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ABSTRACT
Programs and services relying on weak hash algorithms as part of
their hash table implementations are vulnerable to hash-collision
denial-of-service attacks. In the context of such an attack, the at-
tacker sends a series of program inputs leading to hash collisions.
In the best case, this slows down the execution and processing for
all requests, and in the worst case it renders the program or service
unavailable. We propose a new binary program analysis approach
to automatically detect weak hash functions and patch vulnerable
binary programs, by replacing the weak hash function with a secure
alternative. To verify that our mitigation strategy does not break
program functionality, we design and leverage multiple stages of
static analysis and symbolic execution, which demonstrate that the
patched code performs equivalently to the original code, but does
not suffer from the same vulnerability. We analyze 105, 831 real-
world programs and confirm the use of 796 weak hash functions
in the same number of programs. We successfully replace 759 of
these in a non-disruptive manner. The entire process is automated.
Among the real-world programs analyzed, we discovered, disclosed
and mitigated a zero-day hash-collision vulnerability in Reddit.
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1 INTRODUCTION
Denial-of-service (DoS) attacks can create significant losses to busi-
nesses, by slowing down processing of client requests or by making
a service unavailable. There are many types of DoS attacks. In this
paper, we focus on a hash-collision DoS attack, a type of algorithmic
complexity attack [12], which exploits a vulnerability in weak hash
table implementations in order to disrupt the availability of a target
program.

Hash tables are data structures, ubiquitous for their fast, constant-
time insertion and lookup operations. Because speed is at stake,
hash table implementations typically use simple hash algorithms,
which unfortunately also have low collision resistance. We denote
these as weak hash algorithms. Attackers can easily generate inputs
that will create collisions in hash tables that use weak hash algo-
rithms. During a hash-collision DoS attack, the attacker crafts a
large number of malicious inputs that are all inserted at the same
table index, which drastically increases both the lookup and the
insertion time. On each insertion and retrieval at the affected index,
the hash table now has to iterate over a large list of colliding entries.
This makes the operation time effectively linear in the number
of entries. Likewise, inserting a number of these colliding entries
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requires polynomial time, allowing an attacker to greatly increase
the computational load.

Hash-collision vulnerabilities have been discovered in the hash
table implementation of the programming languages PHP [13],
Python [14], and Java [15], and have affected all programs written
in the vulnerable versions of these languages. This is especially crit-
ical when a remote attacker has control over hash table entries, as
was the case with a PHP web server [13]. In addition, we have iden-
tified a remotely-exploitable zero-day hash-collision vulnerability,
discussed in Section 10.3, using Harm-DoS. It is evident that the real
world impact of such vulnerabilities is serious and has therefore
attracted the attention of the security community in recent years.

Because algorithmic complexity vulnerabilities are a serious
threat to security, there has been recent work in detecting these
vulnerabilities automatically via static analysis, as presented by
Kirrage [30] and Chang [11], as well as via fuzzing, presented by
Petsios [39] and Blair [9]. Previous approaches based on static anal-
ysis do not focus on vulnerabilities caused by hash collisions and
thus are likely to be less accurate in detecting them than Harm-DoS.
Fuzzing, on the other hand, requires an extensive run time to find
malicious inputs, which could be very sparse for hash functions.
Thus fuzzing is unsuitable to use for detection of hash-collision
vulnerabilities at scale. There has also been work on mitigating
algorithmic complexity vulnerabilities by closing network connec-
tions that exploit a vulnerability as presented by Meng [36]. This
approach is useful, but ideally, we would like to patch the vulnerable
code to fully remove the vulnerability.

With the prevalence of proprietary, third-party software libraries,
it is essential to conduct vulnerability analysis on binary code. Un-
fortunately, the problem of detecting and patching hash-collision
vulnerabilities in executable programs, without relying on source
code, has received little to no attention. We propose Harm-DoS, a
novel approach to fill this gap by detecting and replacing weak hash
functions automatically, at the binary level. In spite of the inherent
complexity of working with binary code, Harm-DoS surgically an-
alyzes the program to diagnose hash-collision vulnerabilities and
perform a hash transplant – replacing the weak hash algorithm
with a secure alternative. Similar to a medical organ transplant, the
entire process must be conducted with utmost precision. We intro-
duce hash-collision vulnerability diagnosis, a novel static analysis
inspired by past research in detecting cryptographic hash functions
by Lestringant and Gröbert, respectively [26, 33], and adapted to
detect weak hash functions at scale. After diagnosis, Harm-DoS
conducts a thorough pre-patch examination, a novel use of symbolic
execution, to ensure the patch can be performed safely, without
introducing critical errors (like accessing memory out of bounds).
Next, Harm-DoS performs the hash transplant by leveraging static
binary rewriting to replace the weak hash function with an appro-
priate secure alternative, crafted with the insights gained from the
pre-patch examination. Finally, Harm-DoS conducts a post-patch ex-
amination, a second phase of symbolic execution to confirm that the
replacement was successful and no errors were introduced. Since
the weak hash function is removed from the patched program, the
program is now resilient against hash-collision DoS attacks. Harm-
DoS does not rely on source code or debug symbols, and simply
requires the binary image of an executable program as input. The
entire approach is automated.

To the best of our knowledge, our approach is the first to propose
an automated solution to patch vulnerable hash algorithms at the
binary level. We make the following contributions:

• We introduce the concepts of hash-collision vulnerability
diagnosis and hash transplant, new approaches to automat-
ically detect and replace weak hash algorithms in binary
code.

• In the new concepts of pre-patch and post-patch examination,
we leverage static analysis and symbolic execution in a novel
way, along with insights tailored for non-disruptive patch-
ing, to preserve the original program semantics through
verification steps.

• We implement a prototype of the proposed analysis, which is
available as open source at https://github.com/usc-isi-bass/
hashdos_vulnerability_detection.

• We evaluate our approach on 105, 831 binaries from the All-
Star data set [45]. Harm-DoS confirms the use of 796 weak
hash functions, in the same number of programs, and suc-
cessfully replaces 759 (95%) of these in a non-disruptive
manner.

2 SCOPE
Our work focuses on the detection and non-disruptive patching of
weak hash algorithms, by replacing them with a secure alternative.

2.1 Fast Hash Algorithms
Many programs implement hash tables to store and process user
input and internal data. Programs use hash functions to calculate
an index for the hash table. While there are well-known crypto-
graphic hash algorithms, which are collision resistant (e.g. MD5 and
SHA256), these typically impose a significant performance penalty
which make them unsuitable to be used in hash table implementa-
tions. Instead, programs use simpler hash algorithms, to achieve
high performance, which we refer to as fast hash algorithms.

Due to the intricacies of developing a good hash algorithm, de-
velopers often reuse existing source-code implementations of well-
known fast hash algorithms, with good average-case performance.
In order to be reusable, the algorithm is often implemented in a
single function, a hash function, that is context-agnostic, i.e. does
not rely on any program specific assumptions. This means, hash
functions are usually implemented without side effects, i.e. they
do not modify the program state beyond the context of the func-
tion. This is beneficial to Harm-DoS because, it means it is possible
to replace one such algorithm with another, without introducing
unwanted side effects into the program.

Moreover, to be context-agnostic, many fast hash functions share
common features. Harm-DoS relies on these features to identify fast
hash functions in binary code. To receive input in a context-agnostic
way, a hash function often receives a variable-length input buffer
as a simple byte array, passed as function input parameter. We have
observed that, in practice, many hash functions implement one of
two signatures. We refer to these signatures as the buffer-length
signature (the function receives a pointer to the byte array and the
buffer’s length),
unsigned int hash(const char* str, unsigned int length);
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and the buffer-only signature (the function receives a pointer to the
null-terminated byte array), unsigned int hash(const char* str);.

The hash function iterates over the bytes of the input array to
compute a small integer (fitting within the bit-width of the archi-
tecture) – the hash value. At the start of a hash function, the hash
value is initialized, often to a constant unique to the algorithm. On
each iteration, the hash value is updated according to the definition
of the algorithm. The final hash value is returned from the func-
tion. We show an example of such a hash function in Listing 4, in
Appendix C.

During compilation, the context-agnostic nature of hash func-
tions is often disrupted by an optimization feature called function
inlining. Here the body of the hash function is placed directly in the
body of the context-specific caller function. Patching such functions
is out of scope for Harm-DoS. We discuss this decision in Sections 3
and 11.

2.2 Hash-Collision Vulnerabilities
The high performance guarantees of hash tables rely on a hash
function that distribute the entries evenly over the table. An al-
gorithm that is too simple can make it very easy for an attacker
familiar with it to calculate colliding inputs. We refer to these as
weak hash algorithms. When the attacker serves such inputs to an
online program, they will degrade performance of the hash table
from constant to linear time, and lead to denial of service.

A program can also use an internal secret within a fast hash al-
gorithm to achieve collision resistance from an attacker, discussed
by Aumasson and Alakuijala, respectively [1, 3], while maintaining
computational efficiency. We refer to these as secure hash algo-
rithms, which we use to replace the weak hash algorithm, when
mitigating hash-collision vulnerabilities.

2.3 Attacker Model
We assume that a remote attacker knows which hash algorithm is
used by the target program (i.e., they can obtain an official version
of the program). We also assume the remote attacker can observe in-
puts and outputs of the target program (e.g., by interacting through
a network socket) but cannot observe intermediate computations or
the internal state of the program (which would require local access
with debugging capabilities). This assumption is reasonable since
programs generally use hashes internally, e.g., as an index into a
hash table, and do not disclose these values to the user. Finally, we
consider an attacker obtaining information about either the hash
value, or internal program state via side-channel attack to be out
of scope.

3 CHALLENGES AND REQUIREMENTS
The first step in mitigating hash-collision vulnerabilities automati-
cally is to detect them. This is challenging, since a program could
use any arbitrary hash algorithm. As with any program analysis ap-
proach, there are strict theoretical limits to what can be determined
regarding the behavior of the target binary. Therefore, identifying
any possible weak hash algorithm is infeasible. Instead, Harm-DoS
focuses on detecting implementations of several known-weak hash
algorithms, which we call weak hash functions.

We aim to detect weak hash functions in stripped binary exe-
cutables, meaning we cannot rely on human-friendly artifacts of
source code (e.g., function and variables’ names and comments)
in order to derive information regarding the purpose of different
pieces of code. To overcome this challenge, we instead rely on the
computations and control flow inherent to a list of known-weak
hash algorithms to detect the vulnerability. This is explained in
Section 5.

If a hash function is inlined, the boundaries between it and its
caller function are blurred. Identifying the function boundaries of
inlined functions is a research problem orthogonal to the focus
of Harm-DoS, as done by Bao [4]. Harm-DoS detects inlined hash
functions, but we leave patching them for future work (Section 11).

After detecting the vulnerability, the next challenge is to miti-
gate it automatically. Patching hash functions at the source code
level usually involves replacing the weak hash function (the origi-
nal hash function) with a secure alternative (the replacement hash
function). Indeed, this was the approach taken in mitigating the
hash-collision vulnerability in Python [14, 27] as well as Perl [38].
We reproduce this process in binary code, but encounter several
challenges because we must modify the binary code, while preserv-
ing its correctness.

In order to address the outlined challenges effectively, Harm-DoS
must fulfill the following vulnerability detection requirements (DR)
as well as mitigation requirements (MR).
DR1: It is important to modify only the binary code instructions
that form part of an implementation of a weak hash function. It
is therefore critical that Harm-DoS identifies weak hash functions
correctly. We require that Harm-DoS has zero false positives among
the successfully patched functions. In Sections 5 and 6.2.2 we discuss
our strategy for detecting and confirming the detection of weak
hash functions.
DR2: Inlined hash functions in a given executable should either
all be patched or none should be patched. Replacing only some of
these would result in a hash table using different hash algorithms in
different scenarios and, in turn, would break the functionality. We
address the unique challenges presented by inlined hash functions
partially, by identifying the presence of inlined hash algorithms
and leaving these unpatched. Therefore, we require Harm-DoS to
be able to identify inlined functions, as discussed in Section 6.1.

If Harm-DoS replaces a weak hash function, we need to preserve
correctness with regard to how inputs are processed, the range
of the outputs produced, and the functionality of the rest of the
program code. To achieve this Harm-DoS must fulfill the following
mitigation requirements.
MR1: Harm-DoS must only replace the binary code responsible
for implementing the weak hash algorithm. Replacing any other
instructions will introduce defects into the program. We discuss
our strategy for replacing the hash function in Section 7.2
MR2: To ensure Harm-DoS does not affect the program behavior
in unintended ways, we require the replacement hash function
to restore the program to its prior state after completion, apart
from the hash value. We make an exception here for the stack
memory, local to the replacement hash function, since this memory
is discarded once the function returns.We discuss this in Section 7.1.
MR3: Harm-DoS must be able to detect side effects in the original
hash function. We identify two types of such side effects, namely
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when the hash function writes to global memory, or when it writes
to a memory address passed via input parameter. Replacing the hash
function while omitting these side effects will affect the program
behavior in an unknowable way. Therefore, Harm-DoS must detect
these side effects and not replace the weak hash function. The
method for achieving this is discussed in Section 6.2.4.
MR4: In order to avoid illegal memory accesses, the replacement
hash function must not access any memory that is not accessed by
the original. We make an exception for the stack memory of the
replacement hash function. We discuss this in Section 8.1.
MR5: The replacement hash function must return hash values that
are no greater than the maximum of the original hash function. As
the hash value is often used to calculate an index in a hash table,
yielding larger hash values than expected may lead to memory
access errors. Our approach to address this problem is discussed in
Sections 6.2.2 and 8.2.
MR6: The replacement hash function must consume its input in
the same way as the original hash function. This is discussed in
Section 6.2.1.
MR7: The replacement hash function must match the original in
terms of case sensitivity. A case-insensitive hash function yields
equal hash values for input buffers that differ only in case, e.g.
buffers abc and AbC. Using a case-sensitive hash function to replace
a case-insensitive hash function will cause incorrect lookups in the
hash table. Conversely, using a case-insensitive hash function to
replace a case-sensitive hash function makes exploitation trivial,
even for secure hash functions. We discuss the solution to this
requirement in Section 6.2.3.
MR8: The replacement hash function introduced by Harm-DoS
must be secure, i.e., collision resistant with respect to our definition
in Section 2.2 and our attacker model. We discuss such replacement
hash functions in Section 7.1.1.

4 APPROACH OVERVIEW
Harm-DoS is divided into five phases, shown in Figure 1, namely
Analysis Preparation,Vulnerability Diagnosis, Pre-patch Examination,
Hash Transplant, and Post-patch Examination. Harm-DoS receives
as input a binary executable file, the target binary as well as a set of
detection models, where each detection model contains the features
necessary to detect a specific weak hash algorithm. In preparation
for analysis, Harm-DoS disassembles the target binary, recovers
control flow and identifies the function boundaries therein.

In the Vulnerability Diagnosis phase, Harm-DoS analyzes func-
tions in the target binary. We refer to the function under analysis
as the target function. In the target function, Harm-DoS detects the
presence of a weak hash algorithm towards fulfillingDR1 andDR2.
This phase leverages static analysis of both the instructions and
control-flow of the binary code of the target function. First, the
target function is matched against a hash function template, de-
signed to detect the presence of patchable hash functions, with the
features described in Section 2.1. If a template-match is found, we
compare the function to each detection model created for a known-
weak hash algorithm. This light-weight static analysis allows us
to pinpoint candidate hash functions quickly, in linear execution
time in the size of the target binary. Harm-DoS will analyze these

candidate hash function with a more accurate, but more expensive
analysis.

With the set of candidate hash functions, Harm-DoS proceeds
to determine those functions that can be patched, while preserv-
ing correctness, in the Pre-patch Examination phase. Harm-DoS
employs static analysis to determine if the hash algorithm is iso-
lated in a function, away from other functionality, for DR2 and
MR1. Harm-DoS also employs symbolic execution to build a profile
of the behavior of each candidate hash function, with regards to
signature (MR6), input-output relationships (DR1,MR5), case sen-
sitivity (MR7), and memory accesses (MR3). Harm-DoS preserves
this profile during patching. The input-output relationships are of
particular importance, as these enable Harm-DoS to confirm that
the candidate hash function has indeed been identified correctly.We
refer to such candidate hash functions as confirmed hash functions.

For the confirmed hash functions for which Harm-DoS can pre-
serve correctness, Harm-DoS performs the Hash Transplant to miti-
gate the vulnerability, by replacing the hash algorithmwith a secure
alternative, while fulfillingMR2,MR1 andMR8, by modifying the
binary executable. The patched executable is passed to the final
phase ofHarm-DoS, Post-patch Examination. In this phase the mem-
ory accesses and output values of the replacement hash function are
monitored to confirm that correctness has indeed been preserved,
fulfilling MR4 and MR5. If this verification passes, we consider
the patch a success, otherwise the patch is discarded and an error
is reported.

5 VULNERABILITY DIAGNOSIS
In this section, we provide more detail on how we discover can-
didate hash functions in target binaries, for DR1 and DR2. While
there is significant past research in code similarity and detect-
ing cryptographic algorithms, such as done by Lestringant [33],
Gröbert [26], Farhadi [18] and Bruschi [10, 47], the focus of these
often lie in detecting a specific implementation of an algorithm.
Harm-DoS, on the other hand, strikes a balance between being im-
plementation agnostic and identifying those weak hash functions
that can be patched. This is achieved with a novel approach that is
simple, yet effective. This approach uses static analysis to determine
how a target function interacts with the program memory, while
making minimal assumptions with regards to how a hash algorithm
is implemented. Consequently, Harm-DoS detects candidate hash
functions optimistically. This is beneficial for DR2, for which it
is important to detect all implementations of a single hash algo-
rithm in a target binary. Even though this approach leads to false
positive detections, these will be pruned in Pre-patch Examination,
preventing a faulty patch.

Harm-DoS performs Hash Function template-matching (Sec-
tion 5.1) to determine if the target function matches a template,
designed from the insights in Section 2.1. For any matching target
function, Harm-DoS determines if it implements a known-weak
hash algorithm using Constant-Mnemonic Pair Discovery, Sec-
tion 5.2. For each known-weak hash algorithm, Harm-DoS uses
a supplied detection model that captures the constants used in the
calculations defined in the algorithm. We create a detection model
for each of the following list of popular known-weak hash algo-
rithms: BKDR [29], DEK [31], DJB [8], ELF [25], FNV [21], JS [40],
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Figure 1: A flowchart of the approach overview.

RS [43], and SDBM [42]. Note that this list can be easily extended to
other weak hash algorithms. The outcome of this phase is a set of
candidate hash functions in the target binary, each with a candidate
algorithm – a label indicating which known-weak hash algorithm
we suspect is implemented therein (e.g., BKDR).

5.1 Hash Function Template-matching
The first step of identifying candidate hash functions, is to deter-
mine if a target function f contains the features of a weak hash
function. In Section 2.1, we mention that weak hash algorithms
typically iterate over a variable-length input buffer. Iterating over
such a buffer necessarily manifests as a loop in control flow. There-
fore, Harm-DoS requires a target function to have at least one
nontrivial strongly connected component (SCC)1 in its control-
flow graph (CFG). Let CFG(f ) = Gf denote the CFG of f and let
SCC(Gf ) denote the set of nontrivial SCCs {Cf ,1,Cf ,2, . . . ,Cf ,M }

of Gf . Harm-DoS, therefore, requires |SCC(Gf )| ≥ 1.
Next, Harm-DoS analyzes the instructions of each SCC to iden-

tify possible side effects of the target function. As mentioned in
Section 2.1, weak hash functions are often implemented without
side effects in order to be context-agnostic and a function with side
effects cannot be replaced while fulfillingMR3.

LetV (G) and E(G) denote the set of nodes and edges in graphG ,
respectively. InGf the nodes b1,b2, . . . ,bN are basic blocks and the
edges represent the control-flow between them. Each basic block bi
is a sequence of instructions where bi, j denotes the j-th instruction.
Harm-DoS identifies side effects by identifying instructions that
perform a memory-write operation to memory outside of the stack
memory of the target function. Memory-write operations receive
the destination memory address as an expression consisting of reg-
isters, constants, or both. Harm-DoS analyzes this expression to de-
termine whether a specific memory-write operation indicates a side
effect. For an instruction bi, j , WRr(bi, j ) and WRc(bi, j ) denote the
set of registers and constants, respectively, used in the expression
of the address in a memory write operation. If bi, j does not write to
memory, WRr(bi, j ) =WRc(bi, j ) = ∅. Write operations to memory
inside the stack memory are usually identifiable as a write to an
offset from a register holding the stack pointer or the stack base
pointer. Let R stack denote the registers used in stack operations.
In AMD64, R stack = {rsp, rbp}. Therefore, Harm-DoS explicitly
only allows such memory-write operations in an SCC. Conversely,
other types of memory-write operations, that use nonstack regis-
ters, or use only constants in the destination address expression
are forbidden. For example, the instruction mov [rsp-8],rax is al-
lowed, while instructions xor [rsi+4],rbx; mov [rsp+rcx],rsi
and mov [10000],rdi are forbidden.

1A nontrivial SCC is a subgraph of mutually reachable nodes, with at least one node
and edge (we allow self loops).

We say an SCC Cf ,i is a template-match if every memory write
operation in the SCC writes only to memory on the stack. That is,

∀bj ∈ V (Cf ,i ), ∀bj,k ∈ bj ,

(|WRc(bj,k )| > 0 =⇒ |WRr(bj,k )| > 0) ∧WRr(bj,k ) ⊆ R stack

We say a function f is template-matching if it contains an SCC that
is a template-match.

5.2 Constant-Mnemonic Pair Discovery
Given a template-matching function, the next step is to determine if
it is a known-weak hash function. To this end, Harm-DoS leverages
a code identification technique relying on unique constants, pro-
posed by Lestringant [33]. We include the unique constants found
in weak hash algorithms paired with their assembly-language op-
erators (mnemonics) in the detection model of each known-weak
hash algorithm. For example, in order for a target function to be con-
sidered an SDBM hash function, it must either contain the constant
65599 used with the signed multiplication operator (imul), or both
the constants 6 and 16, each used with the logical left shift operator
(shl). This is because, in some implementations of this algorithm
the calculation performed by the algorithm is implemented as h *
65599, while in others as (h << 6) + (h << 16) - h2.

Formally, in the detection model of each known-weak hash algo-
rithm, we include a set of constant-mnemonic pair fingerprints. For
a hash algorithm A, let CMF(A) = {Scm1 ,Scm2 , . . . ,Scmn }

be a set of constant-mnemonic pair fingerprints. Each
constant-mnemonic pair fingerprint Scmi is a set of tuples
{(ci,1,Smi,1 ), (ci,2,Smi,2 ), . . .}, where each ci, j is a constant and
each Smi, j is a set of mnemonics {m1,m2, . . .}. These act like
fingerprints in the sense that they are unique to one known-weak
hash algorithm. Due to the simplistic nature of weak hash algo-
rithms, some have very few algorithm-specific constant-mnemonic
pairs to use for identification. We opt for an optimistic approach,
leading to false positives which are subsequently filtered out in the
Pre-patch Examination phase.

Harm-DoS searches for the presence of these constant-mnemonic
pair fingerprints in the instructions of the target function
f . For a function f , let CM(f ) denote the set of tuples
{(c1,m1), (c2,m2), . . .} where each tuple (ci ,mi ) represents a
mnemonic mi and constant operand ci used in the instructions
of f . We say f has a constant-mnemonic pair match with respect to
weak hash algorithmA, if all the constants of a constant-mnemonic
pair fingerprint of A appear within f , each used with one of its
paired mnemonics. That is,

∃ Scmi′ ∈ CMF(A) | ∀(ci′, j ,Smi′, j ) ∈ Scmi′ , ∃mk ∈ Smi′, j |

(ci′, j ,mk ) ∈ CM(f )

2Note these implementations are mathematically equivalent.
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Table 1: The constant-mnemonics pair fingerprints of each
known-weak hash algorithm.

Hash Constant-Mnemonic Pair Fingerprints
BKDR {(131, {imul, mov})}, {(1313, {imul, mov})}

DEK {(5, {rol})}, {(5, {shl}), (27, {shr})}

DJB {(5381, {imul, mov})}

ELF {(4, {shl}), (24, {shr, sar}), (4026531840, {and, mov})}

FNV {(16777619, {imul, mov}), (2166136261, {mov})}

JS {(2, {shr}), (5, {shl}), (1315423911, {mov})}

RS {(63689, {mov}), (378551, {mov, imul})}

SDBM {(65599, {imul})}, {(6, {shl}), (16, {shl})}}

{(6, {shl}), (10, {shl})}

We generate the constant-mnemonic pair fingerprints, shown in
Table 1, by compiling source code implementations of the known-
weak hash algorithms with compilers GCC-7.5.0 and Clang-6.0.0.
We use optimization levels O0, O1, O2, O3, Os, Ofast and O0, O1, O2,
O3, Os, Ofast, Oz Og, respectively.

If the target function f is template-matching and has a constant-
mnemonic pair match with respect to algorithm A, we say f is a
candidate hash function with candidate algorithm A, denoted fcA .
We show a full example of discovering a candidate hash function
in Appendix A. Candidate hash functions must be analyzed to
determine patchability.

6 PRE-PATCH EXAMINATION
In order to patch the candidate hash function, it is important to
understand how it interacts with the rest of the program, in terms
of control flow and data flow. This phase starts by identifying and
filtering inlined hash algorithms in accordance to DR2, by using
a heuristic static analysis of two steps Duplicate Candidate Algo-
rithm Detection (Section 6.1.1) and Template-match Size Difference
(Section 6.1.2). Candidate hash functions that remain after this step,
are referred to as isolated hash functions. Focusing on isolated hash
functions, allows us to use symbolic execution to build a behavior
profile of the hash function.

Harm-DoS continues by applying four analysis steps, Sym-
bolic Signature Detection (Section 6.2.1), Symbolic Input-Output
Matching (Section 6.2.2), Symbolic Case Sensitivity Checking (Sec-
tion 6.2.3) and Symbolic Memory Access Analysis (Section 6.2.4).
These steps leverage symbolic execution on each of the isolated
hash functions in the set to build a profile of their behavior.

6.1 Filtering Inlined Hash Functions
The hash function discovery analysis described in Section 5 makes
no distinction between whether a hash algorithm has been inlined
or not. In this section, we describe the static analysis we use to
remove inlined hash algorithms from the set of candidate hash
functions, fulfilling DR2.

6.1.1 Duplicate Candidate Algorithm Detection. If a hash algorithm
A is inlined in multiple caller functions, the hash function discovery
analysis will identify any number as candidate hash function with
candidate hash algorithm A. We use this as a clue to determine
if a hash function has been inlined. Specifically, if we have dupli-
cate candidate algorithms in the target binary executable (multiple

candidate hash functions with the same candidate algorithm), we
assume the hash functions have been inlined and remove these
when building the set of isolated hash functions.

The remaining candidate hash functions, that have a unique
candidate algorithm in the target binary, are denoted lone hash
functions. Formally, let Fc(b,A) denote the set of candidate hash
functions in binary executable b with candidate algorithm A. A
candidate hash function fcA is a lone hash function if |Fc(b,A)| = 1.

6.1.2 Template-match Size Difference. The next clue we use for
detecting inlined hash algorithms is the difference in the number
of basic blocks in the CFG of the candidate hash function and the
template-matches. We refer to this as the template-match size differ-
ence. We define the template-match size difference of a candidate
hash function fcA as

DIFF(fcA ) = |V (CFG(fcA )| − |V (CfcA ,i
)|

whereCfcA ,i is the template-match of CFG(fcA )with the maximum
number of nodes. The intuition here is that if the template-match
only makes up a small portion of the candidate hash function’s
CFG, the hash function is more likely to have been inlined in a
larger function. A candidate hash function fcA is an isolated hash
function fiA if

DIFF(fcA ) < K ∧ |Fc(b,A)| = 1.

Through manual analysis and experimentation, we have discovered
that using K = 6 provides a good balance between correctly identi-
fying isolated hash functions and Harm-DoS’s execution time. This
decision is discussed more in Section 10.

6.2 Symbolic Hash Function Analyses
We perform four symbolic execution tests on the isolated hash
functions to build a profile of the behavior in order to determine
if a nondisruptive patch can be made. The behavior profile is built
with regard to signature (MR6), input-output relationships (DR1,
MR5), case sensitivity (MR7), and memory accesses (MR3, MR4),
of each.

Let f (s0) denote the set of program states created when per-
forming symbolic execution, starting at function f with symbolic
program state s0. Let FIN(f (s0)) be the set of program states that
reach a ret instruction of f , the final states. Let WR(f (s0)) be a set
of tuples {(a1,v1), . . .}, denoting the memory write operations that
occur during symbolic execution. Each tuple consists of a symbolic
expression for the address ai and the value vi of the memory write
operation. Let RD(f (s0)) be defined similarly, but for memory read
operations. For a symbolic expression e , VAR(e) denotes the sym-
bolic variables used in the expression. With MEM(s,a), we denote
the content of the memory at program state s at the address repre-
sented by symbolic expression a. Similarly, REG(s, r ) denotes the
content of register r . Let ARG(s0, i) denote the value of the register,
or memory location, that corresponds to the i-th argument of a
function. For our purposes, we assume ARG(s0, 1) = REG(s0, rdi)
and ARG(s0, 2) = REG(s0, rsi).

6.2.1 Symbolic Signature Detection. In Section 2.1 we explained
that hash functions frequently implement one of two signatures,
the buffer-length signature and buffer-only signature. We restrict



Harm-DoS: Hash Algorithm Replacement for Mitigating Denial-of-Service Vulnerabilities in Binary Executables RAID 2022, October 26–28, 2022, Limassol, Cyprus

Registers
Register Purpose Value

rip Instruction Pointer hash function entry

rdi 1st function argument input buffer address

rsi 2nd function argument n

Memory
Address Value Constraint

input buffer address + 0 b0

input buffer address + 1 b1

... ... ...
input buffer address + (n-1)
 b(n-1)

(a)
Registers

Register Purpose Value
rip Instruction Pointer hash function entry

rdi 1st function argument input buffer address

Memory
Address Value Constraint

input buffer address + 0 b0 b0≠0
input buffer address + 1 b1 b1≠0

... ... ...
input buffer address + (n-1)
 b(n-1) b(n-1)≠0

input buffer address + n 0

(b)

Figure 2: The symbolic starting state that we use for sym-
bolic execution while determining if a function implements
the (a) buffer-length and (b) buffer-only signature.

our focus to patching hash functions with these signatures, towards
fulfilling MR6.

The main difference between the buffer-length and buffer-only
signature is in how the end of the input buffer is determined. For the
buffer-length signature, the length of the buffer is given explicitly as
function argument. On the other hand, for the buffer-only signature,
the end of the buffer is usually identified by a special byte, often a
null byte.

For each signature, we set up a symbolic program state s0 that
corresponds to calling the hash function with symbolic input ac-
cording to the signature. For the buffer-length signature, we create
s0 such that ARG(s0, 1) = x , ARG(s0, 2) = n. Here, x is a symbolic
variable denoting a memory address of the input buffer and n is a
defined, concrete length. Similarly, for the buffer-only signature,
we create s0 such that ARG(s0, 1) = x , MEM(s0,x + i) = (bi , 0)
for 0 ≤ i < n and MEM(s0,x + n) = 0. Note, we assume the end of
the buffer is indicated with a null byte. Figures 2a and 2b show a
visual representation.

For each of the two signatures, we define a set of addresses
Ae we expect to be accessed if the isolated hash function indeed
implements the signature. For the buffer-length signature, Ae =
{x + i | 0 ≤ i < n}, while for the buffer-only signature Ae =
{x + i | 0 ≤ i ≤ n}. Note that the number of memory addresses
accessed for the buffer-only signature is one more than those for
the buffer-length signature, because an additional address needs
to be read in order to identify the end of the buffer. We determine
which (if either) signature f implements by checking if we observe
a memory read operation accessing each of the expected addresses
during symbolic execution. That is, we calculate the following for
each Ae,

{ai | (ai ,vi ) ∈ RD(f (s0)) and x ∈ VAR(ai )} = Ae.

Knowing which signature the isolated hash function implements
provides us with insight into how the hash function receives its
input. The benefit of this is twofold. It allows us to ensure that our re-
placement hash function consumes its input in the same way as the
original, necessary for MR6, and it allows us to perform symbolic
execution on the hash function with controlled input. We know
which memory locations will be accessed, so we assign concrete
values here, corresponding to the input. Let IN(f ,w) denote the

program state s0 set up in a way to perform symbolic execution on
f with input bufferw = b0,b1 . . .bn−1. That is, we set up s0 accord-
ing to the signature of f and let ∀i ∈ {0..n−1}, MEM(s0,x+i) = bi .
For a final state sf let OUT(sf ) denote the expression (symbolic or
concrete) corresponding to the return value. For our purposes, we
assume OUT(sf ) = REG(sf , rax).

If the isolated hash function implements either the buffer-length
signature, or buffer-only signature, we say the hash function is
signature-conforming. The signature-conforming hash functions
are passed to the following symbolic execution tests. Otherwise,
the candidate hash function will not be patched.

6.2.2 Symbolic Input-Output Matching. Each hash algorithm de-
terministically produces the output value, the defined hash value,
for every given input. Since this relationship is unique to a specific
algorithm, this can be used to identify the algorithm, as proposed
by Gröbert [26, 33]. We include information on such input-output
relationships in the detection model for each known-weak hash
algorithm. In practice, we have observed small changes in the im-
plementation of a hash algorithm that produce changes in the hash
value. For this reason, we decide to associate a small set of defined
hash values for each input buffer and hash algorithm. The first
change we allow for, is hash functions producing 32-bit integer
hash values versus 64-bit integer hash values. We also allow for
two known variations in the source code implementation of the
DJB hash function, which we show in Appendix C. Let Wio =
{(w1,H1), . . . , (wN ,HN )}. Each tuple (wi ,Hi ) is an input bufferwi
and the set of defined hash values Hi , for the algorithm A. For ex-
ample, for SDBM we have (wi′ ,Hi′) = (abc, {97, 417419622498}) to
associate input buffer abc with the corresponding 32-bit and 64-bit
defined hash values, respectively.

To determine if a signature-conforming hash function imple-
ments the candidate algorithm, we use symbolic execution to ob-
tain the observed hash value for given input. A set of observed hash
values that each appear in the corresponding set of defined hash val-
ues, indicates that the signature-conforming hash function indeed
implements the candidate algorithm, fulfilling DR1. Formally, f is
input-output conforming (and therefore a confirmed hash function)
with respect to A if

∀(wi ,Hi ) ∈ Wio, ∀sf ∈ FIN(f (IN(f ,wi ))),

|FIN(f (IN(f ,wi )))| = 1 ∧ OUT(sf ) ∈ Hi

When choosing the input buffers to use for symbolic input-
output matching, we create 256 buckets in the range {0..232}. For
each known-weak hash algorithm, we choose input buffers that
yield a defined hash value in each bucket. Additionally, we also
choose 5 input buffers for which the algorithm outputs large defined
hash values, approaching 232. By selecting inputs that correspond to
large defined hash values, we can detect cases where the signature-
conforming hash function yields output in a smaller range than 232.
We cannot patch these while fulfillingMR5.

Finally, if we observe a symbolic hash value when evaluating the
observed hash value, it means the concrete input we supplied was
not sufficient to constrain the observed hash value to a single num-
ber. We mark such hash functions as not input-output-conforming.
In all cases, functions that are not input-output conforming will
not be patched.
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6.2.3 Symbolic Case Sensitivity Checking. To determine if
a signature-conforming hash function is case-sensitive, we
provide it with pairs of concrete input buffers Wcase =

{(w1,1,w1,2), . . . , (wN ,1,wN ,2)}. Each tuple (wi,1,wi,2) is a pair of
input buffers which differ only in case, for example (abc, ABC). We
say a signature-conforming hash function f is case-sensitive if two
such buffers produce unequal hash values. Formally,

∃(wi′,1,wi′,2) ∈ Wcase |

∃(sf ,1, sf ,2) ∈ FIN(f (IN(f ,wi′,1))) × FIN(f (IN(f ,wi′,2))) |

OUT(sf ,1) , OUT(sf ,2)

The results of this analysis are stored to be used when constructing
the replacement hash function, in order to fulfillMR7.

6.2.4 Symbolic Memory Access Analysis. It is important to know of
any side effects of the signature-conforming hash function. Similar
to the Hash Function Template-matching, described in Section 5.1,
the purpose of this analysis is to identify side effects, to satisfy
MR3. This is a more accurate, but slower analysis using symbolic
execution.

Using symbolic execution, we can identify memory modifica-
tions, beyond the function’s stack memory. If we observe such
modifications, we decide not to patch the hash function. Otherwise,
we refer to the isolated hash function as memory-conforming. This
fulfillsMR3. We set up s0 according to the signature of f and cre-
ate a symbolic variable xr for each stack register r ∈ R stack. Then,
we set REG(s0, r ) = xr for each r ∈ R stack. Formally, we say f is
memory-conforming if

∀ (ai ,vi ) ∈ WR(f (s0)), VAR(ai ) ⊆ {xr : r ∈ R stack}.

If a hash function is signature-conforming, input-output-
conforming, and memory-conforming, we say it is a conforming
hash function and it is eligible for patching.

7 HASH TRANSPLANT
To perform the hash transplant, we construct a secure hash function,
the replacement hash function and use it to replace the conforming
hash function, the original hash function.

7.1 Replacement Hash Function Construction
Using the profile built during Pre-patch Examination, we construct
a replacement hash function that is similar to the original in terms
of signature and case sensitivity, fulfillingMR6 andMR7.

We also add instructions at the start and end of the replacement
hash function to store and restore the values of all registers that
are modified in the replacement hash function, except the register
housing the hash value. This is done to fulfillMR2. To avoid side ef-
fects and fulfillMR4, the replacement hash function is constructed
to access only its input buffer and stack memory. Next, we discuss
the two hash algorithms we use as a secure alternative.

7.1.1 Candidate Replacement Hash Algorithms. The first hash algo-
rithm we use as replacement is SipHash, designed by Aumasson [3]
specifically for the purpose of preventing hash-collision DoS attacks.
SipHash achieves collision resistance by incorporating a 16-byte
secret into its calculations. As long as this secret is unknown to
an attacker, collisions can only be achieved through guessing [3],

fulfilling MR8. The downside of SipHash is that it takes approxi-
mately 670 bytes to implement in AMD64 binary code. This makes
it challenging to use SipHash as replacement hash algorithm, while
fulfilling MR1, explained in Section 7.2. When the implementation
size of SipHash makes it an impractical replacement algorithm, we
use an alternative algorithm.

For this, we turn to strongly universal hash algorithms, intro-
duced by Wegman [46]. A set of hash algorithms is strongly univer-
sal if, for a random hash algorithm, any input is mapped to every
hash value with equal probability. If the attacker does not know
which hash algorithm in the set is used, they cannot predictably
generate collisions, as noted by Crosby [12]. Lemire introduces a
strongly universal set of hash algorithms, named Multilinear [32].
This set of hash algorithms achieves collision resistance through a
secret initial state of a pseudorandom number generator (PRNG).
Therefore, this hash function is secure and can be used to fulfill
MR8. We provide more details about our Multilinear hash algo-
rithm approach in Appendix D.

The security guarantees of strongly universal hash algorithms
are slightly weaker than those of SipHash. If an attacker can ob-
tain a number of input-output pairs of the strongly universal hash
algorithm, it is possible to calculate some of the random values
used, mentioned by Aumasson [3]. This, in turn, will allow the
attacker to pinpoint the specific hash algorithm used and therefore
generate collisions. Therefore, we first try to replace a weak hash
function with SipHash and only resort to using a Multilinear hash
algorithm implementation if we fail to insert SipHash due to its
implementation size.

Finally, an important decision to make is whether to randomize
the secret used for the replacement hash function once when the
weak hash function is patched, or every time the program is run.
The latter may be more secure, as the attacker will not learn the
secret by obtaining the patched executable. However, we have
observed programs that store the key-value pairs produced by the
hash function to a file [6]. Randomizing the hash function between
these runs may break the functionality. Therefore, we have decided
to limit randomization to the time when the binary executable is
patched. The user can re-randomize the secret by patching the
binary executable again.

7.2 Replacing the Hash Function
To patch the vulnerable binary executable, we leverage a process
called binary rewriting. From a high level, we replace the original
hash function by overwriting it with the replacement hash function.
If the replacement hash function is larger than the original (in the
number of bytes it requires to implement), we insert the remaining
instructions, the overflowing instructions, elsewhere into the binary
executable and adjust control flow so that these instructions are
executed in the correct order.

Binary rewriting is complicated by the fact that many binary
instructions, such as jump and data reference instructions, rely on
their relative position in the binary. Simply inserting additional
instructions in between existing instructions may break these rela-
tions, rendering the program defective. For this reason, it is safer to
add instructions to a binary executable by overwriting others. To
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this end, we build on a method often used to modify binary executa-
bles, for example used by Bruschi [10] and Menon [37], namely we
search for bytes in the binary executable that are never executed,
colloquially called code caves. Code caves are often introduced by
the compiler to align functions [22]. If no single code cave exists
that is large enough to hold all the overflowing instructions, we
join multiple caves with jump instructions. We show a full example
of how to replace a hash function in Appendix B. In some cases, the
binary executable does not contain enough code caves to house all
the overflowing instructions. In these cases the patch fails and we
report that there was no room for the replacement hash function.
We discuss our decision to use this approach towards patching, as
opposed to other existing approaches, in Section 12.

As we are only overwriting the instructions of the original hash
function and, possibly, some instructions that serve only as padding
bytes, we replace the original hash function while fulfillingMR1.

8 POST-PATCH EXAMINATION
After patching, we need to confirm that the replacement hash func-
tion does not introduce errors. Since proving equivalence of two
programs is undecidable, we perform a local verification, aided by
symbolic execution. We perform two steps, Symbolic Patch Mem-
ory Access Analysis and Symbolic Preimage Calculation. If either
of these two steps fail, we say that replacing the hash function in-
troduced errors into the program and discard the patch. Otherwise,
the patch is considered a success.

8.1 Symbolic Patch Memory Access Analysis
Similar to the original hash function fo, the replacement hash func-
tion fr should not have any side effects. Moreover, fr should access
exactly the same bytes of the input buffer as fo. To this end, we use
the set of expected addresses Ae, defined in Section 6.2.4, for the
signature of fo. We perform symbolic execution on fr and monitor
the memory accessed in order to determine if the replacement was
successful. We set up s0 according to the signature of fo and create
a symbolic variable vr for each stack register r ∈ R stack. Then, we
set REG(s0, r ) = vr for each r ∈ R stack. Let the address of the input
buffer of be a symbolic variable x . We require that fr only writes to
stack memory:

∀ (ai ,vi ) ∈ WR(fr(s0)), VAR(ai ) ⊆ {vr | r ∈ R stack}

and reads from all the offsets of x appropriate for its signature:
{ai | (vi ,ai ) ∈ RD(fr(s0)) and x ∈ VAR(ai )} = Ae

and does not read from global memory:
∀ (ai ,vi ) ∈ RD(fr(s0)), VAR(ai ) ⊆ ({x} ∪ {vr | r ∈ R stack}).

This fulfillsMR4.

8.2 Symbolic Preimage Calculation
The purpose for this verification step is to ensure the replacement
hash function only returns hash values that are within the range of
the original hash function. We calculate preimages of the original
hash function for hash values returned from the replacement hash
function. We do this by evaluating the concrete hash value for the
replacement hash function for a number of concrete inputs. For
each of these concrete hash values, we use symbolic execution and

constraint solving to obtain input for the original hash function for
which it returns the same hash value. Note that such an evaluation is
feasible due to the simple nature of known-weak hash algorithms.
Formally, Wp = {w1,w2, . . . ,wN } be a set of input buffers. We
require,

∀wi ∈ Wp, ∃w ′
i |

∀(sf ,o, sf ,r) ∈ FIN(fo(IN(fo,wi ))) × FIN(fr(IN(fr,w ′
i ))),

OUT(sf ,o) = OUT(sf ,r)
We do this towards fulfillingMR5.

9 IMPLEMENTATION
Harm-DoS is implemented in approximately 3, 500 lines of Python
code in an open-source repository3. It leverages the angr binary
program analysis framework [2] for the fundamental requirements
of binary program analysis, such as disassembly, CFG recovery and
symbolic execution. All the analysis steps discussed in this paper
are implemented by the authors, using only these fundamentals. As
input, Harm-DoS takes the names of executable files to analyze and
writes the analysis results for each to a file in JSON format. The
patched executable is also produced, if applicable. In the current im-
plementation, only ELF executable files for the AMD64 architecture
are supported.

10 EXPERIMENTAL RESULTS
Our experimental evaluation is composed of three main parts. First,
in Section 10.1 we analyze a large data set of real-world binaries to
test the ability of Harm-DoS to detect and patch vulnerabilities at
scale. Second, in Section 10.2, we constitute and analyze a subset
of these binaries, containing manually identified hash functions.
We use this to determine the accuracy of our approach based on a
known ground truth. Third, we discuss a case study in Section 10.3.
All experiments were run with PyPy 7.3.5, in an Ubuntu 20 Docker
container with 10 CPU cores. Analyzing a single binary executable
take approximately 215MB memory on average.

10.1 Full-Scale Analysis
In this section we present the results we have obtained by running
Harm-DoS on a large set of real-world binaries. Our data set consists
of 105, 831 unique AMD64 ELF executable files, extracted from the
AllStar data set [45]. This data set contains the binaries obtained
when building the Jessie distribution of the Debian packages. These
packages are built with the debuild tool which uses the compiler
specified in the package configuration to create the executable. On
average, these binaries are approximately 5.6MB large, consisting of
approximately 58, 000 basic blocks and 110, 000 CFG edges. Among
these packages are many widely used programs, such as Firefox,
Apache, PHP and Binutils. Note that even though the binaries in
this data set contain debugging symbols, Harm-DoS does not rely
on these in any phase of analysis.

10.1.1 Discovery. We run Vulnerability Diagnosis on all of the bi-
naries in the data set. This takes about 2 days to complete, with an
average analysis time of 17s per binary. We identify 31, 052 candi-
date hash functions in 8, 930 binaries. Table 2 shows the number of
3https://github.com/usc-isi-bass/hashdos_vulnerability_detection

https://github.com/usc-isi-bass/hashdos_vulnerability_detection
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Table 2: The candidate, lone, isolated, confirmed and
patched hash functions from the full-scale analysis.

Hash Alg Candidate Lone Isolated Confirmed Patched
BKDR 11,053 2,568 45 2 2
DEK 2,944 1,872 976 0 0
DJB 2,558 1,724 424 390 372
ELF 2,069 1,318 433 321 317
FNV 3,327 141 82 46 44
JS 0 0 0 0 0
RS 69 21 0 0 0
SDBM 9,032 2,442 301 37 24
Total 31,052 10,086 2,261 796 759

candidate hash functions per candidate algorithm. The table shows
that not a single candidate hash function with JS as candidate algo-
rithm was discovered. To ensure this is not caused by false negative
detections, we performed a cursory manual search of the data set,
which also did not yield any such hash functions. The lack of JS
hash functions, therefore seems to originate from a lack of their
use in practice.

In the next phase of analysis, we reduce the set of candidate
hash functions to those that are not inlined – the isolated hash
functions. The first step of this analysis is to remove all candidate
hash functions with duplicate candidate algorithms in the same
binary. Table 2 shows that 10, 086 lone hash functions remain after
this step.

The next step is to remove the lone hash functions for which
the template-match size difference exceeds 6 basic blocks. We dis-
cuss this decision in Section 10.2. Table 2 shows the number of
isolated hash functions, whose behavior Harm-DoS will analyze
with symbolic execution.

10.1.2 Patching. In this section, we discuss how effectively we can
patch the confirmed hash functions. Analyzing all the isolated hash
functions takes about 3.5 days with an average analysis time of 28s
per binary, showing that Harm-DoS is scalable. In Table 2 we show
the patching results in the Patched column. Approximately 35% of
the isolated hash functions were confirmed as weak hash functions
and 95% of these confirmed hash functions were patched success-
fully. We use the ratio of successful patches over the confirmed
hash functions, as this excludes all false positive identifications
in Vulnerability Diagnosis and only includes true positive hash
functions, verified with Symbolic Input-Output Matching. Note
that this also excludes inlined hash functions which we cannot
verify with symbolic execution. Recall that in order to calculate the
observed output, a hash function must be signature-conforming.
Therefore, if a hash function is either signature non-conforming
or input-output non-conforming, it cannot be confirmed as hash
function. In Table 3 we show how often these two reasons lead to
an isolated hash function not being confirmed as hash function.
In the vast majority of cases, signature-nonconformity prevented
the patch. Through manual analysis we verified that most cases of
non-conforming signature were indeed not hash functions, but in-
stead included other functions that share popular constants with a
weak hash function (and are thus flagged as candidates during opti-
mistic weak hash function discovery in the Vulnerability Diagnosis

Table 3: The number of times signature-nonconformity and
input-output nonconformity lead to an isolated hash func-
tion not being confirmed. The right-most column shows
when analysis time exceeded 4 hours or an error occurred.
The large number of signature-nonconforming isolated
hash functions is caused by too-broad hash function detec-
tion in the optimistic static analysis in the Vulnerability Di-
agnosis phase. These false positives are correctly filtered out
during symbolic execution.

Hash Alg Non-confirmed sig IO TOs and Errors
BKDR 43 40 3 0
DEK 976 865 37 74
DJB 34 25 5 4
ELF 112 47 52 13
FNV 36 5 31 0
SDBM 264 90 54 120
Total 1465 1,072 182 211

phase). Thus our approach correctly filters out these misidentified
candidates in the symbolic execution analysis. For the DEK hash
algorithm in particular, we observe that in 99% of these cases a
portion of the MD5 hash algorithm is misclassified as DEK hash,
because it includes the constant-mnemonic pair match (5, {rol}).

In Section 7.1.1 we explain that SipHash has stronger security
properties than the Multilinear hash function and is therefore the
preferred replacement hash algorithm. From our experiments, we
found that of the 759 hash functions that were patched successfully,
SipHash was used as the replacement 702 times, or 92.49%.

10.2 Ground Truth Analysis
In order to measure how well Harm-DoS detects all known-weak
hash functions, we construct ground truth data set. We select 202
hash functions, for which we have manually verified from the
source code that they implement a given known weak hash algo-
rithm. We draw our functions from a subset of 156 binaries used in
our full-scale analysis of the AllStar data set [45]. We attempted to
balance representation of different known weak hash algorithms
in our ground truth data set, but in reality some algorithms were
much more frequent in real-world programs than others. We show
the number of manually identified hash functions, included the
ground truth data set, in the MI column of Table 4.

For the Vulnerability Diagnosis phase, we show the number of
true positive classifications in Table 4. A true positive is a hash
function that is correctly detected by our analysis as a candidate
hash function, with the correct candidate algorithm. Conversely, a
false negative is a hash function either not detected by our analysis,
or is paired with an incorrect candidate algorithm (i.e., mistaken
for another algorithm). Note that in Table 4 for each algorithm the
number of candidate hash functions match the number of manually
identified hash functions. Therefore, Harm-DoS detected all hash
functions correctly.

Next, we look at howwellHarm-DoS detects inlined true positive
hash functions. In Table 4, we show the number of isolated hash
functions. To measure the accuracy of the Filtering Inlined Hash
Functions analysis (Section 6.1) we perform a manual inspection of
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Table 4: The results from running Harm-DoS on the bina-
ries in the ground truth data set. The MI column shows the
number of manually identified hash functions. The Can-
didate column shows how many manually identified hash
functions were identified as candidate hash functions, i.e.
true positive classifications. The Isolated column shows how
many of these remain after filtering out the inlined func-
tions.

Hash Alg MI Candidate Isolated
BKDR 1 1 1
DJB 50 50 34
ELF 50 50 30
FNV 50 50 9
RS 8 8 0
SDBM 43 43 33
Total 202 202 107

the candidate hash functions that are removed. The results of this
inspection is shown in Table 5. We place each of these candidate
hash function into one of four categories.Cat1: the target candidate
hash function is indeed inlined. Cat2: the target candidate hash
function is not inlined, but there are inlined, duplicate candidate
hash algorithms. Cat3: the target candidate hash function is not
inlined and none of the duplicate candidate hash algorithms are
inlined. Cat4: the target candidate hash function is not inlined and
it is a lone hash function, but the template-match size difference is
greater than 6. For categories Cat1 and Cat2, the analysis correctly
decided not to patch the candidate hash function. For Cat2, only
replacing the target candidate hash function and not the rest, will
break functionality (see DR2). For Cat3, since none of the duplicate
candidate algorithm are inlined, we can replace each individually.
However, distinguishing between Cat2 and Cat3 automatically is
difficult and we leave this for future research. For Cat4, we observed
an isolated hash function with a template-match size difference
of up to 13, due to a loop-unrolled implementation of SDBM. To
investigate this further, we reran the full-scale analysis with an in-
creased template-match size difference limit of 13. We observed that
in this case Cat4 is empty, however no additional hash functions
were patched successfully. For the SDBM hash function mentioned
above, there was a failure in the post-patch examination. Therefore,
these cannot be patched automatically while guaranteeing correct-
ness with respect toMR5. We have also observed RS hash functions
with template-match size difference 8. These hash functions are
added to the binary executable by a Pascal compiler [23] for use in
a hash table. The hash function is implemented in a specialized way
to compute a hash value for Pascal string objects. These objects
are passed as a pointer to the hash function. The string length and
data are accessed via constant offsets of this pointer. Note that this
does not match either the buffer-length or buffer-only signature.
Consequently, it does not follow the context-agnostic nature of the
hash functions described in Section 2.1 and cannot be patched auto-
matically while ensuring correctness. For this reason, we decide to
use a template-match size difference of 6 allowing, us to capitalize
on both analysis time and patchability.

Table 5: The results frommanually inspecting the candidate
hash functions that are not isolated hash functions.

Hash Alg Removed Cat1 Cat2 Cat3 Cat4
DJB 16 5 7 1 3
ELF 20 5 9 6 0
FNV 41 0 39 2 0
RS 8 0 0 0 8
SDBM 10 0 0 4 6
Total 95 10 55 13 17

10.2.1 Test Case Verification. As an extra layer of verification, we
use the test cases included with some Debian packages to confirm
that Harm-DoS does not break functionality. These test cases are
provided via the GNU Make build utility [20]. We identify and run
the test cases of 21 packages with binaries patched by Harm-DoS.
When necessary, we also rebuild hash tables stored in files, used by
the test cases, with the patched binaries. In every case, the patched
binaries do not introduce test failures.

10.3 Case Study
To show the effectiveness of Harm-DoS in a real-world context, we
discuss a remotely-exploitable zero-day hash-collision vulnerability
that we discovered, and patched, in Snudown [44], a component of
Reddit [41]. We disclosed this vulnerability to Reddit in accordance
to the coordinated disclosure policy. The vulnerability was assigned
ID CVE-2021-41168 [16]. We also implemented a mitigation that
replaces the weak hash function with SipHash, which was accepted
by the developers.

Snudown is a library used in Reddit to convert markdown to
HTML. This library uses a hash table to map reference labels to
their links, using the SDBM hash algorithm.

We launch a proof-of-concept attack against Snudown, running
locally, by parsing a large number of references with labels crafted
to cause collisions in the hash table. We measure the parsing time of
an increasing number of colliding reference labels. As a sanity check,
we repeat the experiment with random labels. We plot the parsing
time against the input size in Figure 3. The significant difference
in parsing time growth between the malicious and random labels
confirms the vulnerability. Note, the superlinear growth in parsing
time for random labels, is caused by coincidental collisions due to
the small table size.

We run Harm-DoS on the executable, which successfully pro-
duces a patched Snudown. To show the malicious growth in parsing
time no longer occurs, we relaunch the same attack on the patched
executable, shown in Figure 3. It is clear that patched Snudown does
not suffer from the same vulnerability. Moreover, due to the secret
used in patched Snudown, the attacker cannot adapt the attack
to reliably trigger collisions. To show that we have mitigated the
vulnerability without introducing errors, we run the test cases that
are supplied with the Snudown project, which all pass. This shows
that Harm-DoS can be used to identify and mitigate real-world
vulnerabilities.

Note, in Figure 3 parsing time is less for malicious references,
parsed with patched Snudown. This is unrelated to the hash func-
tion, since both the malicious and random labels are distributed
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Figure 3: Parsing time for both vulnerable and patched
Snudown for both malicious and random reference labels.

evenly across the hash table. The difference in parsing time orig-
inates from CPU caching, leading to a slower time per iteration
when searching the list of coincidental collisions.

11 LIMITATIONS AND FUTUREWORK
In this section, we discuss the current limitations of Harm-DoS and
future work to improve it.

Patching Inlined Hash Functions. As motivated byMR1, it
is necessary to determine exactly which instructions implement
the weak hash algorithm. For inlined hash functions, this requires
Harm-DoS to distinguish between the instructions implementing
the hash algorithm and those of the caller function. A possible
approach to this end is to use data-flow analysis. This can be used
to compute a program slice over the instructions that form part of
the hash algorithm. The start and end of the hash algorithm in this
slice can be identified by using Symbolic Input Output matching
(Section 6.2.1) on various subexpressions extracted via symbolic
execution. However, due to the computationally expensive nature
of symbolic execution, it is unclear whether such an approach will
be feasible.

Reassembleable Disassembly. In Section 10.1 we have shown
that in 57 cases SipHash could not be used to mitigate the vulnerabil-
ity, because of its implementation size. In 13 cases, the vulnerability
could not be patched at all. Recent advancements in reassembleable
disassembly could be useful here, made by Flores-Montoya [19] and
Bauman[5], as they allow for arbitrary changes to the disassembled
code, including introducing new functions. Note however that such
approaches are subject to limitations in terms of trade-offs between
scalability and correctness. This is achieved by inferring the sym-
bols used during compilation and adding these to the disassembled
code.

12 RELATEDWORK
Hash Function Discovery. Lestringant defined an approach to de-
tect implementations of cryptographic algorithms [33]. It searches
for the unique constants, similar to Harm-DoS. The scope of the
paper, however ends at detecting the cryptographic algorithm and
the analysis thereof is left to a human expert. Harm-DoS, on the

other hand, requires an analysis that is capable of determining if
the identified hash function is patchable.

Another detection mechanism for cryptographic algorithms,
mentioned by Lestringant [33] and Gröbert [26], is to compare
the output for corresponding input to subcomputations of the algo-
rithm. We use the same approach Symbolic Input-Output Matching
(Section 6.2.2). In our case, however, the hash functions are simple
enough that we can calculate the output of the entire function for
over 200 inputs.

Other code similarity approaches often rely on creating a mes-
sage digest (MD) of the code, as done by Farhadi [18], Xu [47]
and Ghidra [24], as well as testing for CFG subgraph isomorphism
as done by Bruschi [10]. To test the feasibility of detecting weak
hash functions using MDs, we used the Function ID feature of
Ghidra [24]. This feature creates a MD of the function using its
sequence of instructions, including the mnemonic, register names,
memory accesses and constants. We created a MD for each hash
function used to create the detection models used by Harm-DoS.
However, this approach failed to detect any hash function in the
ground truth data set used in our evaluation. This is to be expected,
as MDs are used to identify syntactically equivalent code. Conse-
quently, trivial changes made to the hash function by the compiler
(e.g. instruction order) will yield a different MD. This approach
is therefore less well suited for our purposes than our approach,
which relies on features inherent to weak hash functions, discussed
in Section 2.1. We expect other MD based approaches, such as the
IDA FLIRT [28] approach to perform similarly.

We also measured the feasibility of using CFG subgraph isomor-
phism to detect weak hash functions. We observed this approach is
very susceptible to failure, caused by slight modifications made to
the CFG by the compiler. If Harm-DoS used subgraph isomorphism
it would fail to detect 13 of the 202 hash functions in our ground
truth data set, while our approach correctly identified all of these
hash functions. Moreover, due to the computational complexity of
subgraph isomorphism, the analysis takes approximately 3 hours
to process the 156 binaries in the ground truth data set, where our
approach takes about 40 minutes. Therefore, Harm-DoS is more
suitable for analysing a large number of binaries.

Meijer introduces an approach to detect previously unseen cryp-
tographic algorithms [35] by defining signatures to use for subgraph
isomorphism in the data-flow graph (DFG). This approach is not
well-suited for detecting weak hash functions because these have
very simple data flow, as discussed in Section 2.1, making it prone
to many false positives.

Petsios and Blair, respectively propose fuzzing based approaches
for detecting algorithmic complexity vulnerabilities [9, 39]. Given
that fuzzing is a randomized dynamic analysis, using such an ap-
proach is inherently slower than using a lightweight static analysis.
Moreover, in both these approaches automatic patching of the vul-
nerabilities are out of scope.

Mitigation Strategies. Hash-collision vulnerabilities can also
be mitigated by limiting the number of collisions, as done in
DJBDNS [7] for cached DNS queries. This solution is unsatisfac-
tory, since additional colliding entries are discarded, even if they
originate from a benign user. At the network level it is possible to
terminate malicious network connections, as done by Meng [36].
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The downside is that an entire additional system is required to pre-
vent exploitation. In contrast, Harm-DoS addresses the root cause
of the vulnerability, the weak hash function.

Hash Function Patching. Bruschi and Menon, respectively
achieve binary rewriting by repurposing unused bytes [10, 37].
In the former, sequences of no operation (nop) instructions are
overwritten to insert malicious code. This malicious code executes
independently from the host executable and therefore it is unneces-
sary to take the context in which it is placed into consideration. In
the latter, unused alignment bytes are used to patch buffer-overflow
vulnerabilities by exiting the program gracefully on malicious input.
Harm-DoS, on the other hand, keeps the program running normally.

Other approaches, such as used by Duck [17], rely on dynami-
cally mapped memory to insert patch code. This memory is mapped
during program execution and the patch code is loaded from disk
into it. Consequently, the patch code is not available for static
analysis. In this regard, Harm-DoS is better as it inserts the patch
code directly into the executable file, making it available for static
analysis to ensure correctness.

13 CONCLUSION
Wehave presented a novel approach for automatically detecting and
replacing weak hash functions in binary code in order to prevent
algorithmic complexity vulnerabilities. We evaluated our prototype
on a large data set of 105, 831 real-world binaries, identified 796
confirmed weak hash functions, and successfully replaced 759 of
these in a non-disruptive manner. We show that Harm-DoS is scal-
able, evident by our processing a large data set of 100 K binaries in
about 5.5 days. Harm-DoS is also effective in a real-world context –
we used it to discover a zero-day vulnerability in Reddit.
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A VULNERABILITY DIAGNOSIS EXAMPLE
We illustrate the process of detecting weak hash functions in binary
code with an example. Consider Figure 4, showing the assembly
code, arranged in a CFG, for a hash function implementing SDBM.
After disassembling the target binary executable and discovering
the functions therein, the analysis considers each of these functions
individually as target function.

The first step of Harm-DoS when analyzing a target function, is
to determine if it matches the hash function template. To this end,
it identifies the nontrivial SCCs in the CFG of the function (if any).

The CFG shown in Figure 4 has a single nontrivial SCC, which we
highlight with solid nodes and edges.

Next, Harm-DoS iterates through the instructions in the SCC and
analyzes memory-write operations. In Figure 4 instructions that
write tomemory are identified at addresses 0x749, 0x74c and 0x751.
Each of these write to a memory address calculated as a constant
offset from the stack base pointer register, rbp. As mentioned in
Section 5.1, these are the only type of memory-write operations
allowed. Therefore, this SCC passes and is marked as a template-
match and Harm-DoS proceeds to perform Constant-Mnemonic
Pair Discovery.

Since the target function is template-matching, Harm-DoS
searches for the constant-mnemonic pair fingerprints of the detec-
tion model of each known-weak hash algorithm. When considering
the constant-mnemonic pair fingerprints of SDBM, the analysis
discovers the constants 6 and 16 (0x10 in hexadecimal), each used
with mnemonic shl. These can be seen at addresses 0x739 and
0x741 in Figure 4. As this matches the constant-mnemonic pair
fingerprints for SDBM (see Table 1), the analysis notes the discov-
ery of a constant-mnemonic pair match. Therefore, it identifies
the target function as a candidate hash function with SDBM as
candidate algorithm.

0x70a push rbp
0x70b mov rbp,rsp
0x70e mov QWORD PTR [rbp-0x18],rdi
0x712 mov DWORD PTR [rbp-0x1c],esi
0x715 mov DWORD PTR [rbp-0x8],0x0
0x71c mov DWORD PTR [rbp-0x4],0x0
0x723 mov DWORD PTR [rbp-0x4],0x0
0x72a jmp 755

0x72c mov rax,QWORD PTR [rbp-0x18]
0x730 movzx eax,BYTE PTR [rax]
0x733 movsx eax,al
0x736 mov edx,DWORD PTR [rbp-0x8]
0x739 shl edx,0x6
0x73c add edx,eax
0x73e mov eax,DWORD PTR [rbp-0x8]
0x741 shl eax,0x10
0x744 add eax,edx
0x746 sub eax,DWORD PTR [rbp-0x8]
0x749 mov DWORD PTR [rbp-0x8],eax
0x74c add QWORD PTR [rbp-0x18],0x1
0x751 add DWORD PTR [rbp-0x4],0x1

0x755 mov eax,DWORD PTR [rbp-0x4]
0x758 cmp eax,DWORD PTR [rbp-0x1c]
0x75b jb 72c

0x75d mov eax,DWORD PTR [rbp-0x8]
0x75d mov eax,DWORD PTR [rbp-0x8]
0x760 pop rbp
0x761 ret

Figure 4: A CFG showing the basic blocks of an implemen-
tation of the SDBM hash algorithm. Solid nodes and edges
indicate the template-match.

B HASH TRANSPLANT EXAMPLE
To illustrate the hash transplant procedure, we use a replacement
hash function from the Multilinear set of universal hash functions
to replace the hash function shown in Listing 1. In order to generate
pseudorandom values at run time, we add an implementation of the
Xorshift PRNG [34], introduced by Marsaglia, to the replacement
hash function. A source code representation of the replacement
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hash function is shown in Listing 2. The initialization values for
the hash value (line 3) and the random state (line 4) are chosen
randomly for every patch and are therefore unknown to an attacker.
On line 8, the hash value is updated in a loop according to the next
input character. Lines 9 to 11 implement the Xorshift PRNG.

Next, we illustrate the process of replacing a hash function, using
the weak hash function shown in Listing 1, a source code imple-
mentation of the DEK hash algorithm. Note that in Listing 2 the
replacement hash function receives its input and yields output in
exactly the same way as the original hash function (line 1). The
assembly code for the replacement hash function is shown in List-
ing 3. Figure 5 shows how the assembly code of the replacement
hash function is inserted in the binary. The first five instructions of
the replacement hash are inserted by overwriting the original hash
function. The 16 overflowing instructions are inserted in 4 code
caves. The grayed-out instructions represent the last instruction of
the function before the code cave starts.

1 unsigned int hash(const char* str , unsigned int len) {
2 unsigned int h = len;
3 unsigned int i = 0;
4 for (i = 0; i < len; ++str , ++i) {
5 h = ((h << 5) ^ (h >> 27)) ^ (*str);
6 }
7 return h;
8 }

Listing 1: The hash function we aim to replace, a source
code implementation of the DEK hash algorithm [31].

1 unsigned int univ_hash(const char* str , unsigned int len) {
2 char c;
3 int h = 270369;
4 int r = 67601921;
5 int i;
6 for (i = 0; i < len; i++) {
7 c = str[i];
8 h += (r * c);
9 r ^= r << 13;
10 r ^= r >> 17;
11 r ^= r << 5;
12 }
13 return h;
14 }

Listing 2: A source code representation of the hash function
we use as a replacement to theweak hash function, Listing 1.

1 xor r8d ,r8d
2 mov edx ,0 x4078601
3 mov eax ,0 x42021
4 loop:
5 cmp rsi ,r8
6 je done
7 movsx ecx ,[rdi+r8]
8 inc r8
9 imul ecx ,edx
10 movsxd rcx ,ecx
11 add rax ,rcx
12 mov ecx ,edx
13 shl ecx ,0xd
14 xor ecx ,edx
15 mov edx ,ecx
16 sar edx ,0x11
17 xor ecx ,edx
18 mov edx ,ecx
19 shl edx ,0x5
20 xor edx ,ecx
21 jmp loop
22 done:
23 ret

Listing 3: Assembly code of Listing 2.

Vulnerable
0a4f hash:
0a4f mov eax,esi
0a51 xor edx,edx
0a53 cmp esi, edx
0a55 jbe 65
0a57 jbe movsx ecx,[rdi+rdx*1]
0a5b rol eax,0x5
0a5e inc rdx
0a61 xor eax,ecx
0a63 jmp a53
0a65 ret

0a70 func1:· · ·
0a7e jmp ...
0a80 nop
. . .
0a8c nop

0a95 func2:· · ·
0a9f hlt
0aa0 nop
. . .
0aac nop

0ab0 fun3:· · ·
0ab4 ret
0ab5 nop
. . .
0abf nop

0ae9 fun4:· · ·
0acf ret
0ad0 nop
. . .
0ad7 nop

Patched

0a4f hash:
0a4f xor r8d,r8d
0a52 mov edx,0x4078601
0a57 mov eax,0x42021
0a5c cmp rsi,r8
0a5f je 0ad6
0a61 jmp 0a80

0a70 func1:· · ·
0a7e jmp ...
0a80 movsx [rdi+r8*1]
0a85 inc r8
0a88 imul ecx,edx
0a8b jmp 0aa0

0a95 func2:· · ·
0a9f ret
0aa0 movsxd rcx,ecx
0aa3 add rax,rcx
0aa6 mov ecx,edx
0aa8 shl ecx,0xd
0aab jmp 0ab5

0ab0 fun3:· · ·
0ab4 ret
0ab5 xor ecx,edx
0ab7 mov edx,ecx
0ab9 sar edx,0x11
0abc xor ecx,edx
0abe mov edx,ecx
0abe jmp 0ad0

0ae9 fun4:· · ·
0acf ret
0ad0 shl edx,0x5
0ad3 xor edx,ecx
0ad5 jmp 0a5c
0ad6 ret

Overwrite original

Insert overflowing instructions

Insert overflowing instructions

Insert overflowing instructions

Insert overflowing instructions

Adjust control flow

Adjust control flow

Adjust control flow

Adjust control flow

Figure 5: An illustration of how a hash function is replaced,
by overwriting the original and adding instructions to code
caves. Every code cave (on the left) receives a number of in-
structions (on the right) of the patch, shown in Listing 3.
The grayed-out instructions show the last instruction of the
function before the padding bytes (i.e. the code cave) starts.
Every code cave ends with a jump instruction to the code
cave housing the next patch instructions.

C DJB HASH VARIATIONS
We show two common variations of the DJB hash algorithm in
Listings 4 and 5. In the source code implementation illustrated in
Listing 4, often referred to as DJBX33A, an addition operation is
performed between the current hash value and the next input byte.
On the other hand, in Listing 5, often referred to as DJBX33X, an
exclusive or operation is used instead.

1 uint djbx33a(char* str , uint len) {
2 uint h = 5381;
3 uint i = 0;
4 for (i=0; i<len; ++i) {
5 h=((h<<5)+h)+(str[i]);
6 }
7 return h;
8 }

Listing 4: One common implementation of the DJB hash
function, often referred to as DJBX33A. Note the addition
operation on line 5.

1 uint djbx33x(char* str , uint len) {
2 uint h = 5381;
3 uint i = 0;
4 for (i=0; i<len; ++i) {
5 h=((h<<5)+h)^(str[i]);
6 }
7 return h;
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8 }

Listing 5: A second common implementation of the DJB
hash function, often referred to as DJBX33X. Note the
exclusive or operation on line 5.

D MULTILINEAR HASH
Lemire introduces a strongly universal set of hash algorithms,
named Multilinear [32]. For a string s = s0s1 . . . sn−1 of length

n, the hash value is calculated as

h(s) =m0 +
n−1∑
i=0

(mi+1si )

where m0,m1, . . .mn are random values. Every selection of ran-
dom values defines a different hash algorithm in this set. Since the
replacement hash algorithm has to handle strings of any length,
using a hash algorithm from the Multilinear set will require us
to generate random, or pseudorandom, values on the fly. We can
achieve this by incorporating an implementation of a PRNG with
the hash function.
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