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Abstract—Flash-crowd attacks are the most vicious form of
distributed denial of service (DDoS). They flood the victim with
service requests generated from numerous bots. Attack requests
are identical in content to those generated by legitimate, human
users, and bots send at a low rate to appear non-aggressive —
these features defeat many existing DDoS defenses.

We propose defenses against flash-crowd attacks via human
behavior modeling, which differentiate DDoS bots from human
users. Current approaches to human-vs-bot differentiation, such
as graphical puzzles, are insufficient and annoying to humans,
whereas our defenses are highly transparent. We model three
aspects of human behavior: a) request dynamics, by learning
several chosen features of human interaction dynamics, and
detecting bots that exhibit higher aggressiveness in one or more
of these features, b) request semantics, by learning transitional
probabilities of user requests, and detecting bots that generate
valid but low-probability sequences, and c) ability to process
visual cues, by embedding into server replies human-invisible
objects, which cannot be detected by automated analysis, and
flagging users that visit them as bots. We evaluate our defenses’
performance on a series of web traffic logs, interlaced with
synthetically generated attacks, and conclude that they raise the
bar for a successful, sustained attack to botnets whose size is
larger than the size observed in 1-5% of DDoS attacks today.

I. INTRODUCTION

A popular form of DDoS today are application-level floods,
aka “flash-crowd attacks” [1], [2] that target application re-
sources. Their name originates from a legitimate phenomenon,
known as a “flash crowd,” where many users simultaneously
access a server because of some popular event. Attackers
mimic this by deploying a large, distributed bot network and
generating legitimate application requests that overwhelm the
victim.

Flash-crowd attacks are extremely challenging because they
request legitimate and business-critical content. Thus their
traffic appears legitimate-like, which makes defenses that
detect and filter malicious traffic ineffective against flash-
crowd attacks. Further, attack bots can send at a low-rate
or infrequently, leading to failure of techniques that monitor
each client’s rate and blacklist aggressive clients. The usage of
many bots that send at a low rate is the main strategy adopted
by today’s attackers to bring down a service application.
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A. Our Scope

Our goal is not to detect all bots but only those that may
participate in flash-crowd attacks. Traditional DDoS attacks
that flood a victim with junk traffic can be handled by existing
defenses. Bots involved in legitimate activities (e.g., search
bots) and in non-DDoS malicious activities (e.g., spamming)
will likely be missed by our approaches. We play the attacker’s
need to generate a steady, high-rate flow of service requests
to deny service, against his need to use stealthy bots to avoid
detection. Our models detect all but the stealthiest of bots. This
forces an attacker to either face detection and replace detected
bots with new ones, or to increase stealth. Both these strategies
increase the minimum botnet size needed for a successful,
sustained attack. We show that the required size, when our
defenses are active, is higher than the one observed in 95-
99% of DDoS attacks today.

B. Related Work

Most popular defenses (e.g., [3]) against flash-crowd attacks
use graphical puzzles like CAPTCHAs [4] to differentiate
between humans and bots. A graphical puzzle is such that
humans can easily solve it but machines cannot, e.g., recog-
nizing numbers and letters on a distorted image. Only users
who solve the puzzles get access to the service. While puzzles
are useful, they are not sufficient. Puzzles are annoying to
humans and thus must be served infrequently. Because a small
rate is needed for a successful flash-crowd attack, a motivated
attacker can solve puzzles himself on a few bots, then launch
the attack. Some puzzles have also been solved by machines
[5], and puzzle-breaking mechanisms are improving.

Jung et al. [6] identify features that can be used to detect
flash-crowd attacks: small number of requested files, high and
stable client rate, and highly distributed clients over subnets
that did not previously communicate with the server. While
these help detect DDoS events, they are not precise enough to
detect bots involved in DDoS, which is our focus.

Kruegel et al. [7] build several models of user input for
detection of Web server exploits, and one model has a slight
resemblance to our request semantics approach. They model
the probability of a single request’s parameter sequence (e.g.,
in database queries), while we model the probability of a
sequence of requests.
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Fig. 1. Categorization of a user’s requests into multi-level sessions

Honeytokens, as a more general form of our human-invisible
objects, were proposed by Spitzner [8]. Gavrilis et al. [9]
use decoy hyperlinks, as one form of human-invisible objects.
Their decoys, however, can easily be detected by a bot via
page source analysis while ours cannot. Gavrilis et al. examine
request sequences to detect bots that request pages randomly
instead of following links, while we also detect bots that follow
links rarely followed by humans, even when bot accesses occur
in a non-random manner. Park et al. [10] proposed several
ways to detect bots such as looking for a lack of mouse
activity, lack of Javascript rendering actions, random requests
instead of link-following, and lack of style file and image
file requests. Their methods have higher likelihood of false
positives — e.g., when users disable Javascript — and false
negatives — because bots can modify their behavior easily to
fit required patterns.

C. Contributions

We propose three novel approaches to distinguish between
flash-crowd bots and human users: (1) Request dynamics
models that capture a human’s interaction with the server via
multiple parameters, and detect bot aggressiveness. (2) Request
semantic models that learn common human request patterns,
and detect bots that generate unlikely sequences. (3) Deception
approaches that plant human-invisible items into server replies
and blacklist addresses that request these items. All three
defenses are transparent to humans, and can be engaged on
each service request.

Our defenses are orthogonal and could be combined for a
stronger protection. We envision they would be integrated with
the application being protected, e.g., Web server. Because of
a small but present false positive probability, defenses should
be activated only when the server is overloaded to minimize
collateral damage. We believe that a modest collateral damage
is a small price to pay for protection against such a severe
threat as flash-crowd attacks.

II. ASSUMPTIONS

Current DDoS research has shown that majority of DDoS
attacks involve botnets of a very limited size [11]–[13].
According to [13] an average bot has at most 100 Kbps
bandwidth. Investigation of DDoS attacks at a tier-1 ISP [12]
has shown that 80% of incidents generated an aggregate rate
lower than 50 Mbps, 90% had lower rate than 80 Mbps, 95%
lower than 100 Mbps and 99% lower than 200 Mbps. To be
conservative, we assume that each bot uses only 1/10 of its
available capacity and thus arrive at the following figures for

botnet sizes: 80% of botnets have less than 5,000 bots, 90%
have less than 8,000, 95% have less than 10,000 and 99% have
less than 20,000 bots. With a less conservative assumption our
performance results would be even better than presented in this
paper.

In the rest of the paper we focus on attacks on Web servers,
since we had access to public Web logs, needed to build and
evaluate our models. We expect that our approaches could
easily be extended to other types of servers. We assume that a
Web server’s resources can be exhausted with a 1,000-request-
per-second attack [3]. This is a conservative limit and many
servers today can support higher rates, but this only means
that performance presented in this paper could be even better
in real deployment.

III. REQUEST DYNAMICS MODEL

We observe a user’s interaction with a Web server as time-
series of requests. A request is a human-initiated event, such
as a click on a Web page. Requests for embedded objects,
such as pictures on the page, are considered part of the original
request. Looking at the distribution of request interarrival time
from different Web logs we have noticed that values group
at five segments: less than 10 seconds, 10-60 seconds, 60-
300 seconds, 300-600 seconds and more than 600 seconds.
We used this observations to introduce four session types:
searching sessions, with pauses between sessions longer than
10 seconds, browsing, with pauses longer than 60 seconds,
relaxed, with pauses longer than 300 seconds and long, with
pauses longer than 600 seconds. For each session type we
model the following features: number of sessions (N ), average
pause between sessions (P ), average number of requests per
session (r), and average request interarrival rate per session
(a). For each user we also model total number of requests
in the log (R). Figure 1 illustrates arrival of 12 requests for
one user, their division into sessions, and calculation of our
selected features.

We use a collection of Web server logs interlaced with
synthetically generated logs of flash-crowd bots for training
and testing with decision trees. Statistics of our logs are shown
in Figure 2. Logs ISI1-ISI3 are obtained from USC ISI’s Web
server for three months in 2008, Logs OA1-OA2 are obtained
from a small non-profit organization for two months in 2007.
Logs WC1-WC4 are public logs of World Cup 1998 Web
server for four days, with WC3 covering the day of the finals.
Logs NS1-NS2 are public logs of a NASA Web server for two
months in 1995. Logs CL1-CL2 are public logs of a busy ISP’s
Web server for two weeks in 1995. Public logs are available



Fig. 2. Statistics of training and testing logs

Fig. 3. False positives (0-100%)

from LBNL trace archives [14]. Where we had access to full
content of the logs, i.e., in ISI and OA data, we have identified
and removed search bots using known user-agent identification
strings from http://user-agents.org/

Our attack model consists of generating flash-crowd bot
requests synthetically and interleaving them with our Web
logs. Synthetic generation allows us to study an entire range
of stealthy behavior by trying all the possible combinations
of attacking parameters, such as low rate, infrequent arrivals,
long inter-session pauses, etc. Because each user is modeled
separately, and there is no correlation among users, we gen-
erated only one user for each unique attack behavior. An
attacker chooses the number of clicks to generate in a session
between 5 and 50, uniformly at random. The interarrival rate
of these clicks is also chosen uniformly at random between
1/10 seconds and 1/60 seconds. After a session, the attacker
chooses the pause value uniformly at random between 60 and
300 seconds. Each attack ceases after an hour. Figure 2 shows
the number of attackers and number of attack clicks inserted
into each log. We emphasize that our synthetic attacks are
much stealthier than attacks seen in the real Internet today.
This creates a realistic, challenging data for evaluation of our
system. Further, there are no public logs of flash-crowd attacks
today so synthetic generation was the only possible evaluation
approach.

Our attack parameters ensure that we generate very stealthy
attack behaviors, to challenge the defense. Bots that behave
more stealthily that these will be missed in our tests, but we
show that the attacker will need larger botnets than our tests
indicate (> 25,000 bots) to perform successful attacks. Bots
that behave more aggressively than those we tested, such as
bots in contemporary attacks, will always be detected. While
a bot may vary other aspects of their behavior (e.g., which
files they request) it must exhibit features from our model —
we thus claim that we exhaustively test the bot behavior.

Our measures of success are percentage of false positives
and false negatives, and the minimum required botnet size to

Fig. 4. False negatives (0-100%)

Fig. 5. Minimum number of bots (thousands) for a 10 min attack

sustain the request rate of 1,000 per second for 10 minutes.
According to [11], half of the DDoS attacks they observed
last longer than 10 minutes. We calculate the botnet size
by selecting each bot we missed during a given test and
calculating how many similar bots we need for a 10-minute
attack using the formula:

MB = 1, 000 ∗ (a +
P

r
) ∗ d 600

Pt ∗ (N − 1) + N ∗ r ∗ a
e (1)

where values a, P , N and r are calculated for searching
sessions only, and Pt is the sum of pauses between those
sessions. We report the minimum value per test data.

Figure 3 shows our false positives, on the scale 0-100%. We
have colored values higher than 10% in pink, values 1-10% in
orange, and values 0.1-1% in yellow. Cells with borders show
results obtained when the testing and training data originate
from the same server. We first observe that most of the values
are less than 0.1% especially when the same server’s data
is used for training and testing. This is expected, since a
user’s interaction with a server depends on its content and
more popular servers, such as WC, will see more dynamic
usage. We also observe from Table 2 that OA, NS and CL
data has fewer clicks per user (and overall) than the rest of
the logs, indicating that these servers are not very popular.
When this data is used for training and a more popular server’s
data is used for testing, we obtain higher numbers of false
positives. This is especially the case for OA training data and
WC test data. We conclude that the best approach is to use the
server’s past logs for learning behavior specific to its users’
— a standard approach for many anomaly detection systems.
Figure 4 shows the false negatives, on the scale 0-100%, with
the same coloring scheme as Figure 3. Almost all the values
are below 0.1%. Figure 5 shows the minimum botnet size for
a 10 minute attack, rounded to thousands. We color fields with

http://user-agents.org/
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Fig. 6. A sample request graph built from access logs

values less than 20 K yellow, 20-50 K in pink, 50-100 K in
orange, and > 100 K in white. The lowest value shown in
25 K, which is higher than the botnet size observed in 99%
of DDoS attacks today. This significantly raises the bar for
an average attacker to launch a successful, sustained attack
without it being detected and filtered.

IV. REQUEST SEMANTICS

Web pages have an abundance of links, many leading to
content poorly related to the page’s main topic, such as
copyright notices. Humans rarely follow such links and human
interests tend to coincide, making a few links on a page
popular. A random-browsing bot cannot repeatedly hit popular
links because they are a minority of all the links on a server’s
pages. A bot with a hard-coded request sequence may hit
popular links only, but we expect popular sequences to be short
forcing the bot into repetitions that are unusual for humans.
A human may access a less popular link, but we show that
this happens rarely, making the overall probability of human
request sequences higher than that of a bot’s.

We model link popularity via a request graph, whose nodes
are Web pages and its directed edges are links connecting
a page with a URL to the page where the URL points. We
assume that the probability of each page being visited as
the first page is 1, and we mine users’ transitional (edge)
probabilities from Web logs. For each edge we count the
number of times it was traversed in the log file. The probability
of an edge traversal can be estimated as the ratio of the edge’s
count and the sum of counts of all edges originating from the
common parent node.

We define the sequence probability as the average of the first
page’s visit probability (1) and the sum of the edge traversal
probabilities from the request graph. Figure 6 illustrates the
calculation of edge and sequence probabilities for three user
sequences, given a request graph. Any transitions that appear
in testing or in the request graph, but not in training have zero
probability. In our example in Figure 6 training and testing
data is identical.

To build a request graph we needed to crawl a server’s Web
site, then populate the edge probabilities based on users’ visit
data extracted from the same server’s logs. We could only
do so for the ISI Web site since we had its recent Web logs
that corresponded to its current content. We used the ISI1
log for training and the ISI2 and ISI3 logs for testing. We
injected attacks into the test data by performing 10,000 walks
on the request graph, starting from the main Web page, and
following randomly chosen links. If we reached a dead-end
we would return to the main page and continue. The length
of the walk was chosen uniformly at random between 2 and

Fig. 7. Sequence probability vs length
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1,000 requests, which corresponded to the length of human
user request sequences in the training logs.

Figure 7 shows the sequence probability versus length for
legitimate and attack sequences. While probability for both
types of sequences declines with length, attack sequences have
much lower probability for a given length than do legitimate
sequences. Figure 8 shows the cumulative distribution function
for legitimate and attack users versus sequence probability.
All legitimate sequences had the probability greater than 0.05
but 98.06% of attack sequences had lower probability than
0.05. Thus we would achieve zero false positives and 1.94%
false negatives with the 0.05 threshold. We then examined
the cumulative distribution function of the average number
of clicks a bot makes before it is detected. 92% of bots are
detected before 24 requests, 99% before 31 requests and all
before 48 requests. We calculate the minimum botnet size for a
10-minute attack by dividing 600,000 (total number of requests
needed for the 10-minute 1,000-requests-per-second attack) by
the largest number of requests a bot can make before being
detected (47). Our results are 12.7 K for both ISI1 and ISI2,
which is higher than the botnet size observed in 95% of DDoS
attacks today. We conclude that this defense technique would
significantly raise the bar for an average attacker, leading to
successful attack filtering in 95% of today’s incidents.



V. DECEPTION

Our last approach detects bots by embedding invisible
objects with hyperlinks or action triggers into Web server’s
replies, and flagging those users that request linked files or
trigger action as bots. We have developed several deception
techniques, described below, all with the goal to reduce or
eliminate a possibility of automated detection of invisible ob-
jects via page source analysis by bots. All of these techniques
are automated, and invisible objects to be placed in a reply are
randomly chosen with randomly generated names. Placement
of objects may be restricted by some criteria, but is random
within a set of locations that fit that criteria.

1) Invisible images. Tiny images surrounded by a hyperlink
are randomly placed close to visible text and images of
the website. The color of the invisible image is randomly
selected, and the file size is kept comparable to visible images
by shrinking high-resolution graphics. These measures are
necessary to minimize a bot’s ability to differentiate visible
from invisible images via page source analysis and simple
image analysis.

2) Invisible forms. Forms are added, with elements such
as textboxes, images and submit buttons shrunk in size so
that they are invisible to humans. We randomly choose form
element types and input variable names, and we also insert
some hidden variables. All this makes a form invisible to
humans but similar to visible forms for a bot doing source
analysis. Users that click on form buttons are flagged as bots.
Because mainstream browsers add a line break after each form,
this technique slightly changes the layout of the original page.
This is why we insert invisible forms only at the beginning or
at the bottom of the page.

3) Tiny hotspots. Depending on the size of visible images,
a number of 1-by-1 pixel maps are randomly generated and
associated with hyperlinks. A sophisticated bot could parse the
HTML code for pixel maps, extract their area size and detect
deception. But such bots have not yet been seen in the wild.

4) Invisible text. We place on top of the page’s images a text
of the same color as the image’s background, and associate it
with a hyperlink. To avoid detection by bots via page source
analysis we place the text on top of existing background
images, instead directly on the page’s background. A bot could
only detect deception if it performed image analysis.

5) Layering. Different objects are made invisible by being
placed between image layers. A sophisticated bot could parse
the style files and deduce from differences in the z-level
attribute the layer (and visibility) of objects. We address this
by placing some “cover images” at the top layer with a shape
that covers only those objects inserted for deception, but leaves
the original page visible. Cover images are made invisible by
making them of the same color as the page’s background.
Deception objects are placed close to the visible images so
that the cover can be of a rectangular shape and its placement
can be automatically calculated so that only deception objects
are covered.

The proper approach to evaluate effectiveness of deception
techniques would be to conduct a study with human users

Fig. 9. A portion of the Amazon’s home page revealing deception

and bots. Since such studies take a long time to prepare and
perform, we plan to do so in our future work. In the mean-
time we resort to estimating the effectiveness of deception
techniques via a simple analysis. Let p = # deceptive objects

# all objects , be
the density of deceptive objects on each page. The probability
of a bot accessing a deception object after at most k requests
is Pd = 1 − (1 − p)k and the expected value of k is 1/p.
With p = 0.5, it takes k = 7 requests to catch a bot with 0.99
probability, and the expected value of k is 2. The attacker thus
needs on the average 600, 000/2 = 300, 000 bots for a 10-
minute 1,000-requests-per-second attack. This is well beyond
the reach of 99% of attackers today and significantly raises
the bar for a successful, sustained attack.

We illustrate our deception techniques 1, 4 and 5 in the
Figure 9 by showing a modified homepage of Amazon.com
with revealed deception. We use red colors and red dots to
indicate where the deception objects lie. Without revealing,
the new page is visually identical to the original one.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have proposed three defenses against flash-crowd attacks
which differentiate humans from bots based on the uniqueness
of human behavior with regard to (1) request dynamics, (2)
choice of content to access and (3) ability to ignore invisible
content. Our tests show that the proposed defenses signifi-
cantly raise the bar for a successful, sustained attack. Botnets
observed in 95-99% attacks today would be discovered and
their traffic filtered by our techniques. We plan to investigate a
combination of our approaches in the future, hoping to achieve
synergistic effect and further improve performance. We also
plan to implement our techniques in the Apache Web server
and test them in two environments (1) with synthetic legitimate



and attack traffic to evaluate the server’s overhead, (2) with
human users to investigate likelihood of false positives.
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