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Abstract—Malware continues to be a major threat to infor-
mation security. To avoid being detected and analyzed, modern
malware is continuously improving its stealthiness, including code
obfuscation and encryption. On the other hand, a high number
of unique malware samples detected daily suggests a likely high
degree of code reuse under the layers of stealth. We observe
that although obfuscation greatly changes a malware’s binary,
its functionalities remain intact.

We propose to leverage malware’s network behavior during its
execution, to understand the malware’s functionality and detect
related or even same (polymorphic) malware. While malware
may transform its code to evade analysis, we contend that its key
network behaviors must endure through the transformations to
achieve the malware’s ultimate purpose, such as sending victim
information, scanning for vulnerable hosts, etc. We propose an
encoding of malware samples that can help us classify samples,
identify code reuse and genealogy, and develop behavioral signa-
tures for malware defense based on malware’s network behavior.
We leverage the same encoding to identify polymorphic malware
in a random dataset containing more than 8,000 diverse samples
from the Georgia Tech Apiary project. We cluster 6,595 samples
which show some network activity based on our embedding
features and more than 90% of the cluster contains potentially
polymorphic malware with up to 80% of the clusters identify
truly polymorphic malware samples, i.e., they have identical
network behavior as at least one other sample in our dataset.
Such high level of polymorphism indicates a high level of code
reuse, and shows how our approach can complement traditional
code analysis techniques for malware defense.

Index Terms—malware, network, polymorphic, genealogy

I. INTRODUCTION

The Internet is facing increasing threats due to the prolifera-
tion of malware. A study by Purple Sec suggests an estimated
daily number of 230,000 new malware samples [18]. Such
high malware production rate suggests that new malware may
be created by transforming existing code to evade signature
detection.

Malware designers invest large effort to change their bina-
ries to avoid detection and analysis by defenders. From sim-
ple instruction transformation, such techniques have evolved
through junk code injection, code obfuscation, to polymorphic
and metamorphic engines that can transform malware code
into millions of variants [21]. Such obfuscation techniques
have greatly undermined traditional signature-based malware
detection methods, and they create an enormous workload
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for code analysis. Yet much of the new malware variants
could simply be old malware in a new package, or new
malware assembled from pieces of old malware. Clearly, as
new malware samples emerge, code analysis and signature-
based filtering cannot keep pace.

Besides static analysis, researchers have used dynamic anal-
ysis to overcome code obfuscation. Dynamic analysis includes
tracking disk changes, analyzing dynamic call graphs, as well
as monitoring malware execution using debuggers and virtual
machines. However, modern malware is often equipped with
anti-debugging and anti-virtualization capabilities [22], [23],
making dynamic code analysis in a controlled environment
difficult.

To complement contemporary static and dynamic code
analysis, we propose to study malware behavior by observing
and interpreting its network activity. Much of today’s malware
relies on the network connectivity to achieve its purpose,
such as sending reports to the malware author, joining the
botnet, downloading malicious code, sending spam and phish-
ing emails, etc. We hypothesize that it would be difficult for
malware to significantly alter its network behavior and still
achieve its purpose. Studying network behavior thus may offer
an opportunity to both understand what malware is trying to
do in an analysis environment, and to develop behavior or
network traffic signatures useful for malware defense.

In our previous papers, we have proposed the Fantasm
environment for safe and effective live malware analysis [7],
and we analyzed thousands of malware samples to identify
partial code reuse [6]. In this work, we turn our focus on de-
tecting polymorphic malware, i.e., samples that have identical
network behaviors but different binary code. We analyze 8,172
malware samples randomly selected from the Georgia Tech
Apiary project [1]. For each sample, we gather information
from anti-virus suite results from VirusTotal [27] as well as our
own embedding, which encodes network behavior information.
We compare the local behavior reported by VirusTotal and
remote network behavior collected by ourselves, and show
that our embedding provides better information for identifying
polymorphic malware. By clustering 6,595 samples, which
show some network activity, using features defined through
our embedding, we find that over 90% of clusters contain
potentially polymorphic malware, with up to 80% of the



clusters identify truly polymorphic malware. This indicates
the added benefit of network behavior encoding, over code
analysis, for malware classification and malware defense.

In Section III we describe our environment for safe and
effective malware experimentation, which we use to collect
information about the malware’s network behaviors. In Sec-
tion IV we detail our embedding of network behavior into a
feature vector for machine learning. In Section V we describe
our method for detection of polymorphic malware using our
embeddings. We show our findings in Section VI. We discuss
future work in Section VII and conclude in Section VIII.

II. BACKGROUND AND RELATED WORK

Malware analysis has received increased research interest
over the years [3], [19], [26]. In this section, we discuss
contemporary malware analysis methods and the rationale
behind our approach.

A. Static Binary Analysis

A common approach to malware detection is analyzing
binaries for code signatures — sequences of binary code
that are present in malware and are not common in benign
binaries [5], [12]. Such signatures can be used for malware
detection, e.g., when binary code is downloaded over the
network. Signature-based malware detection has been the most
widely used method and has been quite successful. However,
malware designers have also been working on countermea-
sures over the years to undermine such techniques. From junk
code generation, malware encryption and oligomorphism, to
polymorphic and metamorphic malware [21], such techniques
have evolved significantly.

Researchers have also been improving signature detection
methods, such as detecting decryption routines, performing
runtime signature detection, etc. It is difficult for researchers
to gain advantage in this race, as it will always be cheaper
to generate new, obfuscated malware variants, than to analyze
them.

Our research complements signature-based detection by
identifying common network-level behaviors of malware.
These behaviors can be used to develop behavioral signatures
of malware, which can be used to detect malware that bypasses
code-based defenses, and runs on compromised hosts. In
other words, signature-based detection can prevent malware
infections, and behavior signatures can detect infections that
bypass signature-based detection.

B. Dynamic Binary Analysis

Dynamic binary analysis builds behavioral signatures of
a malware’s interaction with its host. Such signatures may
include memory access and file access patterns, as well as
system call patterns. The patterns that are prevalent in malware
but not in benign binaries can be used to develop a behavioral
signature for malware detection [8].

Dynamic analysis complements static analysis, and can
overcome malware code obfuscation [9], [28]. However,
stealthy malware has another set of techniques to evade

dynamic analysis — it detects debuggers and virtual machines,
which are often used to speed up and facilitate dynamic
analysis, and modifies its behavior to hide its true purpose [2],
[4].

Our work complements binary analysis by providing another
set of features, based on network behavior of malware, that
can be used for detection and behavior analysis. Our approach
allows for feature collection using the network and does
not require virtualization (binaries can be run on bare metal
machines), which overcomes the aforementioned evading tech-
niques.

C. Dynamic Analysis of Network Behavior

There are a few efforts on analyzing the semantic of
malware network behavior. Sandnet [20] provides a detailed,
statistical analysis of malware network traffic, and surveys
popular protocols employed by malware. Morales et al. [16]
studied several network activities, selected using heuristics,
which include: (1) NetBIOS name request, (2) failed net-
work connections after DNS or rDNS queries, (3) ICMP-
only activity with no replies or with error replies, (4) TCP
activity followed by ICMP replies, etc. These activities can
be used to detect the likely presence of malware. Nari et
al. [17] proposed an automated malware classification system
also focusing on malware network behavior, which generates
protocol flow dependency graph based on the IP address being
contacted by malware. Lever et al. [13] experimented with 26.8
million samples collected over five years and showed several
findings including that dynamic analysis traces are susceptible
to noise and should be carefully curated, Internet services
are increasingly filled with potentially unwanted programs, as
well as that network traffic provides the earliest indicator of
infection.

Our work complements the prior efforts by using a larger
and more generic set of features to encode a malware’s
network behavior. In our prior work [6] we have shown
how this encoding can be used to study a malware sample’s
genealogy and trends in malware code. In this work we focus
on using the same encoding to detect polymorphic malware.

III. CAPTURING MALWARE NETWORK BEHAVIOR

Contemporary malware relies more and more on the net-
work to achieve its ultimate purpose [10], [24]. Malware
often downloads binaries needed for its functionality from the
Internet, or connects into command and control channel to
receive instructions on its next activity [11]. Advanced persis-
tent threats [25] and key-loggers collect sensitive information
on users’ computers, but need network access to transfer it to
the attacker. DDoS attack tools, scanners, spam, and phishing
malware require network access to send malicious traffic to
their targets.

We study malware network activities because they have be-
come essential for modern malware. The first step in this study
includes capturing malware’s network traffic in an environment
that is transparent to malware, and that also minimizes risk to
Internet hosts from adversarial malware actions.



A. Analysis Environment

[ Service or Protocol [
DNS, HTTP, HTTPS
FTP, SMTP, ICMP_ECHO
Other services or protocols

Label |
Not risky
Risky, can be impersonated
Risky, cannot be impersonated

TABLE I: Flow policies in Fantasm

We leverage the experimentation platform, called Fantasm,
described in [7]. Fantasm is built on the DeterLab testbed [15],
which is a public testbed for cyber-security research and
education. DeterLab allows users to request several physical
nodes, connect them into custom network topologies, and
install custom OS and applications on them. Users are granted
root access to the machines in their experiments.

Fantasm runs on Deterlab with full Internet access, and
carefully constrains this access to achieve productive malware
analysis, and minimize risk to outside hosts. In our analysis,
we run malware on a bare-metal Windows XP host, without
any virtualization or debugger. We capture and analyze all
network traffic between this machine and the outside, using a
separate Linux host, which resides between the Windows host
and the Internet. Both hosts are controlled by the Fantasm
framework.

Fantasm makes decisions on which communications to
impersonate, i.e., intercept and answer itself, which to forward
and which to drop. This decision is made by taking into
account each outgoing flow separately, making an initial de-
cision, and revising it later if subsequent observations require
this. Fantasm defines a flow as a unique combination of
destination IP address, destination port, and protocol. Each
flow is initially regarded as non-essential, and it is dropped. If
this leads to the abortion of malware activity, Fantasm stops
analysis, restarts it, and regards that specific flow as essential.
Fantasm then considers if it can fake replies to this outgoing
connection in a way that would be indistinguishable from the
actual replies, should the flow be allowed into the Internet.
If Fantasm has an impersonator for the given destination and
the given service, it will intercept the communication and fake
the response. Otherwise, it will evaluate if the outgoing flow
is risky, i.e., potentially harmful to other Internet hosts. If so,
the flow will be dropped. Otherwise, it will be let out into
the Internet. Table I illustrates the criteria used by Fantasm
to determine if a flow is risky or not, and if it can be imper-
sonated. Fantasm monitors a given sample’s communication
with the Internet, and limits the number of suspicious flows —
flows that receive no replies — that a sample can initiate. Many
scans and DDoS flows will be classified as suspicious. If the
analyzed malware sample exceeds its allowance of suspicious
flows (10 in the current implementation), Fantasm aborts the
experiment and stops its analysis.

IV. EMBEDDING THE SAMPLES

Once each sample is analyzed in Fantasm, we extract flow-
level details from the captured traffic traces and create an
embedding for each flow and each sample. We reuse the flow
features as defined in [6].

Our selected flow features can be categorized into three

broad categories:

« Header information. This information includes destina-
tion address, port, and transport protocol. We use this
information to detect when different malware samples
contact the same server, or same destination port (and
thus may leverage the same service at the destination
server).

o Flow dynamics. This includes a sequence of application-
data-units (ADUs, see Section IV-A) exchanged in each
direction of the flow, which corresponds to request and
response sizes on the flow. We use these features to detect
malware flows with similar communication patterns.

« Payload information. We use a frequency-based tech-
nique [6] to encode the flow’s payload into a compressed
format, which can be used for fast comparison between
flows. We transform each flow’s payload into a dictionary
that encodes each byte’s frequency. Keys to this dictio-
nary are all possible byte values, 0-255, and the values
being stored are the counts of how many times the given
byte value was present in the payload. Finally, we divide
each count with the total payload size to arrive at the
frequency of byte values.

An embedding for an entire sample is the union of its flow
embeddings.

A detailed list of features selected for each category is
provided in Table II. We next introduce two metrics we use
to closely compare malware samples.

A. Application Data Unit (ADU)

Flow dynamics include sequences of application data units
with their sizes and direction. An application data unit, or
ADU, is an aggregation of a flow by the direction, which com-
bines all adjacent packets sent in the same direction together,
while maintaining the boundary of direction shift. Intuitively,
ADU dynamics seeks to encode the length of requests and
responses in a connection, between a malware sample and
a remote host. A transformation of packet trace to ADU is
illustrated in Table III. The ADU sequence is useful to detect
similar flows across different malware samples based on their
communication dynamics. For example, two different samples
may download the same file from two different servers, and
the contents may be encrypted with two different keys. This
will make their payload information different. However, the
ADU sequence of these two flows should be very similar,
enabling us to detect that these two flows have a similar or
same purpose.

B. Payload Byte Frequency

Payload usually stores application-level data. Not all mal-
ware flows carry a payload, but if it is present it usually
carries high-level logic, such as new instructions or binaries
that are important for new functionality in malware. Hence
it is important to study payload contents. On the other hand,
payload information usually does not have a specific structure,
as different malware may organize its data differently. We thus



[ Feature Category |

Feature Selected

Data Type |

Header information

Protocol

Source/Destination address
Source/Destination port

string
number
string

Flow dynamics

Application data unit sequence | list

Payload information

Byte frequency

dict

TABLE II: Features selected for flow and sample embedding

need a way to quickly summarize and compare payloads that
may have very different formats.

We transform each flow’s payload into a dictionary that
encodes each byte’s frequency. Keys to this dictionary are all
possible byte values, 0-255, and the values being stored are the
counts of how many times the given byte value was present
in the payload. Finally, we divide each count with the total
payload size to arrive at the frequency of byte values. This
encoding has two advantages: First, it has a fixed and much
smaller size than the actual payload. Second, it simplifies our
similarity comparison between flows and samples.

V. POLYMORPHIC MALWARE DETECTION

Polymorphic malware transforms its binary form, without
changing its behavior. This enables malware to avoid being
detected by most of the AV suites, because it evades static
signature detection.

A typical malware changes its binary form through a poly-
morphic engine. A common approach used by a polymorphic
engine is packing, which transforms a binary by encrypting
or compressing it, and includes shell code to reverse this
transformation in runtime.

In contrast there also exists a type of malware called
metamorphic malware, which permanently transforms its bi-
nary code into another form while maintaining its behavior
by replacing its assembly instructions with instructions that
have equivalent functionality. From the attacker’s point of
view, achieving metamorphic transformation is harder than
achieving polymorphism — the first requires transformation of
the assembly code, which is non-trivial, while the second just
requires encryption with a unique key. Therefore we focus on
polymorphic malware in this work.

We identify potential polymorphic malware samples using
clustering over parts of our encoding of network behaviors.
In Section VI we experiment with ADU sequence feature and
with byte frequency feature, and show that byte frequency
works better in identifying polymorphic malware. We do not
use header information for clustering as a sample could easily
change its communication endpoint (e.g., C&C server) and
port to evade signature-based network detection. In other
cases, the change of communication endpoint occurs because
malware contacts a cloud-based service and each sample may
communicate with a set of different IP addresses.

Since the ADU sequence feature has variable length, de-
pending on the number of flows and number of ADUs in each
flow, we limit the number of flows to 50 and number of ADUs
per flow to 10. For shorter flows and smaller samples, we pad
their embedding with zeros. Finally, to be robust to flow or

ADU reordering we concatenate embeddings for each flow in
a sample, and sort the resulting embedding before clustering.

Similarly for byte frequency feature, we limit the number
of flows per sample to 50, pad shorter flows with zeros and
concatenate their embeddings, then sort to produce the final
embedding for the sample.

We use OPTICS algorithm (Ordering Points To Identify the
Clustering Structure) from Scikit-Learn for clustering, which
is an algorithm for finding density-based clusters in spatial
data. OPTICS uses Euclidean distance between vectors that
are being clustered, and two parameters — max_eps, which
denotes the maximum distance of a sample from its cluster
and min_samples, which denotes the smallest allowed cluster
size.

VI. EVALUATION

We now use features and patterns identified or defined in
the previous sections to study the prevalence of polymorphic
malware in contemporary malware. It is difficult to evaluate
accuracy of our polymorphic malware identification, because
there is no public polymorphic malware dataset. Instead, we
use a collection of randomly selected malware samples from
the Georgia Tech Apiary project [1]. We use our approach
to identify clusters of malware, which we believe are poly-
morphic and then we use observation of malware’s local
behavior to double-check quality of our findings. This process
is detailed in Section VI-B.

A. Experiment Setup

We build our experiment environment using the Fantasm
platform [7] as introduced in Section III-A. Fantasm utilizes
the Deterlab infrastructure to construct a LAN environment
with a node running Windows to host the malware, and another
node running Ubuntu Linux acting as the gateway. In addition,
Fantasm provides necessary services for impersonators, and
monitors the network activities by capturing all network pack-
ets using fcpdump. One round of analysis for a given malware
sample consists of the following steps:

« Enable service network monitoring on Linux gateway

« Reload operating system on Windows node and set up
necessary network configurations

« Deploy and start the malware binary and continue running
it for a given period (we used 5 minutes)

« Kill the malware process and save the captured network
trace.

This setting has the advantage that it is immune to current
analysis evasion attempts by malware, because it does not use
a debugger or a virtual machine. By reloading OS for each



[ Pkt ID [ Direction | Pkt size ]
1 incoming 50
2 incoming 60
3 outgoing 50
4 incoming 100
5 outgoing 70
6 outgoing 90
7 incoming 80
8 incoming 100

(a) Packet sequence

[ Ref. ID [ Direction [ Pkt size ]
(1+2) incoming 110
3) outgoing 50
“4) incoming 100
(5+6) outgoing 160
(7+8) incoming 180

(b) ADU sequence

TABLE III: ADU transformation from packet sequence

run, it ensures that each sample is analyzed in an environment
free from any artifacts from the previous analysis rounds.

We selected malware samples captured throughout 2018 for
this research. Next, we submitted each sample to VirusTo-
tal [27] to determine the type of malware, and ensure that
the sample is recognized as malicious. We randomly selected
8,217 samples for our evaluation. We then analyzed each
selected sample in our experiment environment, using the
method described above. After the analysis, we have saved
traces with all captured communications to and from the
Windows node.

In total, we have analyzed 6,595 malware samples out of the
8,172 samples we have selected. The remaining 1,577 samples
do not successfully exchange payload with an external host.
They send only DNS queries to the local resolver but do not
initiate any further contact with the outside. Since this low
level of network communication is not sufficient to establish
a malware sample’s purpose, we exclude these samples from
further analysis.

B. Cross-verifying Our Findings

To evaluate quality of our clustering and usefulness of our
network behavior features for identification of polymorphic
malware, we leverage malware’s local behavior. We reuse the
analysis results from VirusTotal to collect information about
a sample’s local behavior. Those reports include file system
accesses such as files created, opened, deleted, etc., host files
changed to manipulate DNS resolution, system mutex created
or opened, processes malware spawned, Windows registry
changed, runtime DLLs accessed, system services used, etc. To
compare local behaviors we need to decide which parameter to
use for comparison purpose. We find most of local information
are potentially unstable because they can be modified easily
by malware, for example, the names of accessed local file
may be modified even those they were actually the same file
being changed by different malware samples, therefore using
those filenames as a metric for finding polymorphic malware
samples will be unreliable. The same trick may also be applied
to other types of information by malware. We then focus on
those parameters that cannot be changed easily by malware,
while keeping its functionality. As a result, we select the
set of runtime DLLs accessed as a stable representation of
local malware behavior. This feature is the feature of the host
system, which malware leverages for its own purpose, and

thus it is difficult for malware to manipulate this feature while
preserving its functionality.

When we evaluate accuracy of a cluster that OPTICS
produced using our network behavior embedding, we will
count how many different local behaviors (different DLL sets)
we observe in each cluster. We label those clusters that have
a single DLL set as truly polymorphic. On the other hand if a
cluster has more than one DLL set, but fewer than the number
of samples in the cluster, we call this cluster potentially
polymorphic. Finally, if each sample in the cluster has a
different DLL set we say that this cluster is not polymorphic.

C. Calibrating Clustering Parameters

We first perform clustering experiments to identify best-
performing values of max_eps and min_samples. Our accuracy
measure is the percentage of clusters that are labeled as truly
polymorphic, because all samples in those clusters access
one set of local DLLs at runtime. The results are shown in
Table IV. We observe that the rate of detecting truly polymor-
phic improves as we decrease max_eps and min_samples with
diminishing improvements after reaching a certain threshold.
When we use ADU sequences, best results are achieved
for max_eps=10 and min_samples=2. These settings produce
408 clusters, out of which 74% are truly polymorphic and
additional 22.5% are potentially polymorphic. These settings
cluster 4,640 samples or 70% of all samples.

When we use byte frequency best results are achieved
for max_eps=20 and min_samples=2. These settings produce
320 clusters, out of which 81.9% are truly polymorphic and
additional 12.5% are potentially polymorphic, which achieves
the highest truly polymorphic percentage across all settings
that we have tested.. These settings cluster 4,343 samples
or 65% of all samples. In the rest of the paper we use
max_eps=20 and min_samples=2 and we use byte frequency
to identify clusters of polymorphic malware samples.

D. Network vs local behavior

Since we use local behavior to evaluate quality of our
polymorphic malware identification, it may seem that sets of
local DLLs could be used, independently of network features
to identify polymorphic malware. We explore this direction in
this section.

We cluster all samples based on their DLL sets, grouping
samples with identical sets into the same cluster. We then



Clustering Parameters ADU Sequence Byte Frequency
Truly Potentially Samples Truly Potentially Samples
max_eps | min_samples | Cluster Count ‘ Polymorphic | Polymorphic ‘ Clustered | Cluster Count ‘ Polymorphic | Polymorphic ‘ Clustered
500 50 27 3 (11.1%) 27 (100%) | 3,220 (48.8%) 10 3 (30%) 10 (100%) | 3,355 (50.8%)
200 20 55 10 (18.2%) 55 (100%) | 3,553 (53.9%) 21 7 (33.3%) 21 (100%) | 3,493 (53.0%)
100 10 93 22 (23.7%) 92 (98.9%) | 3,907 (59.2%) 51 17 (33.3%) 50 (98.0%) | 3,834 (58.1%)
50 5 164 55 (33.5%) | 163 (99.3%) | 4,192 (63.6%) 94 42 (44.4%) 91 (96.8%) | 3,969 (60.2%)
20 2 420 | 310 (73.8%) | 405 (96.4%) | 4,693 (71.2%) 320 | 262 (81.9%) | 302 (94.4%) | 4,343 (65.9%)
10 2 408 | 302 (74.0%) | 394 (96.5%) | 4,640 (70.3%) 285 | 228 (80.0%) | 269 (94.4%) | 4,230 (64,2%)
5 2 393 | 288 (73.2%) | 379 (96.4%) | 4,595 (69.7%) 235 | 188 (80.0%) | 219 (93.2%) | 4,067 (61.7%)
2 2 373 | 273 (73.1%) | 361 (96.7%) | 4,537 (68.8%) 176 | 141 (80.1%) | 166 (94.3%) | 3,888 (59.0%)
TABLE IV: Clustering results using different parameter combinations.
Total | Unclustered sub-categorization
Categorization Cluster Sample With a single sub-pattern With multiple sub-patterns
Count Count | Pattern Count | Sample Count | Pattern Count | Sample Count
Network behavior (byte freq) with 320 2252 262 1,086 (25%) 58 3,257 (75%)
local behavior sub-pattern
Local behavior with 1,322 0 798 | 1,449 (22.0%) 524 | 5,146 (78.0%)
network behavior sub-pattern (byte freq)

TABLE V: Comparison of clustering by local and by network behavior

sub-cluster the samples in each cluster based on their net-
work behavior, using max_eps=20 and min_samples=2 and
clustering over byte frequency feature. The results are shown
in the second row in Table V, and compared with our network-
behavior based clustering, shown in the first row of the same
table.

Clustering first on local behavior (DLL sets) leaves no
unclustered samples, but only 22% of clustered samples and
60.4% of clusters exhibit same network behaviors. This reflects
the fact that many DLL sets are not unique to a single malware
sample or malware purpose, but rather used broadly by many
samples for a variety of purposes. Table VI shows the top
10 reused DLLs, which are used in 64.2% to 91.7% of all
DLL behavior group and 65.9% to 90.4% of all samples.
The utility of some DLL files may be clear, e.g. mswsock.dll
and dnsapi.dll are clearly used to initiate network activity,
while some other DLL files are more general purpose, such as
advapi32.dll, secur32.dll, comctl32.dll, etc. and hence don’t
provide a clear indication of the actual behavior. The high
percentage of reuse of general purpose DLL files makes using
accessed DLL files to study behavior pattern more challenging.
Also DLL set access pattern doesn’t provide a clear local
access pattern, unlike our embedding which maps directly to
human understandable network behavior.

On the other hand, clustering based on network behaviors
leaves 34.1% of samples unclustered, but produces more
coherent clusters, with 25% of clustered samples and 81.9%
of clusters exhibiting same local behaviors (accessing same
DLL sets).

E. Large Malware Clusters

We now take a closer look into largest clusters identified
by our network-behavior based clustering, and shown in Ta-
ble VII. For each cluster, we list the domain names queried
through DNS, the network communication protocols, accessed
remote IP addresses, as well as the sample count.

DLL file

[ Reuse In Clusters | Reuse In Samples |

rpert4.dil
advapi32.dil
shell32.d11
mswsock.dll
secur32.dll
comctl32.dll
ole32.dll
rasadhlp.dll
dnsapi.dll
wshtcpip.dll

1212 91.7%)
1,171 (88.6%)
1,055 (79.8%)
946 (71.6%)
928 (70.2%)
914 (69.1%)
895 (67.7%)
875 (66.2%)
873 (66.0%)
850 (64.2%)

5,962 (90.4%)
5,552 (83.7%)
4,772 (72.3%)
4,880 (74.0%)
4,347 (65.9%)
4,067 (61.7%)
4,346 (65.9%)

4,747 (72.%)
4,737 (71.8%)
4,405 (66.8%)

TABLE VI: Top 10 most reused DLL files

We first pick the 3 largest truly polymorphic cluster and take
a closer look at their behavior. The top cluster contains 115
samples, all of which try to access the domain “migsel.com”
with the following GET request:

GET /system/classes/alive.php?
key=Blackshades%5bFKey&
pcuser=<anonymized>&
pcname=PC118&
hwid=C405FD41s&
country=United+States

which looks like a keep-alive heart beat packet while pro-
viding information of the victim machine as part of a potential
botnet. The authors tried to access migsel.com through web
browser at the time of the writing of this paper with success.
The domain name points to an online shopping web site and
seems to function normally. On further inspection, all requests
to the above URL got HTTP 404 as reply. One possible
explanation is that the web site was compromised sometime
ago with a botnet control server and had already been fixed so
that all bots that were still trying to contact this server would
fail like observed in our experiment.

The samples from second largest cluster initiate a propri-
etary TCP connection to www.baidu.com through port 80,
which is unusual. The packet contents seems to be binary



[ Group | Domain

[ Comm. Methods |

IP/Proto/Port Info [ Sample Count |

1 | migsel.com GET 95.128.128.129, TCP/80 115
2 | www.baidu.com | TCP 104.193.88.77, TCP/80 95
3 | N/A ICMP 72.30.35.10, ICMP 93

98.137.246.8, ICMP
98.138.219.232, ICMP
(etc.)

TABLE VII: Top 3 polymorphic malware groups categorized by ADU features.

[ Group | Domain [ Comm. Methods |

IP/Proto/Port Info

[ Sample Count | DLL patterns |

1 | Accessing zief.pl | N/A 148.81.111.121, TCP/65520 611 91

2 | Accessing aa.org | N/A 157.122.62.205, TCP/1379 175 25

3 | google.com GET 172.217.4.174, TCP/80 21 7
(etc.)

4 | google.com GET 172.217.4.142, TCP/80 15 5
(etc.)

TABLE VIII: Prominent potentially polymorphic malware groups categorized by ADU features.

format, but some text are still recognizable and contains
some system information like OS version, CPU frequency,
etc. This behavior is similar to a backdoor malware, which
reports victim system information to malware control center.
Similar to the previous cluster, those requests were replied with
“HTTP/1.1 400 Bad Request”, which suggests there was an
HTTP server running on port 80. This suggests that there might
be a period of time that the baidu.com server was compromised
to serve other purposes and had since been fixed. This cluster
consists of 95 samples.

The third largest cluster, consisting of 93 samples, sent out
huge amount of ICMP packets trying to detect availability
of a given IP address. Such a sample may initiates as much
as 15,000+ ICMP packets during our 5 minutes experiment
duration. This suggests that ICMP is still the major way for
detecting potential victim.

We then take a look at potentially polymorphic groups of
interest. We first inspected the top potentially polymorphic
groups and found 3 out of the top 5 clusters have their network
communication related to “zief.pl” on an unusual TCP port
65520, which is a well-known malicious website and has since
been taken down. The largest cluster consists of 611 samples,
which also show 91 different DLL access patterns. Similarly,
the second largest potentially polymorphic group try to access
“aa.org” with another unusual TCP port 1379. As it turns out
the malware was taken down from the website so all TCP
SYN packets sent from the malware received no response.

The other clusters of interest we observed consists of
samples that tried to contact google.com with only a simple
“GET /7 HTTP request, without trying to submit anything
either. We believe such malware may try to use google.com
for network availability check. Also note while all samples
from group 3 and 4 access google.com, they are clustered
differently not because they access different IP addresses, but
their flow count differs. On the other hand, samples in the
same cluster may access different google.com front end server
due to differences in geolocation. Regardless, our embedding
features can still cluster them into the same cluster, proving
their robustness on identifying similar underlying network

communication patterns.

Our further inspection through samples in the resulting
clusters show that our embedding mechanism is effective on
identifying common network behavior and at the meantime
retain human readable information to ease further analysis of
network behaviors.

Now we compare the network behavior our system captured
among truly polymorphic clusters and potentially polymorphic
clusters. We observe that for truly polymorphic malware, the
network activity accesses lesser known domain, or performs
simple tasks like sending ICMP packets. Such malware sam-
ples are either more single purposed or specialized to perform
a set of specific tasks as defined by a malicious control center
resides on a malicious or compromised web site. On the
other hand, malware samples from potentially polymorphic
cluster are more likely to access a public service or a well-
known malicious service. As we detect different DLL set
access patterns, we suppose that such samples may perform
different local malicious activities while sharing the same
network activity. This suggests malware component reuse,
which combines different single purpose malicious modules
to form new malware samples. As the statistics shown in
Table V, more samples fall into clusters with more than one
DLL set. This suggests that potential malware module reuse is
very common in samples encountered in the wild. As shown
previously, our network behavior embedding based clustering
mechanism can identify or provide evidences of the existence
of such polymorphic malware samples.

VII. DISCUSSION AND FUTURE WORK

Our clustering results show that many malware samples
are very similar with regard to the ADU sequences and byte
frequency of the flows contained. In addition to detection of
polymorphic malware, these features could be used to form be-
havioral signatures for malware detection. Since the malware
ecosystem changes rapidly, the signatures we devise today will
likely be obsolete tomorrow. However, our methodology can
be used with contemporary malware samples to identify future



clusters of behaviors and payloads and to help defenses keep
track of malware evolution.

Our current result is still bounded by time and computing
power restrictions. Given more time and better infrastructures,
we can foresee several future directions to continue our
research.

Increase analyzed sample repository. We would like to
examine more malware samples and expand our analysis, to
balance out samples in each high-level behavior group. We
would also like to perform a longitudinal study of malware
evolution over time, to quantify how much dominant behaviors
change.

Understand sample genealogy. Our results can currently
help us identify samples that share similar or identical flows,
suggesting that these samples may have a common author
or that they may share code. We would like to extend our
analysis to map out the evolution of malware samples, e.g.,
which sample came first, how did the specific behavior (e.g.,
contacting a C&C channel) change over time, etc.

Malware detection. Most high-level malware behaviors
also occur in benign software, which makes them unreliable
for malware detection purposes. However, combinations of
these high-level behaviors may be unique to malware and
could be useful for detection. For example, a software that
scans other hosts and then copies data over is unlikely to be
benign, although each of these actions separately could be
undertaken by benign software (e.g., probing several servers
could look like scanning if servers are unresponsive, and data
can be uploaded to a cloud for legitimate reasons) As we
extend our malware analysis to more samples, we expect
to find more behavior combinations, which can be used for
malware detection.

Malware Evading Network Analysis. With the existence
of techniques to evade signature-based malware detection, we
can naturally assume that malware designers will also look to
evade our network-communication-based analysis. There are
several strategies that malware could use:

(a) appears to be dormant and await a specific trigger
(b) interleave malicious activities with benign traffic to avoid
detection

We leave the handling of these evasion techniques for our
future work, but sketch some possible solutions here. For
trigger-based malware, we could leverage existing work on
trigger detection, such as using static analysis and symbolic
execution [5]. Since our methodology analyzes each flow
separately, malware, which interleaves its malicious behavior
with benign behavior will still generate flows that we can
recognize as malicious.

Miramirkhani et al. [14] showed that malware authors could
detect that a sample is being analyzed by detecting a lack of
user-generated files or registry entries. Our current analysis
environment would thus be easily detected. In the future we
plan to address these challenges by providing artificial artifacts
of human-user presence in our analysis environment, such as
command line history, registry entries, files in user directories,
recently opened file list in popular applications, etc.

VIII. CONCLUSION

In this work, we propose to use clustering over malware’s
network traffic patterns to identify polymorphic malware. We
show that clustering over our application data unit and byte
frequency in malware’s network traffic produces a high per-
centage of clusters, containing samples whose flows are very
similar to each other, and whose local behaviors are identical.
We show that using local DLL access pattern to identify
polymorphic malware samples has limited capability due to
common DLL files are heavily reused, while our embedding
based pattern clustering results in over 90% of potentially
polymorphic clusters and up to 80% of truly polymorphic
clusters and in the meantime provides human understandable
network patterns to help understand the underlying behaviors
of the malware.
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