
Measuring Student Learning On Network Testbeds
Paul Lepe, Aashray Aggarwal, Jelena Mirkovic

USC Information Sciences Institute
Marina del Rey, CA, USA

{paullepe, jelenami, aashraya}@usc.edu

Jens Mache
Lewis & Clark College

Portland, OR, USA
jmache@lclark.edu

Richard Weiss, David Weinmann
Evergreen State College

Olympia, WA, USA
{rweiss, dweinman}@evergreen.edu

I. ABSTRACT

Engaging students in practical, hands-on exercises on
testbeds improves student learning and knowledge retention.
However, testbeds may also present an obstacle to learning for
students who are not familiar with the environment, or who
lack the necessary background to complete their assignments.

Our research investigates how students learn with testbeds.
We instrument a default operating system on the DeterLab
testbed and monitor the students’ command line input and
output, as they perform homework assignments. We use this
data to evaluate students’ progress, to detect when a student
is struggling and to identify common problems.

II. INTRODUCTION

Student exposure to practical, hands-on exercises helps
awaken interest and internalize concepts taught in networking,
systems and cybersecurity classes. Practical exercises also
teach students how to use relevant tools and help teach critical
thinking. There are many public repositories of homework-
type exercises (e.g., [1], [2]), which are meant to be completed
on network testbeds.

Yet, learning with testbeds can also be an isolating expe-
rience for students, as assignments may be individual and
require work outside of class. This may create a disconnect
between students and teachers. Students that struggle with an
assignment may spend a lot of time on it, often without making
much progress. Students may hesitate to ask for help. Teachers
on the other hand cannot directly monitor student progress and
may be unaware of problems until the assignment is due and
graded. By that time, it is too late to intervene.

We have developed a system, called ACSLE, to auto-
matically monitor and analyze student progress on network
testbeds, during well-structured homework activities. We focus
on assignments that require terminal-based interaction. AC-
SLE consists of the Monitor and two Analyzer components.
The Monitor component collects students’ terminal input and
output on all machines in an experiment, and collates it into
a single log file per student. The Analyzer processes students’
log files and produces individual and summary reports showing
students’ progress on homework activities, and highlighting
common mistakes. This information can help teachers assess
how well the entire class is doing, identify students that
struggle and identify common problems.

III. MONITORING STUDENT TERMINAL BEHAVIOR

Many student exercises with network testbeds specify tasks
that require students to interact with the testbed, often with
multiple machines simultaneously, using SSH and a terminal.
The Monitor component of ACSLE consists of a single
program, which records student input to the terminal, the
output that they see, terminal identifier, username, and the time
of each interaction. We investigated script, history,
snoopy and ttylog for monitoring. Of these, only ttylog
could log both the input and the output of a terminal, in all
situations of interest. We modified ttylog to also record
terminal identifier, username and time of each input. This ad-
ditional information helps us when merging log files collected
from multiple user sessions and/or multiple testbed machines.

IV. ANALYZING STUDENT INPUT

The Analyzer component of ACSLE consists of four analy-
sis programs: the Merger, the Annotator, the Student Analyzer
and the Milestone Analyzer. We assume that the teacher can
identify all experiments that relate to the given homework
assignment, e.g., by the time of the experiment or its name.
The Merger works on the set of experiments given. It first
pulls and collates all the log files, based on the timestamp of
each line. Such merged log is then passed on to the Annotator.

The Annotator takes as input the merged log and a set of
milestones for a given homework. A milestone is a specific,
smaller learning task that a student is asked to complete. We
assume that each task either requires a specific terminal input
or a specific terminal output or both. For example, we can
create milestones for tasks where a student needs to run a
specific command or create a specific effect on the system,
that produces a terminal output. On the other hand, we cannot
currently create milestones for tasks that ask a student to write
a program, which creates unstructured terminal output or no
output at all. We leave this for future work.

Our milestone format is shown in Figure 2, along with three
sample milestones. A milestone consists of node, input and
output fields. Each field can contain a wildcard, or have one
or more values, separated by “|”. The input and output fields
can be specified using regular expressions, and should match
the log on the specified node.

The Annotator attempts to match each line of a student’s
log file with each milestone. If all three parts (node, input
and output) match, the line is tagged as meeting that given
milestone. Otherwise, if there is a partial or full match on the

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 50 100 150 200 250 300 350 400

lin
e
s

time (h)

Class 1
Class 2

(a) Command lines vs time

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160

m
ile
s
to
n
e
s
 m
e
t

attempts

Class 1
Class 2

(b) Milestones met vs attempts

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6

s
u
c
c
e
s
s
 r
a
te

milestone

(c) Milestone success rate

Fig. 1. Statistics produced by our Analyzer programs.

milestones : milestone+
node ‘,’ input ‘,’ output <EOL>milestone:
node_name node :
node_name ‘|’ node |
‘*’|
input_cmd input :
input_cmd ‘|’ input|
‘*’|
output_cmd output :
output_cmd ‘|’ input|
‘*’|

input_cmd :
node_name :

client,ip\s+route\s+get|ifconfig,*
client,tcpdump,^((?!denied).)*$
*,^find|^locate,/var/log/136intro-3.jpg

name on the testbed
regular expression to match
with cmd line

output_cmd : regular expression to match
with cmd line

Fig. 2. EBNF for milestones, and several milestone examples.

input, but the node and/or the output do not match fully, the
line is tagged as a failed attempt to meet the given milestone.
In all other cases the line is tagged as unrelated to a milestone.

The Student Analyzer produces a summary of each student’s
success in reaching the milestones as well as the number
of failed attempts they made. It outputs the total time each
student interacted with the testbed, the command line count,
the number of milestones met and the number of failed
attempts. These summary statistics can help teachers monitor
the class’ progress, identify students that struggle or that have
not invested enough effort.

The Milestone Analyzer summarizes how many students
attempted and met each milestone, and how many times each
milestone was attempted. These summary statistics can help
teachers identify milestones that are particularly challenging
and may inform interventions.

Both programs use student usernames on the testbed. Only
teachers can link such usernames to student identities, which
protects students’ privacy.

V. FINDINGS

Figure 1(a) shows the number of command lines vs time
spent on the same homework assignment by two classes. The
Figure is plotted using the output of the Student Analyzer.
Most students take up to 4 days (≈ 100 hours) to complete the
assignment and produce up to 300 command lines. However,
a few students in both classes take much longer – up to two
weeks (yellow area in the Figure). Some students also spend a
lot of time on the assignment but do not produce many lines of
code (cyan area), and some produce almost double the average
number of lines (gray area). The teacher could identify these
students from our statistics and proactively work with them to
ensure that learning goals are met.

Figure 1(b) shows the number of milestones met vs number
of attempts, plotted using the output of the Student Analyzer.
Most students met 5–7 milestones on this homework. Students
that made fewer attempts met fewer milestones, as expected
(cyan area in the Figure). Similarly, some students made many
attempts but only met a few milestones (yellow area). The
teacher could identify these student groups using our statistics
and offer additional help.

Figure 1(c) shows the success rate per milestone, calculated
as the ratio of successes to all attempts. This output is
produced by the Milestone Analyzer for a different homework
assignment. Milestones one and four were clearly easy to meet,
followed by milestone five. However, students struggled with
milestones two, three and six. Such information can help the
teacher spend more time in class or produce more written
guidelines focusing on the challenging tasks.

By observing the data tagged as attempts by the Annotator,
we have been able to identify common mistake patterns. These
include: wrong node, misspelled commands, and missing or
unnecessary arguments. Currently, we are working on creating
an extended Annotator to automatically detect and annotate
these common patterns. The Analyzers can then summarize
these patterns for the teachers to inform interventions.

VI. CONCLUSIONS

Testbeds help students gain practical skills related to their
learning goals, but they can also present an obstacle to
learning. We have presented our approach to measure student
learning on testbeds leveraging their command line activity on
well-defined practical assignments. Products of our research
can help teachers identify students who struggle and offer early
help to improve their learning. Our work can also help teachers
identify tasks that are difficult for a majority of students and
offer more guidance for these.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. 1723705, 1723714 and
1723717.

REFERENCES

[1] J. Mirkovic and T. Benzel. Teaching Cybersecurity with DeterLab. EEE
Security and Privacy Magazine, 10(1):73–76, January/February 2012.

[2] Richard S. Weiss, Franklyn Turbak, Jens Mache, and Michael E. Locasto.
Cybersecurity education and assessment in EDURange. IEEE Security &
Privacy, 15(3), 2017.

Demo Proposal

I. EQUIPMENT NEEDS

We will need Internet connection to reach DeterLab testbed.
We will bring our laptop to do the demo.

II. DEMO PROPOSAL

Our demo runs on DeterLab testbed. DeterLab [1] is an
public network testbed, hosted by USC/ISI, and supported
through multiple grants by the National Science Foundation
and the Department of Homeland Security. DeterLab provides
a Web-based interface where users can create and modify
experiments as per their needs. DeterLab has been extensively
used in education, in large part thanks to public materials for
cybersecurity education shared at DeterLab’s shared material
repository [2], [3].

We will demo our command line logging and merging, and
will show the annotation and summarization capabilities using
existing logs.

REFERENCES

[1] “Deterlab,” http://info.deterlab.net/.
[2] DETER Project, “DeterLab Education Web Site,”

http://education.deterlab.net.
[3] J. Mirkovic and T. Benzel, “Teaching Cybersecurity with DeterLab,”

EEE Security and Privacy Magazine, vol. 10, no. 1, pp. 73–76, Jan-
uary/February 2012.

Poster Proposal

I. POSTER NEEDS

We will need one standard-size easel and a poster board for
the poster.

II. POSTER PROPOSAL

Our poster will show the architecture of our ACSLE system,
discuss the motivation for our work, and illustrate the outputs
of our Monitor, Annotator, Student Analyzer and Milestone
Analyzer. We will also show preliminary results of our analysis
of common error patterns.

