Defending Web Servers Against Flash Crowd Attacks

Rajat Tandon, Abhinav Palia, Jaydeep Ramani, Brandon Paulsen, Genevieve Bartlett, Jelena Mirkovic
Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
{rajattan, palia, jramani, bpaulsen}@usc.edu, {bartlett, mirkovic}@isi.edu

Abstract—Flash Crowd Attacks (FCAs) are DDoS attacks
that flood victim services, such as Web servers, with well-formed
requests, generated by numerous bots. It is hard to detect and
filter such attacks because both legitimate and attack requests
look identical. In our previous work [1], we proposed models of
how human users interact with Web servers, and also showed
in simulation that these models can detect naive FCA attacks.
We significantly extend these proposed models to make them
more robust, simpler, and applicable to a wider variety of FCA
attacks in this paper. We implement the models in a system
called FRADE, and evaluate it on three Web servers with
different server applications and different content. We show
that FRADE can detect both naive and sophisticated bots within
seconds and successfully filters out attack traffic. Therefore,
FRADE significantly raises the bar for a successful attack by
requiring attackers to deploy botnets that are at least three
orders of magnitude larger than the botnets today.

I. INTRODUCTION

DDoS attacks that target an application’s resources are
called Layer-7 attacks. The attacker floods a popular appli-
cation with legitimate-like requests using a large number of
bots. This results in a severe impact on the application, and
impairs the server’s ability to serve its legitimate clients. We
propose FRADE, as a novel defense against FCAs to identify
and blacklist malicious clients. It observes three main differ-
ences between humans and bots. First, humans browse in a
bursty manner, as they alternate between searching for and
reading the content that interests them, while bots usually
attempt to maximize their request rate. FRADE learns the
dynamics of human interaction with a given server over
several time scales, and builds its dyrnamics model. Second,
humans follow popular content across pages, while bots may
access arbitrary content. FRADE learns content popularity
over time, and builds its semantics model. Third, humans
only visit content, which is visible when rendered, while bots
may mine hyperlinks at random and visit invisible content.
FRADE’s deception module embeds invisible hyperlinks
into the server’s replies. Clients whose behavior mismatches
FRADE’s dynamics or semantics model, or who access
deception hyperlinks are classified as bots and blacklisted,
when the load on the server is high.

II. FRADE

Figure 1 shows the architecture of FRADE and how its
modules interact. FRADE operates in two modes: learning
and classification. During periods of normal load, it learns
how human users interact with the Web server, which
FRADE protects. It builds the semantics and dynamics
models by monitoring Web server logs to learn how humans

decoy objects

ipset Deception module ::>
Web server
2222
3333
4.4.4.4 bot IPs bot IPs

bot IPS bot IPs
Blacklisting

Server logs 1

Active
Session
List

s 10s 60s 300s 600s 1s 10s 60s 300s 600s

OOEO®| EEEE

ObjectMap
index.htm [j.png

k.png
intro.html |a1.jps

Approved Object List (AOL)

02 g Attack
detection

ProcessMap
index.htm | 128
intro.html | 7223

Dynamics module

Requested
Embedded object
not found in AOL

Semantics module

Fig. 1. Architecture of FRADE

interact with the server’s resources. Deception objects, invisi-
ble to humans, are inserted in Web pages’ source code. When
a potential attack is detected, FRADE enters the classification
mode wherein if a user’s behavior deviates from one of the
learned models, it is regarded as a bot and blacklisted.
Dynamics module: It models the rate of a user’s interac-
tion with a server in a given time interval. It contains three
sub-modules: DYN;,, which models the rate of human-action
requests, such as clicking on a hyperlink, DYN,, which learns
which embedded objects are associated with which Web
pages, and DYN,, which models the time it takes to serve a
user’s requests per a given time period. As humans browse
in a bursty manner, we use multiple windows to learn DYNy,
and DYN, models at different time scales. A high percentile
of these values learned is used as the threshold during
classification. Clients that exceed one of these thresholds
or that access embedded objects not associated with their
previously accessed Web pages, are classified as bots.
Semantics module: It learns the probability of each
sequence of requests generated by humans. We learn the
probabilities for sequences of given length, and take a low
percentile to be the threshold. We classify clients with the
sequences probabilities lower than the learned threshold as
bots. It may not see all the transitions during learning. Hence,
it views Web pages as organized into groups of related
content. It also learns transitions from pages to groups,
groups to pages, and groups to groups. During classification,
for missing page-to-page transitions we leverage page-to-
group, group-to-page or group-to-group transitions.
Deception module: It follows the key idea of honey-

8 bots =
800 bots =

‘Seconds to blacklist al bots
‘Seconds to blacklist all bots

Imgur Wiki Reddt Imgur Wiki Reddit
Server Server

() Non-existing URLs

(b) Base URL

Seconds to blacklist all bots.

Seconds to blacklist al bots

alad UL

Base Random-walk Smartwalk 0
non-ex-obj smart-walk-obj costly smart-walksite
Attack
Attack

(c) Sophisticated Attacks (d) Sophisticated Attacks

Fig. 2. Time to Blacklist Naive and Sophisticated Attacks
Server Training Testing
Users HA Emb | Users HA Emb
Wikipedia 243 5K 24K 107 2K 14K
Imgur 243 SK 35K 107 2K 15K
Reddit 243 5K 20K 107 2K 6K
TABLE I

TRAINING (LEARNING) AND TESTING (CLASSIFICATION) DATA AFTER
CLEANING. HA=HUMAN-ACTION
tokens [2], special objects meant to be accessed only by
attackers. The module inserts decoy objects, such as overlap-
ping/small images, into a page’s source code such that they
do not stand out among other embedded objects in that page.
We make these hyperlinks hard to identify from the page’s
source code by creating separate styles for them in the site’s
CSS file. We also craft the names of the pages pointed to by
decoy hyperlinks, so that they are similar to the names of
other, non-decoy pages on the server. During classification,
users that access a deception object are classified as bots.
Blacklisting module: It learns IP addresses of clients that
are classified as bots from other modules. It inserts firewall
rules to filter all incoming traffic from those addresses. In
our prototype, we use the ipset utility for the firewall.

A. Using a Proxy To Speed Up Detection

A server when overwhelmed under FCA, may not ac-
cept new connections. This slows down logging and delays
FRADE’s action. To speed up detection, we propose using
the Take-a-break (TAB) proxy which completes the 3-way
handshake with the client, logs Web page requests but drops
each connection after the logging.

III. EVALUATION

We evaluate FRADE on the Emulab testbed [3]. We repli-
cate content for a few popular Web sites: Imgur, Wikipedia
and Reddit. We engage human users, using Amazon Me-
chanical Turk, to browse these websites and collect data for
training and testing. Table I shows the number of users and
requests that were split between training and testing. Our
experimental topology includes 8 physical attack nodes (each
emulating 1-1,000 virtual attackers), 1 legitimate client node
(emulating 100 legitimate users), 1 node for the dropping
proxy and 3 nodes for the servers. In our experiments, we

replay human user data in a controlled environment main-
taining 100 active, simultaneous virtual clients throughout
the run. After 60 seconds, the virtual attackers start sending
requests to the server at the aggregate rate of 8,000 rps. After
600 seconds we stop the attackers, and let the legitimate
clients run for another 60 seconds. We measure how long
FRADE takes to identify bots and blacklist them. We launch
attacks with different bot behavior and botnet sizes. All tests
are done with FRADE coupled with take-a-break proxy.

For our initial set of tests, we launch Naive attacks, which
resemble today’s attacks as noted by [4]. Attacks repeatedly
request non-existing URLSs or the base URL. We test botnets
of 8 and 800 bots. FRADE blacklists all bots within 10
seconds on all the servers, as shown in Figure 2(a) and 2(b).

We also investigate sophisticated attacks, assuming an
attacker familiar with FRADE. These attacks use a larger
botnet (8,000 bots; 1 rps per bot) and smarter strategies to
launch the attacks. The attack variants include: (s1) repeated
requests for non-existing URLSs that are identified as human
actions, (s2) repeated requests for base URL, (s3) a random
walk on the website graph, including all pages, (s4) a smart
walk on the website graph, which is a random walk that
avoids decoy links, (s5) requests for non-existing-objects,
(s6) a smart-walk-object, which chooses at random from all
embedded objects on the site, (s7) smart-walk-site, which is
a smart walk including all non-decoy embedded objects one
each page, and (s8) costly attack that repeatedly requests the
web page, which is most costly to serve. Figure 2(c) and 2(d)
show the time FRADE took to blacklist all 8,000 bots for the
different sophisticated attacks on Imgur using TAB. 6 out of
the 8 attack variants are blacklisted within 25 seconds. The
other 2 variants, smart walk and base URL get blacklisted
in 38 seconds and 54 seconds respectively. Attacks on other
servers show a similar trend. In all our tests we had zero
false positives and false negatives.

IV. CONCLUSIONS

FRADE models how human users interact with servers and
detects bots as they deviate from this expected behavior. Our
tests show that FRADE stops naive attacks and sophisticated
attacks within seconds with a dropping proxy.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 13139215.

REFERENCES

[1] G. Oikonomou and J. Mirkovic, “Modeling human behavior for defense
against flash-crowd attacks,” in 2009 IEEE International Conference on
Communications. 1EEE, 2009, pp. 1-6.

[2] L. Spitzner, “Honeytokens: The other honeypot,” July 2003,
https://www.symantec.com/connect/articles/honeytokens-other-
honeypot.

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. of the Fifth
Symposium on Operating Systems Design and Implementation. Boston,
MA: USENIX Association, Dec. 2002, pp. 255-270.

[4] D. Cid, “Analyzing popular layer 7 application ddos attacks,”
Sucuri blog, https://blog.sucuri.net/2015/09/analyzing-popular-layer-7-
application-ddos-attacks.html.

