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Abstract— Identifying groups of Internet hosts with a
similar behavior is very useful for many applications of
Internet security control, such as DDoS defense, worm and
virus detection, detection of botnets, etc. There are two major
difficulties for modeling host behavior correctly and efficiently:
the huge number of overall entities, and the dynamics of each
individual. In this paper, we present and formulate the Internet
host profiling problem using the header data from public
packet traces to select relevant features of frequently-seen
hosts for profile creation, and using hierarchical clustering
techniques on the profiles to build a dendrogram containing
all the hosts. The well-known agglomerative algorithm is used
to discover and combine similarly-behaved hosts into clusters,
and domain-knowledge is used to analyze and evaluate clus-
tering results. In this paper, we show the results of applying
the proposed clustering approach to a data set from NLANR-
PMA Internet traffic archive with more than 60,000 active
hosts. On this dataset, our approach successfully identifies
clusters with significant and interpretable features. We next use
the created host profiles to detect anomalous behavior during
the Slammer worm spread. The experimental results show that
our profiling and clustering approach can successfully detect
Slammer outbreak and identify majority of infected hosts.
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1. INTRODUCTION

Today’s Internet is plagued with a wide range of
security threats such as fast worm spreads and distributed
denial-of-service attacks. These threats are usually de-
tected too late, after they cause a considerable damage
to the normal operation. Even after successful detection,
defense mechanisms are frequently challenged by the
task of separating the legitimate from the attack traffic,
since these two streams are highly similar.

Large-scale Internet security incidents introduce
anomalies into the traffic patterns on the Internet back-
bones. Correct and rapid detection of these changes
can help us detect Internet anomalies in time, so that
effective measures can be carried out to prevent and
fight potential cyber attacks. It is difficult to devise
a permanent model of legitimate or anomalous host
behavior, applicable to every Internet location, because
of the heterogeneity of Internet hosts and the dynamics
of their activities. On the other hand, each individual
host and its users exhibit slowly-changing patterns of
the Internet use over a relatively long period of time. We
thus believe that single-host behavior profiles map out a
promising direction for detecting Internet anomalies.

In this paper we investigate a problem of using
public traffic traces to define host behavior profiles and
categorize hosts by applying clustering techniques. The

resulting clusters are used to detect anomalous host
behaviors and flag such hosts as suspicious. In our future
work we plan to assign some suspicious points to each
host with an anomalous behavior, and use these points
to shape an access or a traffic handling policy. Individual
host profiles are likely to be more sensitive to anomalies
than if we built a legitimate behavior profile for a generic
host, and should aid early detection of stealthy threats
such as slow-spreading worms or botnet recruitment.

The proposed profiling and host characterizations are
applicable to any monitoring site, but they are likely to
produce more useful results if applied at the backbone
than at the edge, since many more hosts are observable
at the backbone and their behaviors can be correlated
and used to infer global behavior patterns. However,
since public backbone traces only record short daily
snapshots, we used public edge traces to demonstrate
the feasibility of our approach. In our future work
we plan to investigate how traffic sampling, present in
public backbone traces, affects the precision of the host
profiles and the clustering approach, and we show some
preliminary results of this investigation in section 4-1.

The profiling and clustering of the Internet hosts
are the first steps in our research on an Internet-wide
host reputation system called Internet Credit Report
(ICR). Just like the credit-reporting agencies, ICR would
monitor Internet-wide activity and assign each host a
reputation score based on its behavior. The knowledge
provided by a host’s reputation score about long-term
good clients and recurring offenders would help improve
Internet security and prioritize traffic during distributed
denial-of-service attacks or worm spreads. The key in-
sight behind ICR is that a given host tends to be well-
administered or poorly-administered over a considerable
time, and that hosts that have behaved maliciously in
the past warrant a lower trust since they are likely to be
compromised in the future. Research on host scanning
patterns [2] has revealed that a few hosts are responsible
for a large fraction of overall Internet scans and that large
scanners persist over a considerably long time [2].

In Section 2, we present our approach to building
host profiles. We describe the clustering algorithm for
grouping hosts with similar behaviors in Section 3. In
Section 4 we illustrate, through experiments, possible
applications of host profiles for host categorization and
anomaly detection. We survey related work in Section 5
and present conclusions and future work in Section 6.



2. CREATING HOST PROFILES

There are several challenges to be addressed for profil-
ing Internet hosts at a large scale, especially using high-
volume, diverse Internet traffic. The first challenge lies in
the number of active hosts (identified by different IP ad-
dresses) observable in the backbone traffic traces, which
can be several million. On the other hand, many observed
hosts appear only sporadically, producing too scarce data
for a useful profile. It is necessary to distinguish active
hosts (such as an office desktop computer) from inactive
ones (e.g., a Honeynet computer that receives a lot of
traffic but does not initiate communication). Only the
active host’s traffic produces valuable behavior profiles,
that can be further imporved using the inactive host’s
traffic. The second challenge lies in the dynamics of the
host behaviors. Even given a single host, its behavior
may change from time to time, for legitimate reasons,
e.g., a user has discovered online gaming. This problem
is more prominent when we observe Internet usage of
many hosts, which exhibits burst behavior. In the rest
of this section we describe our approach for creating
host-behavior profiles, while carefully addressing the
challenges of separation of active and inactive hosts,
host-behavior dynamics, and the integration of traffic
data collected at different times into host profiles.

2.1. Host Behavior Characterization

We use only packet header information, which is
available in a sanitized form in public Internet traffic
traces, to infer host characteristics. From packet headers,
we obtain direct and indirect features for each host.
Direct features are those that can be retrieved from a
packet header without further computation, like the des-
tination IP address and port number, the observed TTL
value, etc. Indirect features include those computed using
multiple packets in a host’s communication, e.g. the
average duration and traffic volume of a TCP connection.
In our host feature computation, we make distinction
between an active and a passive TCP communication.
An active TCP communication of a given host consists
of connections initiated by this host (by sending a TCP-
SYN packet). A passive TCP communication consists
of connections initiated by other hosts with a given
host. Only active TCP communications are used for host
characterization. For UDP traffic, each communication is
listed as active for both the source and the destination
hosts. Currently, we use one-day and two-day intervals
for profile-building. With more detailed traces, shorter
periods (e.g., one hour) could also be used.

The host features we extract for host behavior char-
acterization are shown in the Figure 1, in an XML-like
format:

• ip address:the IPv4 address of the profiled host
• daily destinationnumber:the number of distinct IP

addresses contacted by this host.

Fig. 1. Features used for host profiles

• daily bytenumber:the total byte traffic volume sent
from this host, including both TCP and UDP traffic.

• averageTTL: the average of TTL (time-to-live)
values observed in the trace of this host, reflecting
its relative Internet location with regard to the traffic
monitor. Since Internet routes do not change rapidly
at a large scale, the observed TTL should not greatly
diverge from this average.

• tcp service: and udp service: list open ports on a
host that, together with a communication profile,
facilitate recognition of a host’s functionality, e.g.,
a DNS server, a Web server, etc.

• communication:detailed specification of typical
communications initiated by the profiled host, in-
cluding the destination IP and daily traffic volume
in bytes, the average duration (TCP) and the average
number of packets (UDP)

• communication similarity:diversity of all the com-
munications recorded in the<communication> field.
We first calculate Dice similarity [3] of any two
communications as:

sim(ci, cj) =
1
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·
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2 · cin · cjn

c2
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jn
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wherek is the number of features for each com-
munication (5 for TCP and 4 for UDP), andcin

is the value ofn-th feature for the communication
ci. The communication similarity is computed as
the average of Dice similarity values of all the
communication pairs for this host.

2.2. Data Preprocessing

To generate meaningful information for creating host
profiles, we must extract selected features from the
public traffic traces. All the trace files we currently use
are in widely usedlibpcap/winpcap format. We utilized
CAIDA’s CoralReef [4] API and developed a set of
programs to produce detailed traffic information from



trace files. This information is then further processed and
aggregated to produce host features for the host profiles.

The output of data preprocessing stage con-
sists of TCP and UDP traffic statistics for each
source/destination pair that include information de-
scribed in Figure 1. For each source IP, a list of contacted
application ports are listed along with the number of
connection requests, traffic rate, average packet size (for
UDP traffic), and duration (for TCP connection). Below
we describe some difficulties and how we overcome
them in this data preprocessing phase.

• Identifying host services:TCP and UDP services
listed per source are identified by observing packets
to a service port that receive a response within 15
seconds. If there is no response within that interval,
the packet is considered a scan. We obtain a list of
port number assignments for well-known services
from [5].

• Identifying TCP connection:Any new TCP-SYN
packet is considered to start a new connection if
it receives SYN-ACK reply. If TCP traffic is seen
between two hosts without having encountered an
initial SYN packet, it is counted as a separate TCP
connection. Upon seeing a TCP-FIN packet, the
TCP connection is considered terminated within a
user-defined time, with the default of 5 seconds.
Upon seeing a TCP-RST, we consider the TCP
connection terminated immediately.

During the data preprocessing step, we identify hosts
that arefrequentlyand actively appearing in the traces,
and select only these hosts for profiling.Frequently
appearingmeans that a host should be present in mul-
tiple traces collected at different times. Currently, we
only build profiles for hosts actively appearing in traces
of more than two continuous days.Actively appearing
means that a host also actively initiates communications.
We use this criterion to filter out those hosts that are
silent but receive a lot of incoming scans. These two
selection criteria drastically reduce the number of hosts
for profiling, improving scalability, and result in more
useful and efficient host profiles. In the edge traces we
use in our experiments, about 83% of hosts appear only
sporadically or are passive hosts that cannot be used for
profiling. This is expected because edge network’s hosts
communicate with many and diverse destinations, that
will appear as passive hosts in the trace.

2.3. Updating Profiles

Our underlying assumption that motivates creation of
host profiles is that Internet users have some settled
habits and routines when using network resources, which
are reflected in stable communication patterns in a host
profile. Still there are many small divergences from a
routine user behavior that create considerable dynamics
observed in the traces, and must be incorporated in the

host profiles. For example, the majority of a specific
host’s daily communications can come from its Web
browsing on the destination port 80. But a user (or
multiple users) of this host may browse different Web
sites each day, so the host’s profile should be updated
daily to reflect such dynamics. At other times, the host
behavior changes at a large scale and may be a sign of
anomalous events affecting this host. For example, the
traffic volume of a worm-infected host can rise suddenly
and sharply, with many new connections being initiated
to numerous destinations on the same port number. Such
sharp behavior changes should be flagged as suspicious
and not be used for the profile update.

For the quantitative host features shown in Figure 1,
the Exponential Weighted Moving Average (EWMA) is
used to integrate observed values with the profile, with
a weight value of0.25 for newly-observed data. For
the communications’ records in the profile, it would
be impossible to accumulate all the records for each
host over a long period. We currently maintain only the
latestN communications withN varying for different
applications. Communications with the same age are
included in the profile using their traffic volume as a
secondary criteria, with the preference for large-volume
communications. We examine each host’s behavior in the
new trace and compare it with its current cluster (see
section 3-2) before the profile update. If the host’s new
behavior is identified as extremely anomalous (which is
defined based on a criterion of dissimilarity between host
behavior in the new trace and its belonging cluster), it
will not be used for profile update.

3. CLUSTER EXTRACTION FROM PROFILES

Host profiles are used to group hosts with similar
features into clusters, with a final goal of building the
characteristic models of host communication. There are
several reasons for creating groups of similar hosts
instead of modeling each host separately. First, if the
profiles are to be built online and used for creating
host reputation at backbone monitors, it is infeasible to
monitor each packet at the backbone in a real time and
use it for profile update. If packets were sampled, this
would lead to inaccurate profiles of individual hosts.
On the other hand, even though there are billions of
hosts on the Internet and even more human users,
many of them show similar communication patterns and
there is virtually no information loss if we group their
profiles into a common category. By grouping hosts into
categories, hosts in the same category can validate and
complement each other’s behaviors and profiles. Here
we use a reasonable assumption, validated through our
experiments, that although individual host’s behaviors
change over time, the profile of a legitimate host tends to
fall into the same category for a moderately long time.
The second reason for grouping hosts into categories is



to build models of legitimate Internet communications.
These models can aid detection of suspicious changes
in the backbone traffic, which are usually a sign of an
Internet-wide security problem (e.g., worm, DDoS at-
tack). Large-scale incidents can thus be detected through
macroscopic observations. A third advantage of grouping
similar hosts is that it addresses the scalability of the
profiling approach, and facilitates host profiling at the
Internet scale. By controlling the clustering process to
produce clusters with different resolution and precision,
the number of desired host categories on various network
and host populations can be controlled. The resolution
and precision requirements can vary depending on the
requirement for clustering performance (how fast and
frequently the clustering process should run) and storage
availability (how much space is available for storing
features of numerous cluster categories).

Since we do not have an advance knowledge of
the exact number of possible host categories and of
the defining features of each category, the clustering
techniques in data mining come as an appropriate tool for
host grouping. In the following discussion, we present
our host clustering procedure based on a hierarchical
algorithm. We will use the term ”cluster” to refer to a
host category.

3.1. Profile and Cluster Distance Measure

Unlike learning during a classification process, where
there is some a priori knowledge concerning the im-
portance of each feature and features are used serially,
the clustering process requires use of all the features
simultaneously and feature weights have to be assigned
by the user. In our host clustering process, the choices of
host features and their importance (expressed as feature
weight) are based both on the availability of data and
on our experiences in characterizing network traffic.
A straightforward approach for clustering host profiles,
containing features shown in Figure 1, is to digitize each
feature and use all of them for calculating the similarity
between hosts while building clusters. This approach
makes sense for some features that are invariant across
hosts with similar behavior (e.g., the daily number of
destinations a host communicates with) but not for others
(e.g., TTL value of a host depends on its distance from
a monitor which collects the trace; two hosts with the
same TTL value may have very different behaviors1).

We are currently using five host features for cluster-
ing, shown in the Figure 1 within shaded rectangles.
The distance measure for clustering is based on Dice
coefficient defined in equation (1). This same equation
is used for our inter-cluster distance measure, but with
different interpretation and preference. For each cluster

1We record average TTL values in the host profile because they
are useful for distinguishing between hosts, and help us discover IP
addresses of Network Address Translation (NAT) boxes.

we create a virtual representative host, which is defined
as the centroid of all the hosts in this cluster. The
distance measure is carried out between any two clusters
and computed as the distance of representatives of these
two clusters. The clustering starts with each host being
associated with a new cluster as the only member. All
the distance values are normalized into the range(0, 1).

3.2. Clustering Strategies

We use agglomerative algorithms for cluster forma-
tion. These algorithms initially place each host into
a separate cluster and iteratively merge clusters until
some stop criteria are met. The merging occurs in the
following three steps: (1) Measure the distance between
any two clusters and identify two clusters with the
smallest distance as candidates for the next step. (2)
Combine two candidates into a new cluster, and compute
the representative host of this new cluster. The new
cluster characteristics may be such that some hosts from
the original two clusters become too distant from the new
representative and are flagged as conflicts. (3) Conflict-
ing hosts are expelled and a single-host cluster is formed
for each such host. We compute the minimum distance
between each cluster pair at the end of each iteration,
and stop the clustering when this distance becomes larger
than a treshold. The threshold value varies for different
clustering applications.

4. EXPERIMENTS AND APPLICATIONS

In this section we present some possible applications
of host profiles and clusters, and illustrate them with
experiments.

4.1. Clustering Hosts from the Internet Traces

In this experiment, we applied our host clustering ap-
proach on Auckland-VIII traffic traces set from NLANR-
PMA [6]. This is a two-week GPS-synchronized IP
header trace captured in December 2003 at the link
between the University of Auckland and the rest of
the Internet. We used data of the first ten days (Dec
02-11, 2003) for this experiment. After the filtering
step, we were left with62, 187 active and frequent
hosts. We created profiles of these hosts and applied the
agglomerative algorithm for clustering with the threshold
value of0.15 as the clustering stop criterion.

Figure 2 shows the clustering result with189 derived
clusters. We sort the clusters based on their size (number
of hosts inside) and draw the distribution of cluster size
in Figure 2(a). Out of the189 identified clusters,158
contain fewer than100 hosts, with total of1, 460 hosts
falling into these small clusters. On the other hand, the
top 10 clusters contain total of53, 587 hosts with an
average size of more than5, 000 hosts per cluster. This
indicates that Internet hosts exhibit similar behaviors.
Manual examination of hosts in small clusters shows
that they have some abnormal behaviors, such as a huge



(a) Cluster size (b) Cluster radius

Fig. 2. Clustering result on trace of the first ten days from Auckland VIII data set with 189 clusters identified

volume of daily outgoing traffic to a small number of
destinations which resembles a DoS attack pattern, or
brief communication with a large number of destinations,
which resembles scanning traffic. We expect that such
small clusters with suspicious features will be present in
any large traffic trace. They represent the anomaly of the
daily Internet usage. On the other hand, more than85%
hosts fall into clusters larger than1, 000, and represent
a routine usage of the majority of the Internet hosts. We
list the characteristics of these clusters in Figure 3.

We measure the quality of the clustering result by
measuring the distance of each host from its cluster’s
centroid. Such a distance is called aradiusof this cluster
according to the host, and ranges from0 to 1. A good
cluster should have a low radius value for all the hosts
inside, indicating high similarity between hosts. For each
cluster, we compute the mean and standard deviation of
host radius values, as indications of host intra-cluster
similarity, and show them in Figure 2(b). The mean value
is below 0.08 for most of the clusters, which indicates
good concentration of members within clusters. Figure
2(b) also shows that the standard deviation does not
promptly increase with the cluster size, so the similarity
of hosts does not decrease with larger clusters.

To test our hypothesis that clustering of sampled
backbone traces also produces useful data, we next
applied our clustering technique to MAWI traces [7],
collected at a trans-Pacific backbone link. The traces
contain 15-minute long daily samples. We generated
profiles using a three-day interval (Oct 19-21, 2005) and
applied clustering to these profiles. The clustering pro-
duces results similar to the Auckland trace. We filtered
about 86% of hosts in data preprocessing phase, and
were left with 123,735 frequent and active hosts. The

Fig. 3. Characteristics of clusters with more than 1,000 hosts

clustering produced 159 clusters, with top 10 clusters
containing 94% of hosts. We will further investigate how
to use sampled backbone traces for host profiling and
anomaly detection in our future work.

4.2. Evaluating Loyalty of Hosts to Clusters

This experiment tests the hypothesis that legitimate
hosts tend to fall into the same or a similar cluster, de-
spite of their varying behavior over time. It is performed
on the same data set as the previous experiment. Traces
of two consecutive days are combined into a single trace
prior to profiling and testing. We do this to increase the
number of host profiles in the experiment, since many
hosts appear once in two days but not every day.

To compare host behaviors with the characteristics of
their belonging clusters, we first apply clustering on host
profiles derived from the first two-day interval and tag
each host with an ID of the cluster it belongs to. We call
these clusters the “control clusters” for the corresponding
hosts. We then use each remaining two-day interval to
build host profiles based on it and for each host compute
the distance between these profiles and the host’s control
cluster. The results of these tests are shown in Figure
4. For each test interval, more than 80% hosts have a
distance lower than0.25 to their control cluster. 98%
hosts have such a distance of no more than0.5. This
result verifies the hypothesis that a large number of hosts
exhibit steady behavior patterns over time. For each host,
we also compute the average distance between its current
profile and the clusters other than its control cluster,
which reflects how dissimilar each host is from clusters
other than its control cluster. Figure 4(b) shows that this
average distance is always bigger than0.5 for the four
test intervals.

4.3. Applying Clustering for Slammer Detection

In this section we test if our host clustering and char-
acterization approach can help detect suspicious changes
in Internet traffic and thus give a timely alert about a
potential Internet-wide security problem.

We use the Slammer trace data from NLANR-PMA,
which was collected from all PMA monitors (all located



(a) Host distance to its cluster (b) Host distance to other clusters

Fig. 4. Host loyalty, measured as distance from its own cluster and from other clusters.

on edge networks) on January 25-26, 2003, covering the
period immediately before and during the outbreak of the
Slammer worm. We distinguish traces collected before
Slammer outbreak as those with no Slammer scans (UDP
packets with 376-byte payload to port 1434), and use
them to build host profiles. We then apply the clustering
process on the host profiles and associate each host
with a control cluster. In the experiment, we use the
trace after the outbreak to build new host profiles and
identify suspicious hosts by comparing new profiles with
host control clusters. We build an Oracle to validate the
correctness of our approach, by identifying each host that
sends UDP packets to port 1434 with a 376 byte payload
as infected. The distance of a new host’s profile to the
host’s control cluster is shown in Figure 5 for infected
and clean hosts. We use a threshold value of 0.25, as
determined in previous section to separate normal from
suspicious hosts. In Figure 5, nearly 90% of infected
hosts have such distance larger than the threshold, and
will be flagged as suspicious. This verifies our hypothesis
that worm infection causes a sharp change in a host’s
behavior. When all hosts (both infected and clean) are
observed, 28% of them have distance to their control
clusters smaller than0.25. This is clearly different from
the 80% observed in the experiments shown in Figure
4(a), and signals an anomalous event. We conclude that
host behavior changes can be used to indicate large-

Fig. 5. Distance of infected and clean hosts from their control clusters,
during the Slammer worm propagation.

scale compromise of the Internet hosts and to identify
majority of hosts with suspicious behavior. Note that
30% clean hosts also change their behaviors and have
distance to their control clusters larger than the threshold.
We manually examine the profiles of these hosts and
find two main reasons for these false positives: (1) The
training data trace is very short and some hosts appear
rarely in this trace, resulting in poor profiles that do not
model well these hosts’ normal behaviors. (2) Due to
the Slammer worm propagation and the conqeusent net-
work congestion, hosts previously with a large volume
of outgoing traffic reduce their sending rate which is
recognized as a large change in their behaviors. With a
sufficiently long training data and different scoring of
lower versus higher host activity, we expect to reduce
the false positive measure.

5. RELATED WORK

This paper applies data-mining to networking research
in two steps: profiling hosts based on their behaviors
and applying clustering techniques to categorize and
characterize Internet hosts. Allman et al. [8] presents
a distributed system for characterizing and sharing past
behavioral patterns about network hosts. Instead of re-
trieving the behavior patterns from network traffic, they
collect reports from network entities (e.g., host, subnet).
Such design brings in trust problem, and it can not detect
the anomalies instantaneously with online traffic.

Many researchers apply clustering to group hosts
based on their relative positions [9][10][11]. to create
clusters of hosts that are located close to one another.
Our work applies clustering based on host behaviors
instead of locations. Other researchers apply data min-
ing (with techniques from statistics, machine learning,
information retrieval, etc.) for anomaly and intrusion
detection [12][13][14][15][16][17], with [16][17] based
on host behaviors. Their host behavior profile consists
only of the number of destinations contacted and a list
of destination port numbers, with little consideration of
individual communication patterns with specific peers.

Much research has focused on characterizing Internet
traffic instead of hosts [18][19]. By processing the traces



offline, flows are broken down into clusters with different
characteristics. Since the Internet traffic varies broadly
across different networks, these approaches either en-
counter performance challenges or produce unstable
outputs for different traces. Instead of using raw trace
traffic, [20][21][22][23][24] focus on using communica-
tion patterns or profiles of applications, with [22][23][24]
using entropy to characterize traffic feature distributions.
Compared with our work, [24] is most similar both in
objectives and approaches. The authors build behavior
profiles at host and service levels using source and
destination IP addresses, port numbers and protocol field,
and use entropy-based measure to define host categories.
We build more detailed host profiles, that include com-
munication and traffic volume statistics. This facilitates
more precise characterization of a host’s communication
patterns. We further detect anomalies in a host’s behavior
by measuring how well this host follows its previously
established behavior patterns.

There are also some commercial network defenses that
are based on behavior modeling, with a goal of detecting
and filtering anomalous network traffic. Mazu Enforcer
[25] is a behavior-based network security system that
monitors and models legitimate traffic patterns in the
network, at fine-grain (hourly) basis. Peakflow platform
[26] collects data from distributed network monitors and
builds baseline models of normal network behavior. Our
approach focuses on modeling individual host behaviors
rather than one destination’s network traffic, with the
goal to detect the possible compromise and predict the
future trustworthiness of a host.

6. CONCLUSION AND FUTURE WORK

Understanding and characterizing typical host behav-
iors has important applications in the field of network
security control. An accurate categorization of Internet
hosts can help differentiate and identify malicious Inter-
net hosts (and their users) from the mass of legitimate
ones. In this paper, we discuss how to create host-
behavior profiles based on Internet traffic traces, and
how to use data mining and clustering techniques to
automatically discover significant host groups based on
created host profiles. Experiments with real Internet
traces show that our profiling and clustering approach
can derive host groups with significant features. We
validate our hypothesis that the majority of Internet hosts
tend to maintain same behavior patterns and fall into
the same or similar groups over a moderately long time.
We also demonstrate the applicability of our profiling
and clustering approach to the detection of large-scale
security incidents, using the Slammer worm spread.

Our future work will focus on using host profiles for
building an Internet-wide host reputation system. We are
also planning to apply our host clustering techniques to
a wider range of Internet traffic traces, with the goal of

building the models of Internet communication patterns.
Such models are needed for a realistic simulation of
Internet-wide events.
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