
DADL: Distributed Application Description Language

Jelena Mirkovic, Ted Faber, Paul Hsieh
USC Information Sciences Institute

sunshine, faber@isi.edu, hsieh@usc.edu

Ganesan Malaiyandisamy, Rashi Malaviya
Infosys Corporation

Ganesan M, Rashi Malaviya@infosys.com

Abstract
Cloud computing infrastructures enable enterprises to acquire
equipment and pay associated costs only when their business
demands this, which is very attractive. However, there are no-
table challenges to wide use of clouds for enterprise services,
such as security and privacy of data stored in clouds and relia-
bility of cloud services.

Our research focuses on two subproblems in this space.
First, we believe that the future of cloud computing lies in
cloud specialization and differentiation. Future businesses will
thus be allocating resources from different clouds, some pub-
lic, some private, for a single application. Our research in-
vestigates how to perform automated, optimal allocation of
these resources starting from (1) a description of distributed
application components’ needs, and (2) a description of avail-
able cloud resources. Second, our research investigates how
to offer multi-layer reliability monitoring in a manner that is
application-transparent, platform-transparent, and real-time.

This paper presents a language, called DADL (distributed
application description language), that can be used to express
(1) architecture, behavior and needs of a distributed application
that may be deployed on clouds; and (2) specifics of available
cloud resources. In our future work, this language will become
input to our automated allocation and reliability monitoring
systems. DADL is implemented as an extension of SmartFrog
[8] – a framework for configuring, deploying and managing
distributed software systems.

1 Introduction

Cloud computing infrastructures offer unprecedented ad-
vantages to businesses. They enable enterprises to scale
their resources up or down with demand, expanding the
business and following market trends closely, while sav-
ing on equipment purchase and maintenance. Unfortu-
nately, cloud services provide little reliability or security
guarantees. This makes them ill-aligned with businesses
that often must offer such guarantees to their customers,
and leads to a trend where some business application

components run on private clouds, where confidential-
ity and privacy can be guaranteed, and others on public
clouds, where resources are cheap.

We believe that this trend of application distribution
on multiple infrastructures will increase with prolifera-
tion of cloud infrastructures and their specialization. Fu-
ture businesses will likely acquire resources from mul-
tiple clouds to meet unique needs of their applications,
minimize cost and maximize security and reliability. Our
research focuses on two services to support this future
trend: (1) automated allocation of resources from multi-
ple cloud infrastructures based on a description of appli-
cation architecture and needs, and a description of avail-
able cloud resources, and (2) multi-level reliability mon-
itoring, problem detection and recovery.

Our first step toward developing these services was to
develop a language that can be used to specify (1) ap-
plication architecture, behavior and needs with regard to
confidentiality, reliability, special resources, etc. and (2)
cloud resources, their features, availability and cost. This
paper describes this language, called DADL: Distributed
Application Description Language, and its use.

2 Application Model

We define an application need as a need for a special
resource (e.g., 1TB storage, 1Gbps bandwidth), service
(e.g., auto-scaling offered by Amazons EC2), feature
(e.g. confidentiality) or performance target (e.g., re-
quest/response time below 1 second). We pay special
attention to confidentiality requirement, and define this
as requirement to minimize the possibility of proprietary
data exposure, either through unprotected inter-resource
communication or through placement of data on a public
resource.

We define reliability as providing a continuously good
service quality to enterprise clients in face of failures or,
if that is not possible, fast failure detection and recov-
ery. Qualitative attributes ”good” and ”fast” in this defi-



nition must be replaced by quantitative attributes by the
application developer, and are application and enterprise
specific.

Our application model, presented in the rest of this
Section, defines application components, their needs,
and their dependencies. DADL language constructs are
built on top of that model.

2.1 Application Components and Needs
We define three types of application components:
Elements, Groups and Channels.

A simple application Element represents a basic
functional unit in the application such as a database
server, a storage server, etc.

A Channel describes a virtual communication link
between application Elements and/or Groups. Once
the application is deployed, it may consist of a series
of physical links, within and across clouds requiring
authentication negotiation. Elements and Channels
that connect them can further be grouped together into
compound Elements, for easier manipulation.
Groups combine Elements and Channels into a

single scalability unit. Their attributes define when ad-
ditional physical resources should be allocated to the
Group, to scale up its performance or improve reliabil-
ity, and how to migrate data as the Group size grows and
shrinks. Our aim is that this information should support
automated scaling of an application on clouds. A Group
is regarded as a single compound application Element
by other Elements, thus, application architecture re-
mains the same regardless of physical size of the Group.
Further, all Elements within the same Group are im-
plicitly connected, supporting any data migration pattern.

A component need describes performance, security,
reliability and any special resource requirements that
application Elements, Groups and Channels must
meet for satisfactory performance of the distributed ap-
plication.

2.2 Component Dependency
Distributed applications, especially those deployed in
clouds, require automated initialization sequence to
achieve scalability and dynamic reconfiguration, and to
minimize errors. The initialization and shutdown depen-
dencies between components are thus part of our model.

3 DADL

Distributed Application Description Language (DADL)
is based on the model presented in the previous Sections.
DADL describes application components, Channels
and Groups and their respective needs. It also describes

available cloud resources and their features. We envision
that the application description will be written by ap-
plication designers in a user-friendly GUI, while the re-
source specification will be automatically extracted from
cloud infrastructures by our programs. These two de-
scriptions are inputs to our future automated allocation
and reliability monitoring systems.

3.1 Candidate Languages

While constructing DADL from scratch was possible,
extending an existing language had significant advan-
tages. First, we wanted to leverage some features of ex-
isting languages, such as an existing interpreter, an abil-
ity to automate application deployment or a presence of
a well developed GUI for language specification. Sec-
ond, extending an existing, well-used language improved
chances of DADL adoption by users that are already fa-
miliar with the basic language.

We have considered the following possible candidates
for extension: Durra [6, 5], XML [1], Ruby [2], UML [4]
and SmartFrog [8].

Similarly to DADL, Durra [6, 5] is a language for dis-
tributed application description. It is customized for a
class of real-time, embedded applications, such as sensor
data collection, that concurrently execute multiple tasks
on heterogeneous resources and communicate via mes-
sage passing. This focus on process description makes
extending Durra to describe cloud computing applica-
tions somewhat awkward. Durra further lacks the notion
of a ”need” that is critical for DADL, and adding this to
Durra would be a significant change to its architecture.

XML [1], Ruby [2] and [4] are popular languages that
are general-purpose, and DADL constructs could be built
on top of them. Using these languages would give us an
advantage of well-developed editors, interpreters/parsers
and a wide user base. On the other hand, because these
languages are general-purpose we would have to intro-
duce the notion of a distributed application to them, and
provide necessary services such as automated deploy-
ment. This would be a significant departure from their
original usage modes, making costs outweigh the bene-
fits.

SmartFrog [8] is a Java-based framework for config-
uring, deploying and managing distributed software sys-
tems. It consists of a language, a runtime system and
a library. SmartFrog language defines configurations of
applications. The runtime system provides functional-
ity of deploying application components, and managing
running applications based on this configuration. The
library implements SmartFrog component model, and
some other services. SmartFrog’s focus on distributed
systems and a framework for their automated deploy-
ment made it an attractive candidate for DADL exten-

2



Figure 1: Application components.

sions. Its constructs needed minimal extensions to ex-
press our application model that are introduced via Java’s
inheritance model. We further benefited from its ma-
ture, open-source code and its readable attribute-value
pair representation. Application needs were added to
SmartFrog by specifying new attributes. SmartFrog fur-
ther defines component dependencies, which influence
their deployment order, and this is well aligned with our
notion of dependency in DADL.

3.2 DADL Extensions to SmartFrog

We now present the SmartFrog extensions we created to
support our application model, and to describe cloud re-
sources.

3.2.1 Component Extensions

We define application Element, Group and Channel
in SmartFrog as shown in Figure 1. An Element repre-
sents a single component and its attributes describe this
component’s needs. It extends a generic class in Smart-
Frog called Prim that all classes extend. A Group binds
together those Elements that can scale elastically and
automatically with the load. In addition to Element
attributes, a Group has group attributes that describe
triggers for scaling up and down, how that scaling oc-
curs, and how data is migrated to new members. A
Channel describes connections between Elements
or Groups. All components in DADL extend one of
these three building blocks.

3.2.2 Need Extensions

In this Section we present DADL extensions to Smart-
Frog that can be used to describe those application needs
that we believe are common to most applications. They
are summarized in Figure 2. We do not claim that this set
is complete, but we believe this is a basic set, useful for
many applications. DADL can be easily extended to ex-
press other application needs as they become necessary.

• Architecture: Element’s optional attributes
osImage (string, specifying the image name)
and CPUArch (string, specifying the architecture
name) express application needs for a specific
operating system or CPU architecture (e.g. 32-bit
or 64-bit, i386, etc.).

Figure 2: Application needs.

• Processing capability: Computing-intensive appli-
cations often require some minimum processing
power to achieve performance targets. Optional
attributes minCPUSpeed (float, unit GHz) and
minCPUCores (positive integer) express these
needs in the Element component.

• Memory: An application may keep a lot of data
in memory, and thus may require some mini-
mum memory size to achieve target performance.
Element’s optional attribute minMemory (float,
unit GB) expresses this need.

• Storage: An application may need a lot of disk
space to store large inputs, outputs or inter-
mediate results. Element’s optional attribute
minDiskCapacity (float, unit GB) expresses
this need.

• Network: Many distributed applications depend on
the network resource for reliable operation. They
communicate data among their components and
between their components and the outside world
(application clients, public Internet servers, etc.).
Channel’s optional attributes maxDelay (inte-
ger, unit ms) and minThroughput (float, unit
Mbps) are used to describe an application’s network
needs. Required attributes to and from describe
which components the Channel connects. These
could be other application components, the IP ad-
dress or URL of an outside server, or the reserved
key word client denoting connection to the ap-
plication client.

3



Figure 3: Resource component.

• Scalability: Distributed applications may gain per-
formance boost when their execution is parallelized.
As business demand fluctuates, clouds offer special
appeal to enterprises by allowing them to scale up
or down their resources to follow these fluctuations.
In DADL the mandatory Group component’s at-
tributes loadUp and loadDown (floats, between
0 and 1) describe thresholds for up and down scal-
ing, the mandatory attribute unitSize (positive
float) describes the scale of the replication/reduction
(e.g. value 2 would mean that the group size dou-
bles when load is too high and halves when load
is too low), and the optional attribute repAction
(string) points to the user-supplied script that should
be run to keep the data consistent when group size
changes. The optional attribute minReplicas
(positive integer) gives the minimum size of the
group, and is set to 1 by default.

• Confidentiality: Many business applications
have proprietary data that cannot be placed on
public clouds because its security cannot be
guaranteed. The optional Element attribute
isConfidential (binary, 0 or 1) expresses this
need.

SmartFrog supports specification of component de-
pendencies and we leverage this for our purpose. It fur-
ther has a lifecycle mechanism that manages states of
components and transitions of states. This makes appli-
cation initialization and termination occur in the desired
partial order. We plan to leverage these features in our fu-
ture work to deploy application components on resources
we obtain via our automated allocation.

3.2.3 Resource Extensions

DADL also encodes available resource information that
is automatically extracted from cloud infrastructures.
This section presents SmartFrog extensions to express
this information. Our future automated allocation mech-
anism will use resource availability information to deter-
mine how application components should be deployed
on available resources to satisfy the needs given in the
application description.

Three additional DADL components are defined for
resource description as shown in Figure 3. The Cloud-
Info contains availability information for an entire
cloud infrastructure. It consists of one or multiple

Figure 4: Resource attributes.

ResourceInfo components that describe available re-
sources per resource type. The MachineInfo compo-
nent inherits from ResourceInfo and describes PCs,
which are commonly offered resources in clouds. Other
resources can be similarly defined in DADL, such as se-
cure storage, a replicated DB, etc.

Attributes for new resource components are summa-
rized in Figure 4. The mandatory private attribute (bi-
nary) in CloudInfo expresses if the cloud is private or
public. The ResourceInfo component may contain
the available attribute (positive integer) that speci-
fies how many resources of a given type are available in
the cloud infrastructure. Some clouds reveal this infor-
mation but most do not. The attributes rentPeriod
and cost (both floats) are mandatory and express the
dollar cost of renting that resource for the given number
of hours. The history attribute (string) is optional and
it points to the file containing reliability information col-
lected for the past allocations of this resource type.

4 A DADL Example

In this Section we illustrate how DADL would be used to
describe an example application and a cloud infrastruc-
ture.

4.1 Application Description: Web Service

The Web service in our example has three components:
a set of of workers, a centralized database and a load
balancer. Workers process service requests and re-
trieve/store data from/to the database when needed. The
load balancer accepts service requests, dispatches re-
quests to workers and sends results from workers back
as responses to service clients.

While this Web service is simple, it has basic applica-
tion needs, which exist in many business applications:

4



Figure 6: Web service description in DADL.

Figure 5: Web service architecture.

• Some components, in our case workers, have per-
formance needs. They need to respond quickly to
users and handle multiple requests simultaneously.

• Some components, in our case the database, contain
proprietary data and must be deployed on private,
secure resources.

• Interconnections between components must be able
to support the load and achieve desired response
time to user.

• For some components, in our case workers, the
number of allocated machines many vary dynami-
cally to scale up with the load.

Figures 5 and 6 show the architecture of the Web ser-
vice and its specification in DADL. The Worker com-
ponent extends Group, because it can scale with the
load, and has both Element and Group attributes. The
Element attributes describe the processing speed and
memory needs, while the Group attribute describes that

Figure 7: Cloud (DETER) description in DADL.

the allocation should double when the average load is
above 0.7, and halve when the average load is below
0.3. There are no consistency actions to be taken when
group size changes. The minimum size of the group is
3 workers. The Worker also needs a fast connection to
the database, which is described with the WDBChannel
component.

The Database component specifies need for stor-
age and confidentiality. The LoadBalancer com-

5



ponent describes its need for minimum throughput
and maximum delay from/to the client using the
LBChannel component, the minimum delay to/from
workers using the LBWChannel component. Finally,
the WebService component contains the Worker,
DataBase and LoadBalancer components.

4.2 Resource Description: DETER
We have developed an automated script to extract re-
source type and availability information from the private
cloud we run at USC/ISI. This is the DETER testbed
for cyber-security experimentation [7], where users ob-
tain physical machines for their exclusive use. Figure
7 shows a part of resource availability information ex-
tracted by our script. It shows that there are 49 machines
of type pc3000 and 9 of type pc2133 available at the time.
It also specifies that DETER is a public testbed and it is
free to use. Our future work will extend this script to
mine necessary information from other clouds.

5 Conclusions and Future Work

As cloud computing infrastructures become more attrac-
tive to enterprises, this attractiveness is dampened by the
lack of security and reliability guarantees they can of-
fer. At the same time cloud infrastructures continue to
proliferate and diversify. This opens an interesting op-
portunity to address the reliability challenge by keeping
up to date and historical reliability information and using
it as input in resource allocation. At the smallest sign of
trouble resources could be released and other allocated
from a more reliable infrastructure. Similarly, the se-
curity challenge can be addressed by keeping the sensi-
tive code and data in a private cloud and outsourcing the
rest of the application components to cheap and scalable
public clouds. Distributing application components over
multiple clouds for security, diversity and reliability is an
attractive choice that our research explores.

In this paper we have proposed a distributed applica-
tion description language, called DADL, that can be used
by developers to describe application components, their
dependencies and needs. We have also developed auto-
mated scripts that mine resource availability information
from clouds. DADL has constructs to encode this infor-
mation as well. DADL is built as an extension to Smart-
Frog language – we have detailed the proposed exten-
sions and illustrated them on an application and resource
description example.

Our future work will start from DADL descriptions
of application needs and available resources and develop
an optimal resource allocation algorithm. This algorithm
must select resources that meet application needs, max-
imize reliability and minimize cost. Some application

component attributes match static resource attributes di-
rectly and it can be easily seen how these can be com-
bined by the algorithm to achieve allocation goals. Other
attributes, such as maxDelay and minThroughput
in Channelmust be carefully matched with the reliabil-
ity history in ResourceInfo, and different matching
approaches will land on different points on the perfor-
mance/cost tradeoff curve.

Another effort we plan to undertake is to develop an
application-independent, multi-level resource monitor-
ing approach. The approach will integrate basic node
statistics, such as CPU load, disk usage, etc. with
application-level statistics mined from application logs
and with network statistics obtained through periodic
probing. These will be available in real time to users,
they will be stored in resource history files to drive future
allocations, and they will also be used to detect potential
problems and reallocate resources.

DADL attempts to define a standard vocabulary for ap-
plication and cloud resource description. What we have
presented in this paper will work for some popular appli-
cations and cloud platforms but not for all. Investigating
necessary extensions to DADL, and how to achieve com-
pleteness, will be part of our future work.

Finally, we would like to evaluate our work on real use
cases from enterprises, such as Infosys.

6 Acknowledgments

We are grateful for the Infosys Corporation’s support of
this work via contract number ITL/0208. Opinions ex-
pressed in this paper are authors’ only.

References
[1] Extensible Markup Language (XML). http://www.w3.org/

XML/.

[2] Ruby. http://www.ruby-lang.org/.

[3] SmartFrog Open Source Website. http://www.smartfrog.
org/.

[4] Unified Modeling Language (UML). http://www.uml.org/.

[5] BARBACCI, M. R., WEINSTOCK, C. B., DOUBLEDAY, D. L.,
GARDNER, M. J., AND LICHOTA, R. W. Durra: a structure de-
scription language for developing distributed applications. Soft-
ware Engineering Journal (1990).

[6] BARBACCI, M. R., AND WING, J. M. A language for distributed
applications. In Proceedings of the International Conference on
Computer Languages (1990).

[7] BENZEL, T., BRADEN, B., FABER, T., MIRKOVIC, J., SCHWAB,
S., SOLLINS, K., AND WROCLAWSKI, J. Current Developments
in DETER Cybersecurity Testbed Technology. In Proceedings of
the Cybersecurity Applications and Technology Conference For
Homeland Security (2009).

[8] GOLDSACK, P., GUIJARRO, J., LOUGHRAN, S., COLES, A.,
FARRELL, A., LAIN, A., MURRAY, P., AND TOFT, P. The Smart-
Frog configuration management framework. ACM SIGOPS Oper-
ating Systems Review (2009).

6


