
Improving Recall and Security of Passphrases
Through Use of Mnemonics

Simon S. Woo and Jelena Mirkovic

University of Southern California, Information Sciences Institute

Abstract. Passphrases are regarded as more secure than passwords because they
are longer than passwords. Yet, users use predictable word patterns and com-
mon phrases to make passphrases memorable, which in turn significantly lowers
security. We explore a novel use of mnemonics, multi-letter passphrase abbrevia-
tions, to make passphrases more memorable and more secure. We use mnemonics
during authentication as user hints to achieve cued-recall. We also explore use of
mnemonics to guide passphrase creation – we generate a random mnemonic and
require a user to produce a passphrase, which matches it. This guides the users
away from common phrases and improves security. We evaluate these uses of
mnemonics in several IRB-approved user studies with participants from Ama-
zon Mechanical Turk. We find that mnemonics displayed as authentication hints
increase recall of passphrases by 30–36% after three days, and by 51–74% af-
ter seven days. When used to guide passphrase creation, mnemonics reduce the
use of common phrases from 52% to under 5%, while passphrase recall remains
high. Users also rate usability of passphrases with mnemonics (for creation or for
authentication) higher than usability of classical passphrases.

1 Introduction

Textual passwords are widely used for today’s user authentication. Users are advised
to choose long character sequences, and utilize characters from multiple classes (e.g.,
special characters, letters, numbers) to make passwords hard to guess. Because users
have many online accounts today (25 in 2006 [22]), remembering passwords is chal-
lenging. Users reuse existing passwords, and include predictable word and character
patterns [30].These practices decrease security of passwords against automated guess-
ing to a much lower value, than expected solely based on length and composition.

One way to make passwords more secure is to make them longer. Longer passwords
should be harder to guess by automated attacks, as the guessing space will be larger. A
passphrase is one example of longer passwords, and is usually made by stringing up
several words together. These words could be unrelated, e.g., “mother chicken apple”,
or form a sentence, e.g. “I love apple juice”. Passphrases also tend to be more memo-
rable than passwords, as they may contain expressions familiar to a user (e.g., verses of
a favorite song) and follow grammatical rules [26,27,33,36]. Therein lies the problem,
though! Underlying grammatical structure of passphrases and use of common phra-
ses (e.g., verses from songs) lowers their security well below the security expected by
length alone [28, 30]. And if these patterns in passphrases are broken by forcing users
to use system-generated passphrases, security increases but recall plummets [32]. Thus

there appears to be a trade-off between passphrase recall and security – it is hard to
improve one without jeopardizing the other.

In this paper we explore use of mnemonics – multi-letter abbreviations of passphra-
ses, to improve both their recall and security. We form a mnemonic out of the first letters
of each word in a passphrase. For example, a passphrase “I love apple juice” would be
abbreviated to the mnemonic ILAJ. We first explore use of mnemonics as authentica-
tion hints to aid user recall. We further explore use of mnemonics during passphrase
creation to constrain user choices to only those passphrases, which match the mnemo-
nics. We expect that this approach will reduce the presence of grammatical constructs
or common phrases in passphrases, and thus improve their security.

We evaluate mnemonics-aided passphrases in several user studies, which were ap-
proved by our IRB, and compare these passphrases against user-chosen and system-
chosen passphrases. When displayed as user hints during authentication, mnemonics
improve recall by 30–36% after three days, and by 51–74% after seven days. When
users are asked to generate passphrases, which match a given mnemonic, use of com-
mon phrases reduces from 50% to under 5%. We can combine these two uses of mne-
monics to arrive at passphrases, which have good recall and high security (low use of
common phrases). While mnemonics as authentication hints lower security against sta-
tistical guessing attacks, we can recoup this loss, while retaining high recall, by allowing
the system to generate one word of the passphrase, or by requiring longer passphrases.
Users further find that mnemonics improve usability of passphrases.

2 Related Work

There is much related work on passwords and alternative authentication methods. We
discuss here only those works that are closely related to our proposed use of mnemonics.

Rao et al. [30] discovered that long passwords have a distinct grammatical structure.
They analyzed part-of-speech (POS) tag sequences from the Brown Corpus [23] and
found that the grammatical structure decreases search space for passwords by more
than 50%. Veras et al. [34] explored semantic patterns of passwords and showed how
these patterns can be used to greatly improve attack success.

Bonneau and Shutova [15] studied short user-chosen passphrases (2+ words), and
showed that they are vulnerable to dictionary attacks, and that they have simple noun
structure. Our work focuses on longer passphrases (5+ words), which we find to have a
more complex sentence structure.

Shay et al. [32] found that both system-generated passphrases and system-generated
passwords are annoying to users and easy to forget. Our studies confirm this finding,
but we focus on evaluation of mnemonic-aided passphrases.

Cued-recall systems (e.g., [17,18,20]) have been proposed for graphical passwords,
as summarized by Biddle et al. [9]. In these systems a user is shown an image or a set of
images as a cue, and must recall which points on the image she clicked, or which images
she selected, in order to authenticate. Bicakci and van Oorschot further propose grid-
Words [8], textual, multi-word passwords that can be entered by selecting them from a
dropbox or by locating them on a grid, which serves as a cue. Our use of mnemonics

2

as hints is also an example of cued-recall, but the one applied to textual passphrase and
using a textual cue.

Kuo et al. [28] researched the mnemonic passwords, which are derived as abbre-
viations of common phrases such as movie titles. Kuo et al. found 65% of mnemonic
passwords via Google searches. We show that our mnemonic passphrases do not suffer
from the same deficiency – fewer than 7.5% can be found using Bing searches.

User training has also been shown to improve password recall [10, 19], and it may
use mnemonic techniques. Our mnemonic structure differs from these works (we use
word abbreviations and not visual cues or narratives) and we use mnemonics to guide
creation or as authentication hints, rather than for user training.

3 Mnemonics and Passphrases

In this Section we define passphrases and mnemonics, and describe how we use mne-
monics to improve recall and security of passphrases.

3.1 Passphrases

A passphrase is a sequence of characters, usually much longer than a password, used
for authentication. Passphrases can contain any character, but usually all characters are
alphabetic. Passphrases can further contain capitalization, punctuation, numbers and
special characters. In this work, we focus on letter-only passphrases and we normal-
ize them, by removing capitalization and punctuation from user input. Thus, the only
information used for authentication is the alphabetical content of the passphrase. This
allows us to reason only about the content, which carries most of the meaning for the
user, and how this content affects recall and security.

A passphrase with letter-only content will consist of words. Most of these words
will come from the user’s natural language, and may be found in a dictionary or may be
proper names of people, objects and locations with significance to the user. The words
in a passphrase could be separated by spaces or they could be input together by the user
and segmented using a semantic classifier (e.g., [34]).

3.2 Mnemonics

Mnemonics improve recall of information, by associating it with other representation,
such as abbreviation, a rhyme, or a pattern. In our work, we use abbreviations of pass-
phrases as mnemonics, which we create out of the first letters of passphrase words.

3.3 Using Mnemonics

One could use of mnemonics in two ways. First, they can be used as user hints, to im-
prove recall (aka recall cues [9]) – we will call these hint-mnemonics. A user chooses
a passphrase, and the system creates a hint-mnemonic and stores it with the passphrase.
For example, a user may choose “Mom loves apples and oranges” and the resulting hint-
mnemonic becomes “MLAAO”. At authentication, the system prompts the user for her

3

passphrase, and displays the hint-mnemonic. Figure 1(c) illustrates regular authentica-
tion with no hints, and Figure 1(d) illustrates authentication with hint-mnemonics.

Use of mnemonics as hints will lower security. Passphrases, like passwords, are
stored hashed and salted, but mnemonics must be stored in clear since they are displayed
to users during authentication. Thus a statistical attacker (see Section 4) can tailor his
guessing to words starting with letters of the mnemonic, which greatly reduces the
search space. We evaluate this security cost in Section 6, and propose ways to recoup it.

The second possible use of mnemonics is during passphrase creation – we will call
these guide-mnemonics. Because users tend to use common word sequences, popular
phrases, and grammatical rules in passphrases [15, 28, 30], many passphrases can be
guessed by mining these common patterns from public sources. Mnemonics can be
used during creation to improve randomness of word choices in passphrases, and to
reduce the reuse of passphrases across different accounts.

Guide-mnemonics are generated by choosing letters from the alphabet according
to some algorithm. A user is then prompted to generate a passphrase matching this
mnemonic. Each passphrase word must start with one mnemonic letter, in order. For
example, a system may generate a guide-mnemonic “ABALO” and the user may in-
put a matching passphrase like “Apples bread and lox order”. Figure 1(a) illustrates
regular passphrase creation, and Figure 1(b) illustrates creation with guide-mnemonics.
We further allow extraneous passphrase words, which are not part of the mnemonic,
because they may aid recall. For example, a user may input “Apples bread and the lox
are ordered,” with “the” and “are” being extraneous words. If guide-mnemonic is also
to be used as a hint-mnemonic, we adjust it before storing to reflect all the passphrase
words (e.g., ABALO becomes ABATLAO).

Username: johnsmith

Passphrase: momlovesapplesandoranges

Please choose a username and a passphrase:
CREATION

(a) Regular passphrase creation

A___ B__ A__ L__ O__pples read nd ox rder

Username: johnsmith

Passphrase:

Please choose a username and a passphrase.
Your passphrase must contain words starting
with the displayed letters

CREATION

(b) Creation with guide-mnemonics

Username:

Passphrase:

Please enter your username and passphrase.
AUTHENTICATION

(c) Regular passphrase authentication

Username:

Passphrase:

Please enter your username and passphrase.
Hint: Your passphrase contains words
starting with letters MLAAO

AUTHENTICATION

(d) Authentication with hint-mnemonics

Fig. 1. Different passphrase creation and auth. methods using hint- and guide-mnemonics

4

4 Attacker Models and Strength

In this Section we discuss our attacker models, and passphrase strength metrics.

4.1 Attacker Models

We consider the following attacker models, also used in past research [12, 14].
A brute-force attacker tries all possible passphrases in random order. Without

mnemonics, the strength against brute-force attacks is cl, where c is the number of
characters in the passphrase alphabet and l is the average passphrase length in char-
acters. Since we consider normalized, letter-only passphrases, c would be 26. With
hint-mnemonics, a brute-force attacker would try passphrases containing all possible
words starting with the given letters in the mnemonic. A brute-force attacker model
grossly overestimates passphrase and password strength, as shown in [15, 30]. We thus
do not use it for calculation of passphrase strength, but we use it to determine length of
guide-mnemonics (see Section 5.3).

A statistical attacker compiles lists of common sequences of words, and tries them
in order of popularity. We further distinguish between: (1) a language-model (LM)
attacker, which compiles probabilities for word sequences occurring together, and uses
these to guide his guessing, and (2) a phrase-dictionary attacker [28], which compiles
lists of common phrases from online content, and tries them whole or in part.

4.2 Strength Against Attacks

Because brute-force attacks are suboptimal for the attacker, we do not evaluate strength
against them. For statistical attacks on passwords, prior works use ‘heuristic measure
of password strength” [14], also known as the guesswork [11], which measures the
expected number of guesses until authentication success. Pliam [29] suggests using α-
work factor as a measure of password strength against an ideal attacker, which knows
probability distribution of passwords in the specific corpus. This is unrealistic, and also
underestimates strength of passwords in small corpuses, like the one that we have. We
use the guess number measure of strength by Dell’Amico and Filippone [21], which
estimates the number of guesses until success using the sampling method over a prob-
abilistic password model. They have shown the accuracy of such estimated strength
against state-of-the-art attacks.

For a language-model attacker, we calculate the maximum probability of each pass-
phrase, among all possible passphrases of the same word-length from 3.6B words cor-
pus, using an n-gram model. We then convert this probability into guess number using
Monte Carlo Sampling as proposed in [21].

For a phrase-dictionary attacker, we cannot calculate guess number directly, since it
is hard to build a large-enough dictionary of common phrases. Instead, we measure the
longest overlap between each passphrase and our collection of common phrases. The
longer the overlap, the lower the strength against phrase-dictionary attackers, as there
are fewer words that the attacker must guess using other methods.

5

LM Attack Strength. We regard a passphrase as a sequence of words in English lan-
guage. We then build a language model (LM) [25] to estimate the probability of this se-
quence of words in English. A language model is a probability distribution over words
and word sequences [25]. The n-gram model estimates the probability of every n-word
sequence in the corpus, with the probability of single words being their frequency of
occurrence in the corpus. The n-gram model captures popular grammatical constructs
(e.g., “I love”), and word co-occurrence (e.g., “apple juice”, “iced latte”).

We built a unigram, bigram, and trigram language model from our corpus (higher-
order models are prohibitively expensive to build and have a high number of out-of-
vocabulary sequences). We then calculate the probability of each passphrase using these
three models, and convert the largest measure to guess number. We assume that an LM-
attacker can build similar models, and select her guesses in the decreasing order of
probability.

When building a language model, it is critical to have a large amount of training
data. Otherwise, there would be many out-of-vocabulary (OOV) words and sequences,
and our model would significantly underestimate probability of passphrases, and over-
estimate strength against statistical attacks. We build our language model using several
widely-used, large sources: (1) UMBC WebBase corpus [24] – a collection of English
paragraphs, obtained from February 2007 crawl, containing 100 million web pages from
more than 50,000 websites, and 3.6 B words, (2) “One Billion Word Language Model-
ing Benchmark” [16] – a collection of English paragraphs, obtained from WMT 2011
News Crawl data, (3) the texts from Gutenberg Top 100 books [6] – a collection of fa-
mous books, (4) the Brown Corpus [23] - containing 500 samples of English-language
text, totaling roughly one million words.

After obtaining a maximum probability of a passphrase from LM, we convert it
into guess number by using Monte Carlo Sampling on a corpus of 100,000 randomly-
generated passphrases, as described in [21].

LM Adjustments for Mnemonics. When mnemonics are used as hints during au-
thentication, this changes our language models as some words and some sequences be-
come invalid. We adjust our language models for each passphrase by re-normalizing the
word distributions, so we do not overestimate the strength. LetM be the hint-mnemonic
for one given passphrase PM . We adjust our corpus for PM by keeping only those un-
igram, bigram, and trigram sequences, which contain the words starting with letters in
M , and which follow the order of letters in M . We then use these sequences to build
our language models and calculate the probability of PM .

Out-of-Vocabulary Words. Any language model must cope with out-of-vocabulary
(OOV) n-grams. We apply the standard natural language processing approach to this
problem, by adding unknown words and n-grams to corpus, and using the smoothing to
estimate probability of OOV n-grams [25]. This essentially assigns the lowest, non-zero
probability to OOV n-grams out of all n-grams in the corpus.

Phrase-Dictionary Strength. Prior research shows that users use common phrases,
such as famous quotes, lyrics, poems and movie titles, for generating mnemonic pass-
words [28]. The same trend could occur for passphrases. In a phrase-dictionary attack,
the attacker may use only a portion of a common phrase, or use it in its entirety.

6

We calculate the overlap between a passphrase P and a phrase dictionary as:

overlap(P) = argmaxi(WO(P, phrasei)) (1)

where phrasei is the i-th phrase in the dictionary, and WO is the function that re-
turns the longest word-overlap between P and phrasei. For example, if P=“Today
early bird catches a fly and worm” and phrasei=“Early bird catches a worm”, then
WO(P, phrasei) = 4. The overlap is calculated ignoring capitalization and punctu-
ation, i.e. the passphrase and the common phrases are both normalized. The overlap,
however, must occur in sequence and without gaps. While we cannot convert this mea-
sure into guess number, the measure correlates inversely with passphrase strength aga-
inst phrase-dictionary attackers. Attackers can leverage a phrase-dictionary to speed
up guessing in the following manner. Assume an attacker knows or can guess the
word-length of a passphrase, e.g., five words. First, the attacker would create a phrase-
dictionary and try all five-word subsequences of each phrase. If these do not lead to
success, she would try all four-word subsequences of each phrase and she would try
to guess the word in the fifth or the first position using brute-force or language-model
search. If none of these result in authentication success, the attacker would proceed to
three-word subsequences, etc.

We built two dictionaries of common phrases. First, we collected famous quotes,
lyrics, poems, popular movie titles, and quotes from [31], [1], [4], [3], [35], [15], [7] into
our “Famous phrases” dictionary. This dictionary contains 280,550 phrases. Second, we
used the Bing search engine to search for each passphrase in our study, select the top
10 matching pages and insert them into our “Popular pages” dictionary. We will show
our results in the later section.

5 Passphrase Models

We now provide more details about different passphrase creation and authentication
models, which we consider in our work (summarized in Table 1). Our baseline is the
UPass model – where users select a passphrase freely and receive no hints at authen-
tication. We then transform this model into UPassHint – where users freely select a
passphrase, but are shown a hint-mnemonic at authentication. These two models help
us evaluate how much hint-mnemonic aid recall. We next consider use of mnemonics
both as guide-mnemonics and as hint-mnemonics. This model allows us to evaluate the
effect of guide-mnemonics on passphrase strength; they do not affect recall. We further
consider cases where a system generates one or all words in the passphrase, to increase
the security of the passphrase. Our generic model MNPass(s) uses the parameter s to
denote the number of words generated by the system (zero or one). Finally, we explore
how passphrases entirely generated by the system affect security and recall, and how
much hint-mnemonics can help the recall of such passphrases. These are our models
SysPass and SysPassHint.

5.1 Baseline: User-Chosen Passphrases

Today, users freely select a passphrase, and the system only enforces a given length
policy, or requires presence of specific character classes At authentication, users are

7

Model Created Example Authentication
User Sys hint

User-chosen passphrases
UPass all 0 My Cat Is Very Funny no

UPassHint all 0 Apple Banana Orange Grape Pear yes (ABOGP)
Mnemonics-guided passphrase choices

MNPass(0) all 0 Important Uganda Greg Arbitrary Bountiful yes (IUGAB)
MNPass(0)-Long all 0 She Uses Lemon Polish High Up Right yes (SULPHUR)

MNPass(1) all -1 1 European Union Strange Postings Online yes (EUSPO)
System-chosen passphrases

SysPass 0 all Omnipresent Texture Monaco Narcotic Disney no
SysPassHint 0 all Precocious Base Graze Blazoned Specialty yes (PBGBS)

Table 1. Passphrase models considered in our work.

prompted for a passphrase, and are not shown any hints. This is our baseline UPass
model, which we seek to improve with regard to recall and security.

5.2 Improve Recall: Authentication Hints

We allow users to freely select all the words in a passphrase. The system segments the
input passphrase into words, and abbreviates each word to its first letter. The letters are
then concatenated in order to form a hint-mnemonic. The hint-mnemonic is shown to
the user at authentication time. We refer to this passphrase model as UPassHint.

5.3 Improve Security: Mnemonic-Guided Passphrase Creation

We first generate a guide-mnemonic, by choosing letters from an alphabet, following
some algorithm. We then ask a user to choose passphrase words in order of the mnemo-
nic letters, and ensure that each word starts with the given letter. The system then stores
the mnemonic as hint-mnemonic in clear and associates it with the user’s username,
just like a password salt is stored today. At authentication time, the hint-mnemonic is
displayed to aid recall. We call this passphrase model MNPass.

Mnemonics Generation. Our goal is to generate mnemonics, which result in pass-
phrases exceeding some target strength against a brute-force attacker – TS.

The length and composition of letters in mnemonics will directly influence recall,
diversity and strength of passphrases. The longer the mnemonic, the longer and more
secure the passphrase. However, too long passphrases may lead to reduced recall. Fur-
ther, each mnemonic letter guides a user to choose a word starting with this letter. Thus
the guess space of a passphrase is the product of the guess spaces for each word. To cor-
rectly estimate a guess space for each word we must carefully choose a dictionary. Too
small a dictionary will underestimate the guess space [32], and too large a dictionary
will overestimate it.

We use Google 20K [2] data set, which includes the most common 20,000 English
words in order of frequency, calculated over the Google’s Trillion Word Corpus. We

8

believe this data set sufficiently well represent the most popular English words in in-
ternet. We further pre-filter this dictionary to exclude words starting with q, x, y, and z,
which have too few word choices. This leaves us with 22-letter alphabet for mnemonic
generation.

We generate mnemonics by randomly selecting letters, one by one, from our 22-
letter alphabet, and estimating the strength (guess number) of the resulting passphrase.
For a mnemonic containing k letters the estimated strength ES is calculated as:

ES =

k∏
i=1

words(dict,mn(i)) (2)

where k is the number of letters in the mnemonic, mn(i) returns the letter at position i
in the mnemonic, andwords(dict,mn(i)) returns the number of words from dictionary
dict, which start with the lettermn(i). When ES exceeds the target strength TS, we stop
and output the mnemonic.

System-Generated Words. Mnemonic-guided passphrase creation may still lead
to low passphrase strength if users build their passphrase out of very popular words. We
thus explore the password model where the system chooses one word in a passphrase,
and the user chooses the rest. To accommodate this model, we parameterize MNPass by
s, where s is the number of system-selected words. We explore MNPass(0) and MN-
Pass(1). System-selected words may have low recall, as they lack personal significance
for a user. Our evaluation shows that this is not the case for MNPass(1), i.e., letting the
system choose only one word does not greatly lower recall.

Longer Passphrases. We explore another approach to increase passphrase security,
by requiring 20% longer passphrases in approach MNPass(0)-Long.

5.4 Improve Security: System-Chosen Passphrases

One can also improve passphrase security by letting the system to generate the entire
passphrase. We explore this approach without authentication hints – SysPass model –
and with hint-mnemonics – SysPassHint model.

6 Evaluation

We used Amazon Mechanical Turks to evaluate recall and strength of different pass-
phrase models, described in the previous Section. All our user studies were reviewed
and approved by our Institutional Review Board (IRB). We found that hint-mnemonics
improve recall by 30-36% after three days, and by 51-74% after seven days (Section
6.2). We further found that guide-mnemonics reduce presence of common phrases in
passphrases from 50% to under 5% (Section 6.3). Finally, users reported that mnemo-
nics are easy to use and helpful (Section 6.4).

6.1 User Studies

Amazon Mechanical Turk participants were assigned at random to one passphrase
model from the previous Section. We recruited participants with at least 1,000 com-
pleted Human Intelligence Tasks (HITs) and >95% HIT acceptance rate. We asked

9

Model Participants Avg. words / pass Avg. chars / pass Avg, chars / word
All User All User All User

User-chosen passphrases
UPass 44 5.3 24.5 4.6

UPassHint 56 5.4 25.6 4.8
Mnemonics-guided passphrase choices

MNPass(0) 66 5.2 26.2 5.0
MNPass(0)-Long 51 6.9 36 5.2

MNPass(1) 62 5.0 4.0 30.6 23.3 6.1 5.8
System-chosen passphrases

SysPass 58 5.1 0 38.3 0 7.4 0
SysPassHint 56 5.2 0 39.0 0 7.6 0

Total 393
Table 2. Basic statistics on passphrases per passphrase model

each participant to create one passphrase in one sitting. The participant was then asked
to return after three days and after one week to authenticate. We paid 35 cents for pass-
phrase creation and 40 cents for each of the two authentication tasks.

Limitations and Ecological Validity. Our study had the following limitations,
many of which are common for online password studies. First, it is possible but very
unlikely that a participant may enroll into our study more than once. While the same
Mechanical Turk user could not enter the study twice (as identified by her MTurkID), it
is possible for someone to create multiple Mechanical Turk accounts. There is currently
no way to identify such participants. Second, we cannot be sure that our participants did
not write down or photograph their passphrases. We did not ask the participants if they
have done this in post-survey, because we believed that those participants who cheated
would also be likely to not admit it. We designed our study to disincetivize cheating.
We promised to pay participants in full regardless of authentication success. Our study
mechanisms further detected copy/paste actions and we have excluded any participant
that used these (for whatever reason) from the study. We also reminded the participants
multiple times to rely on their memory only. If any cheating occurred it was likely to
affect all the results equally. Thus our data can still be used to study improvement of
recall and security between password models. Third, while we asked Mechanical Turk-
ers to pretend that they were creating passphrases for real servers, they may not have
been very motivated or focused. This makes it likely that actual recall of real-world
passphrases would be higher across all models. While it would have been preferable
to conduct our studies in the lab, the cost would be too high (for us) to afford as large
participation as we had through the use of Mechanical Turks.

Passphrase model parameterization. We wanted to make passphrase models com-
parable to each other in character-length. This allowed us to investigate factors like re-
call and security of passphrases, independent of length. The length of MNPass models
is controlled by the target strength (TS) parameter. We use TS = 958, which is the
theoretical, maximum strength against brute-force attacks for 3class8 passwords. These
passwords are generated according to the frequently-used password policy: 8-character

10

length and use of at least three out of the following four character classes: lowercase
and uppercase letters, digits and special characters. While the exact mnemonic length
depends on the randomly chosen letters of the mnemonic, most of our mnemonics were
5–6 characters in length for TS = 958, and thus led to 5–6 word long passphrases.
To make the other models comparable, we instructed participants to enter passphra-
ses, which contain at least five words. Also, for models where all words are chosen
by the system, we mimicked the mnemonic-guided creation with TS = 958. We gen-
erated the mnemonic, and then drew all the words for the passphrase at random from
our dictionary, to match the mnemonic. The MNPass(0)-Long model explores longer
passphrases. We used target strength TS = 9510 for this model, which mimics 3class10
passwords and which led to passphrases with 6–7 words.

Passphrase Creation. We provided a short tutorial and examples for each pass-
phrase model and then asked participants to create one passphrase. All users were asked
not to write down or copy their answers, and to rely on memory only. We automatically
checked if passphrase constraints (e.g., word length, mnemonic match) were met during
passphrase creation, and on failure, we asked the user to recreate the passphrase.

Passphrase Authentication. Each user was asked to make two authentication visits,
one after three days, and one after one week since passphrase creation. We allowed at
most five trials to authenticate per passphrase and per visit. All users were asked not to
paste their answers. We had automated detection of copy or paste attempts in our forms,
and we rejected the users who were detected to perform either of these two actions.
We further displayed a notice to participants, at both the creation and authentication
screens, that they will get paid regardless of their authentication success. This ensured
that participants had no monetary incentive to cheat. After the second authentication
visit, we asked participants to complete a usability survey.

Participant and Passphrase Statistics. In total, there were 1,273 participants who
created a passphrase. Out of 1,273 participants, 731 (57.47%) participants returned for
the first authentication and 426 (58.3%) returned for the second authentication. Total
of 393 participants completed both the first and the second authentication, and we only
include their data in our analysis. Some basic statistics for the passphrases per pass-
phrase model are shown in Table 2. We had 44–66 participants per password model.
Except for MNPass(0)-Long, all other models generated passphrases of comparable
word-length. User-chosen words tended to be shorter (4.21–5.8) than system-chosen
words (7.4–7.6 characters), which directly maps into differences in character length be-
tween user-chosen passphrases, and those that had some words chosen by the system.

Similar to the prior research [15, 30] we evaluated the semantic structure of pass-
phrases, by applying part-of-speech (POS) tagging and dependency parsing. We grouped
the passphrases into three categories: (1) noun sequence (contain nouns only), (2) sen-
tence (contain subject, verb and object) and (3) segment (all others). For space reasons,
we only summarize these results. About half of user-chosen passphrases follow the
sentence structure, and about a third are sequences of nouns. Conversely Bonneau and
Shutova found in [15] that most short passphrases were segments. The difference be-
tween our findings and theirs is likely due to our use of longer passphrases (5+ words in-
stead of 2+). Mnemonic-guided passphrase creation disturbs the user tendency towards
the sentence structure, and leads to more balanced distribution of semantics structures

11

(towards noun sequences and segments), which increases attacker’s guessing effort.
Longer (6-7 word) passphrases tend to favor sentence structure as much as user-chosen
passphrases, but they have higher percentage of segments and lower percentage of noun
sequences. System-chosen passphrases all have the segment structure.

6.2 Mnemonics Improve Recall

We considered recall successful if users matched the entire passphrase in its normalized
form – with removed capitalization, punctuation and whitespaces. We denote this match
criterion exact match. We also considered a relaxed match criterion, where we normal-
ize nouns to their singular form, and verbs to their stem form using the Porter stemming
algorithm [5], before both storing and authentication. We hypothesized, and our results
prove, that this relaxed matching further improves recall, and does not greatly decrease
strength against statistical attacks. Table 3 shows the authentication success per model,
for the exact and the relaxed matching.

Passphrase Model
Authentication success

exact match relaxed match
3 day 7 day 3 day 7 day
w/o hint

UPass 52.3% 40.0% 63.6% 45.0%
SysPass 20.7% 12.5% 22.4% 14.3%

w hint
UPassHint 71.4% 69.6% 76.8% 73.2%

SysPassHint 26.8% 18.9% 28.7% 19.6%
MNPass(0) 69.7 % 66.7% 80.3% 66.7%
MNPass(1) 69.3% 67.7% 75.8% 69.3%

MNPass(0)-Long 66.7% 62.8% 78.4% 72.5%
Table 3. User recall three days and seven days after passphrase creation

Hint-Mnemonics Improve Recall. Within the same passphrase model (UPass vs.
UPassHint, SysPass vs. SysPassHint) there was a statistically significant increase (Welch
Two Sample t-test, 95% confidence interval), in recall rates when hint-mnemonics
were used. Recall rates of UPassHint were higher than those of UPass (t(88)=1.76,
p=0.04), and recall rates of SysPassHint were higher than those of SysPass (t(85)=2.75,
p=0.003). Hint-mnemonics improve recall by 30–36% after three days. The role of
hint-mnemonics becomes more prominent as time goes on. After seven days, hint-
mnemonics improve recall by 51–74%. Improvement is also greater for user-chosen
passphrases, than for system-chosen ones. User-chosen passphrases have personal sig-
nificance to the user, and hints help users recall this association and thus recall the
passphrase. Over four days (day 3 vs day 7 recall), recall of user-chosen passphrases
declines by 24%, but when hints are used, recall declines only by 3%. System-chosen
passphrases lack personal significance. Over four days, their recall declines by 40%,
without hints, and by 30% with hints. Overall, recall rate of system-chosen passphrases
is around 2.5–3.2× lower than that of user-chosen passphrases.

12

Hints Aid Recall of Important Facts. Users could fail to recall passphrases be-
cause they forgot the words they chose during creation, or because they forgot details
about these words, e.g., the exact form of the verb they used (e.g., “work” vs “working”
vs “worked”) or if they used plural or singular form of a noun (e.g., “egg” vs “eggs”).
To investigate these aspects we compare recall for exact match versus relaxed match
criteria. Relaxed matching improves recall by 3–21% over exact matching. The im-
provement is larger when no hints are used (8–21%) than with the hints (3–17%). Yet,
these improvements are much lower than improvements from using hints (e.g., 12%
versus 72% for UPass), signifying that hints aid recall of important facts.

MNPass Recall Comparable to UPass Recall. Mnemonic-guided passphrase cre-
ation may jeopardize personal significance of passphrases to the user, and thus impair
recall. We investigate this possibility by comparing recall of our three MNPass models
with UPassHint. MNPass(0) is structurally the most similar to UPassHint – both models
contain around five user-chosen words per passphrase. Recall of MNPass(0) is a little
lower than that of UPassHint (69.7% vs 71.4% after three days, 66.7% vs 69.6% after
seven days). When one of the words is chosen by the system – MNPass(1) – the recall
stays roughly the same, and comparable to that of UPassHint. Thus system-based gen-
eration of one passphrase word has minor impact on recall. But the generation of all
words by the system (as in SysPass and SysPassHint) drastically lowers recall. When
we increase the length of the MNPass from five to seven words, the recall declines fur-
ther. It is 66.7% for MNPass(0)-Long vs 71.4% for UPassHint after three days, and
62.8% vs 69.6% after seven days).

6.3 Mnemonics Improve Security Against Phrase-Dictionary Attacks

We next investigate the impact of guide-mnemonics on passphrase strength. Table 4
shows the median strength (guess number) against LM attacker per passphrase model,
in columns 2–5. We use the exact and the relaxed matching for attacker guesses. We
show the strength against the full LM attacker (when no hint-mnemonics are shown
to users) in columns 2–3, and the strength against the adjusted LM attacker (when
hint-mnemonics are shown to users) in columns 4–5. Columns 6–13 show the strength
against phrase-dictionary attacker as the percentage of passphrases that have 0, 1, 2
and 3+ words overlapping with some phrase in the dictionary. The longer the overlap,
the lower the strength against phrase-dictionary attacker. We show the overlap for our
“Famous phrases” dictionary (columns 6–9) and for our “Popular pages” dictionary
(columns 10–13).

Mnemonics Impact on Strength Against LM Attacks. When mnemonics are used
only during passphrase creation, but not during authentication (columns 2–3 in Table
4), the strength against LM attacker does not change significantly. Welch Two Sample
t-test shows no difference in means, (t(99)=0.07, p=0.95). System-chosen passphrases
show statistically significant increase in strength (t(74)=-3.07, p=0.002) from 8 ·1015 to
2.6 ·1021. However, when mnemonics are used both during creation and authentication,
the passphrase strength against LM attacker drops five orders of magnitude, from 4·1017
to 1.1 ·1012. Thus hint-mnemonics have a large impact on strength against LM attacker.

We can recoup much of this strength loss, if we allow the system to suggest one
word in a passphrase (MNPass(1)) or if we ask for longer passphrases (MNPass(0)-

13

Passphr. Mod.
LM attack. (guess num) Phrase-dict attack. (%)

w/o hint w hint Famous phr. Popular pgs
exact relax. exact relax. 0 1 2 3+ 0 1 2 3+

User-chosen passphrases
UPass

8 · 1015 4.2 · 1015 1.2 · 1010 8.8 · 109 0 8 40 52 0 20 29 51UPassHint
Mnemonics-guided passphrases

MNPass(0) 4.0 · 1017 1.3 · 1017 1.1 · 1012 4.0 · 1011 0 34 61 5 0 29 63 8
MNPass(1) 2.6 · 1019 1.0 · 1019 1.3 · 1016 5.4 · 1015 8 50 39 3 8 44 48 0

MNPass(0)-Long 2.6 · 1021 7.1 · 1020 1.5 · 1015 1.3 · 1015 6 17 59 18 6 16 60 18
System-chosen passphrases

SysPass
2.6 · 1021 7.9 · 1020 3.9 · 1017 3.9 · 1017 0 100 0 0 0 97 3 0SysPassHint

Table 4. Passphrase strength against LM attacker and against phrase-dictionary attacker per pass-
phrase model. For LM attacker, we show the average of the estimated strength guess number. For
the phrase-dictionary attacker, we show the percentage of passhphrases, which have a given num-
ber of words overlapping with a common phrase.

Usability Deployability Security

Scheme M
em

or
yw

is
e-

E
ffo

rt
le

ss
Sc

al
ab

le
-fo

r-
U

se
rs

N
ot

hi
ng

-t
o-

C
ar

ry
Ph

ys
ic

al
ly

-E
ffo

rt
le

ss
E

as
y-

to
-L

ea
rn

E
ffi

ci
en

t-
to

-U
se

In
fr

eq
ue

nt
-E

rr
or

s
E

as
y-

R
ec

ov
er

y-
fr

om
-L

os
s

A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-

pe
r-

U
se

r
Se

rv
er

-C
om

pa
tib

le
B

ro
w

se
r-

C
om

pa
tib

le
M

at
ur

e
N

on
-P

ro
pr

ie
ta

ry
R

es
.-t

o-
Ph

ys
ic

al
-O

bs
er

va
tio

n
R

es
.-t

o-
Ta

rg
et

ed
-I

m
pe

rs
on

at
io

n
R

es
.-t

o-
T

hr
ot

tle
d-

G
ue

ss
in

g
R

es
.-t

o-
U

nt
hr

ot
tle

d-
G

ue
ss

in
g

R
es

.-t
o-

In
te

rn
al

-O
bs

er
va

tio
n

R
es

.-t
o-

L
ea

ks
-f

ro
m

O
th

er
Ve

ri
fie

rs
R

es
.-t

o-
Ph

is
hi

ng
R

es
.-t

o-
T

he
ft

N
o-

Tr
us

te
d-

T
hi

rd
-P

ar
ty

R
eq

ui
ri

ng
-E

xp
lic

it-
C

on
se

nt
U

nl
in

ka
bl

e

Web passwords

Graph. pass. (PCCP)

MNPass

– offers the benefit, – almost offers the benefit, no circle – does not offer the benefit
– better than passwords, – worse than passwords, no circle – no change

Table 5. Comparing MNPass to passwords using the UDS framework [13]. MNPass outperform
passwords in usability and security (6 categories) and do worse in deployability (2 categories).
MNPass outperform PCCP in 6 categories, and do worse in 3 categories.

Long). Both of these approaches return the average passphrase strength against LM
attacker to guess numbers above 1015.

Mnemonics Impact on Strength Against Phrase-Dictionary Attacks. We report
the percentage of passphrases, which have a given-length word overlap with common
phrases in our dictionaries, in Table columns 6–13. We discuss only overlap with fa-
mous phrases (columns 6–9), the other overlap shows a similar trend. Having a 1-word
overlap is common and expected, as passphrases use popular English words. 52% of

14

user-chosen passphrases have 3+ word overlap with some popular phrase, and 40%
have 2-word overlap. In addition, 5% of UPass and 13% of UPassHint passphrases are
fully matched with popular quotes or search results in our phrase-dictionaries. Exam-
ples are “where there is will there is way”, “Seven Days Of The Week”, “roses are red
violets are blue”, “eines schickt sich nicht fur alle”, etc. Therefore, phrase-dictionary
attacks can be highly effective.

When mnemonics are used during passphrase creation, 3+ overlap reduces to only
5% for MNPass(0) and 2-word overlap increases to 61%. When the system is allowed
to choose one word in a passphrase, the 3+ word overlap reduces to only 3% for MN-
Pass(1) and 2-word overlap reduces to 39%. Finally, when users are asked to generate
longer passphrases, 18% of them have 3+ word overlap with popular phrases, and 59%
have 2-word overlap. We conclude that MNPass(0) and MNPass(1) models significantly
increase strength of passphrases against phrase-dictionary attacks by reducing the inci-
dence of 3+ word overlaps.

System-Aided Better Than Longer. We can improve strength of passphrases by
making guide-mnemonics longer or by allowing the system to choose one word of
the passphrase. Comparing the strength of the resulting passphrases, we find that both
approaches have the same effect. Both increase the passphrase guess number for the
LM attacker from 1.1 · 1012 to 1.3 · 1016 or 1.5 · 1015, i.e. by 1,000–10,000×. However,
system-aided word selection has much lower negative impact on recall (Section 6.2)
and leads to passphrases, which do not significantly overlap the common phrases (3+
word overlap is under 5%).

Mnemonic-Guided Comparable to System-Chosen. Another way to improve stre-
ngth of passphrases is to let the system generate all the passphrase words, but that leads
to low recall (Section 6.2). Comparing the strength of SysPass, with the strength of
MNPass(1) and MNPass(0)-Long, we find that passphrases fully generated by system
are only around 100× stronger than mnemonic-guided passphrases.

Relaxed Matching Is Acceptable. Relaxed matching lowers security, because more
of the attacker’s guesses lead to successful authentication. We measure this effect by ap-
plying the exact and the relaxed matching to our language model for strength calcula-
tion. Relaxed matching lowers the strength by at most 10 ×, and thus has an acceptable
security cost, while greatly improving recall.

6.4 Users Like Mnemonics

After each participant completed their 7-day authentication, they were asked to rate
their agreement with the following statements, on a Likert-scale, from 1 (strongly dis-
agree) to 10 (strongly agree): (1) Mnemonic hints were helpful for authentication, and
(2) Authentication approach was easy to use. For space reasons, we summarize these
results. Participants strongly agreed that hints were helpful for recall of MNPass (7.76)
and UPass (6.86), but they were much less helpful for SysPass (4.46). Regarding ease
of use, participants rated mnemonic-guided passphrases (6.98–8.25) as highly as user-
chosen passphrases (6.57–7.86), and they rated system-chosen passphrases much lower
(2.51–3.15).

15

6.5 Mnemonic Passphrases Outperform Passwords and PCCP

In [14], Bonneau et al. present the usability-deployability-security (UDS) framework.
They define 25 properties of Web authentication schemes and use them to rate 35
password-replacement schemes. In Table 5 we reproduce the rating of passwords, the
rating of PCCP, which is the closest authentication approach to use, and we add our
rating for the MNPass model.

MNPass outperforms passwords and PCCP in six categories. Regarding usabil-
ity, MNPass are Quasi-Memorywise-Effortless, as users benefit from hint-mnemonics
but still forget some words. We also award Quasi-Scalable-for-Users based on de-
sign, since users are cued by hint-mnemonics, which should lower cognitive burden.
Future work should validate or refute this claim through human user tests. MNPass
are further Infrequent-Errors, thanks to our use of relaxed matching and normaliza-
tion. Regarding security, MNPass are Resilient-to-Throttled-Guessing and -Resilient-to-
Unthrottled-Guessing, because our evaluation shows that their strength approaches that
of fully random 3class8 passwords. Because different servers generate guide-mnemonics
independently, MNPass are also Quasi-Resilient-to-Leaks-from Other Verifiers. We do
not award full resilience, because a user may still choose the same word for the same
mnemonic letter. MNPass do worse than passwords in one usability and two deployabil-
ity categories, and worse than PCCP in three categories. They are less Efficient-to-Use,
as they take longer to create and authenticate. They are not Server-Compatible nor Ma-
ture, because they are a research technology and are not widely deployed. They are
not Resilient-to-Targeted-Impersonation as a friend may be able to guess a passphrase
when shown a hint-mnemonic. Finally, they are not Resilient-to-Phishing as an attacker
who displays the same hint-mnemonic can harvest a user’s passphrase.

7 Conclusion
It is difficult to create a passphrase mechanism, which has both a high recall and a
high strength against statistical attacks. We explored use of mnemonics to this effect.
We found that use of mnemonics as authentication hints significantly improves recall,
because it helps users remember which words they chose during passphrase creation.
Mnemonics can further be used to guide passphrase creation, which reduces use of com-
mon phrases and improves strength against statistical attacks. While the use of mnemo-
nics at authentication lowers security, we can recoup this loss by allowing the system
to choose one word in a passphrase. This passphrase model keeps both the security
and recall of passphrases high – the security matches that of system-chosen passphra-
ses, while the recall matches that of user-chosen passphrases. Mnemonics at passphrase
creation would further prove a valuable aid to reduce passphrase reuse. We thus believe
mnemonics are a promising technique to improve user authentication.

8 Acknowledgements

We thank Matteo Dell’Amico (Symantec Research Labs) for help in evaluating pass-
phrase strength, and we thank anonymous reviews for their helpful feedback.

16

References

1. Famous Quotes at BrainyQuote. http://www.brainyquote.com/.
2. Google-20K-English Words. https://github.com/first20hours/.
3. Love Poems And Quotes. http://www.lovepoemsandquotes.com/.
4. Short Poems. https://www.shortpoems.org/.
5. The Porter Stemming Algorithm. http://tartarus.org/martin/

PorterStemmer/.
6. Top 100 - Project Gutenberg. https://www.gutenberg.org/browse/scores/

top.
7. Top 100 Favorite Movie Quotes. http://www.imdb.com/.
8. BICAKCI, K., AND VAN OORSCHOT, P. C. A Multi-word Password Proposal (gridWord)

and Exploring Questions about Science in Security Research and Usable Security Evaluation.
In Proceedings of the 2011 New security paradigms workshop (2011), ACM, pp. 25–36.

9. BIDDLE, R., CHIASSON, S., AND VAN OORSCHOT, P. C. Graphical passwords: Learning
from the first twelve years. ACM Computing Surveys (CSUR) 44, 4 (2012), 19.

10. BLOCKI, J., KOMANDURI, S., CRANOR, L., AND DATTA, A. Spaced Repetition and Mne-
monics Enable Recall of Multiple Strong Passwords. arXiv preprint arXiv:1410.1490 (2014).

11. BONNEAU, J. The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In 2012 IEEE Symposium on Security and Privacy (May 2012).

12. BONNEAU, J., BURSZTEIN, E., CARON, I., JACKSON, R., AND WILLIAMSON, M. Secrets,
Lies, and Account Recovery: Lessons from the Use of Personal Knowledge Questions at
Google. In 25th International World Wide Web Conference (WWW) (May 2015).

13. BONNEAU, J., HERLEY, C., VAN OORSCHOT, P. C., AND STAJANO, F. The Quest to
Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Sche-
mes. In 2012 IEEE Symposium on Security and Privacy (May 2012).

14. BONNEAU, J., HERLEY, C., VAN OORSCHOT, P. C., AND STAJANO, F. Passwords and the
Evolution of Imperfect Authentication. Communications of the ACM (July 2015).

15. BONNEAU, J., AND SHUTOVA, E. Linguistic Properties of Multi-word Passphrases. In
Financial Cryptography and Data Security. Springer, 2012, pp. 1–12.

16. CHELBA, C., MIKOLOV, T., SCHUSTER, M., GE, Q., BRANTS, T., AND KOEHN, P. One
Billion Word Benchmark for Measuring Progress in Statistical Language Modeling. CoRR
abs/1312.3005 (2013).

17. CHIASSON, S., FORGET, A., BIDDLE, R., AND VAN OORSCHOT, P. C. Influencing Users
Towards Better Passwords: Persuasive Cued Click-points. In Proceedings of the 22nd British
HCI Group Annual Conference on People and Computers: Culture, Creativity, Interaction-
Volume 1 (2008), British Computer Society, pp. 121–130.

18. CHIASSON, S., VAN OORSCHOT, P. C., AND BIDDLE, R. Graphical Password Authentica-
tion Using Cued Click Points. In European Symposium on Research in Computer Security
(2007), Springer, pp. 359–374.

19. DAS, S., HONG, J., AND SCHECHTER, S. Testing Computer-Aided Mnemonics and Feed-
back for Fast Memorization of High-Value Secrets. Proceedings of the 2016 Usable Security
Workshop.

20. DAVIS, D., MONROSE, F., AND REITER, M. K. On User Choice in Graphical Password
Schemes. In USENIX Security Symposium (2004), vol. 13, pp. 11–11.

21. DELL’AMICO, M., AND FILIPPONE, M. Monte Carlo Strength Evaluation: Fast and Reli-
able Password Checking. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (2015), ACM, pp. 158–169.

22. FLORENCIO, D., AND HERLEY, C. A Large-scale study of Web Password Habits. In Pro-
ceedings of the 16th WWW conference (2007), ACM, pp. 657–666.

17

23. FRANCIS, W. N., AND KUCERA, H. Brown corpus manual. Brown University (1979).
24. HAN, L., KASHYAP, A., FININ, T., MAYFIELD, J., AND WEESE, J. UMBC EBIQUITY-

CORE: Semantic textual similarity systems. In Proceedings of the Second Joint Conference
on Lexical and Computational Semantics (2013), vol. 1, pp. 44–52.

25. JURAFSKY, D. Speech & language processing. Pearson Education India, 2000.
26. KEITH, M., SHAO, B., AND STEINBART, P. A Behavioral Analysis of Passphrase Design

and Effectiveness. Journal of the Association for Information Systems 10, 2 (2009), 2.
27. KEITH, M., SHAO, B., AND STEINBART, P. J. The Usability of Passphrases for Authen-

tication: An Empirical Field Study. International journal of human-computer studies 65, 1
(2007), 17–28.

28. KUO, C., ROMANOSKY, S., AND CRANOR, L. F. Human Selection of Mnemonic Phrase-
based Passwords. In Proceedings of the 2006 Symposium on Usable Privacy and Security,
pp. 67–78.

29. PLIAM, J. O. On the Incomparability of Entropy and Marginal Guesswork in Brute-force
Attacks. In Progress in Cryptology, INDOCRYPT 2000. Springer, pp. 67–79.

30. RAO, A., JHA, B., AND KINI, G. Effect of Grammar on Security of Long Passwords.
In Proceedings of the third ACM conference on Data and application security and privacy
(2013), pp. 317–324.

31. ROBINS, G. Good Quotations by Famous People. http://www.cs.virginia.edu/
˜robins/quotes.html.

32. SHAY, R., KELLEY, P. G., KOMANDURI, S., MAZUREK, M. L., UR, B., VIDAS, T.,
BAUER, L., CHRISTIN, N., AND CRANOR, L. F. Correct Horse Battery Staple: Explor-
ing the Usability of System-assigned Passphrases. In Proceedings of the 2012 Symposium
on Usable Privacy and Security, p. 7.

33. SPECTOR, Y., AND GINZBERG, J. Pass-sentence – a New Approach to Computer Code.
Computers & Security 13, 2 (1994), 145–160.

34. VERAS, R., COLLINS, C., AND THORPE, J. On semantic patterns of passwords and their
security impact. In NDSS (2014).

35. WEIR, M. Quotes to use in pass-phrase cracking. https://sites.google.com/
site/reusablesec/Home/custom-wordlists.

36. ZVIRAN, M., AND HAGA, W. J. A Comparison of Password Techniques for Multilevel
Authentication Mechanisms. The Computer Journal 36, 3 (1993), 227–237.

A Examples of Generated Passphrases for Each Passphrase Model

In this Appendix, we provided 10 random samples of passphrases that the participants
generated for different passphrase models.

UPass/UPassHint

– My Cat Is Very Funny
– My Dog Was Named Max
– Cat Came Drink Bowl Milk
– Bob And Ted And Carol
– The World Is Not Enough
– Brown Orange Double Deer Horse
– Citi Is The Ideal Bank
– Salvador Dali Max Ernst Joan Mitchell

18

– I Saw My Dad Died
– Please remember all your stuff

MNPass(0):
– Monday Tuesday One Day Xero
– Good Boys Love Orange Juice
– Public Works Corporation Hold Judicial Deployment
– Safe Cute Underwater Drinking Dorylaus
– Lazy Oscar Dog Goes Inside
– Big Jack Had King And Elephant
– More Power Vote Jim By Italy
– Often People Underestimate Fantastic News
– Good Gibbons Break In Nairobi
– Could Tigger Get Loved Once

MNPass(1):
– Red Ananders Mom Ananders Dog
– Alpine Surfand Turfweeds Rarely Ordered
– Can Agaya Really Pull Out
– Cats Are Running Torured Out
– My Intelligence Shows The Infearior
– Put Anything Towards Honey Onaben
– Under New Bridge Up Richyard
– Dog On Ground Funky Iselmux
– Street Unsures Pets Eat Rats
– Maigne Igloo Looks Toward Ocean

MNPass(0)-Long:

– Come Over Mother And Tell Us Lies
– She Uses Lemon Polish High Up Right
– Flying Lemurs Are Not Notably Expert Landers
– Soon Andrew Niece Drive A Reno
– Can A Kangaroo Eat What Al Likes
– Maybe Endor Noise Should Undergo Radical Action
– All Nine Ten Bring It Right Down
– Rice And Things In Our Nearest
– Free Of Long And Creepy Inaccurate Noises
– Parrot Elephant Rooster In Care Attention Room

SysPass/SysPassHint:
– Economist Compressed Lunacy Decreased Marine
– Happens Mouth Wyoming Java Uncritical
– Bandy Sophisticated Urgency Berkeley Capita
– Tripoli Crumbled Forming Expence Rapturous
– Encountered Jewelry Albany Rewritten Economize Upturned
– Mahdi Saskatchewan Fell Frosted Youthfulness
– Qualification Howitzer Conjuring Experimental Relentlessly Advisor
– Nearby Betty Competency Competitors Quince
– Jobs Quire Trident Yours Operations
– Expo Generic Overdue Houseboat Voiceless

19

