Hobbs, Jerry R., and Paul Martin 1987. \Local Pragmatics". Proceed-
ings, International Joint Conference on Arti�cial Intelligence, pp. 520-
523. Milano, Italy, August 1987.

[4] Hobbs, Jerry R., Mark Stickel, Paul Martin, and Douglas Edwards, 1988.
\Interpretation as Abduction", to appear in Proceedings, 26th Annual

Meeting of the Association for Computational Linguistics, Bu�alo, New
York, June 1988.

14

[5] Moore, Robert C., 1981. \Problems in Logical Form", Proceedings, 19th
Annual Meeting of the Association for Computational Linguistics, Stan-
ford, California, pp. 117-124.

[6] Perrault, C. Raymond, and James F. Allen, 1980. "A Plan-Based Anal-
ysis of Indirect Speech Acts", American Journal of Computational Lin-

guistics, Vol. 6, No. 3-4, pp. 167-182. (July-December).

[7] Schank, Roger, and Robert Abelson, 1977. Scripts, Plans, Goals, and
Understanding, Lawrence Erlbaum Associates. Inc., Hillsdale, New Jersey.

[8] Stickel, Mark E., 1982. \A Nonclausal Connection-Graph Theorem-
Proving Program", Proceedings, AAAI-82 National Conference on Ar-

ti�cial Intelligence, Pittsburgh, Pennsylvania, pp. 229-233.

[9] Stickel, Mark E., 1989. \A Prolog Technology Theorem Prover: A New
Exposition and Implementation in Prolog", Technical Note No. 464, SRI
International, Menlo Park, California.

15

