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ABSTRACT
Network testbeds have become widely used in computer science,
both for evaluation of research technologies and for hands-on teach-
ing. This can naturally lead to oversubscription and resource alloca-
tion failures, as limited testbed resources cannot meet the increasing
demand.

This paper examines the causes of resource allocation failures
on DeterLab testbed and finds three main culprits that create per-
ceived resource oversubscription, even when available nodes exist:
(1) overuse of mapping constraints by users, (2) testbed software
errors and (3) suboptimal resource allocation. We propose solu-
tions that could resolve these issues and reduce allocation failures
to 57.3% of the baseline. In the remaining cases, real resource
oversubscription occurs. We examine testbed usage patterns and
show that a small fraction of unfair projects starve others for re-
sources under the current first-come-first-served allocation policy.
Due to interactive use of testbeds traditional fair-sharing techniques
are not suitable solutions. We then propose two novel approaches
– Take-a-Break and Borrow-and-Return – that temporarily pause
long-running experiments. These approaches can reduce resource
allocation failures to 25% of the baseline case by gently prolonging
1–2.5% of instances. While our investigation is done on DeterLab
testbed’s data, it should apply to all testbeds that run Emulab soft-
ware.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design; C.2.3 [Computer Communication Networks]:
Network Operations

Keywords
network testbeds, Emulab, resource allocation

1. INTRODUCTION
The last decade brought a major change in experimentation prac-

tices in several areas of computer science, as researchers migrated
from using simulation and theory to using network testbeds. Teach-
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ers are also shifting from traditional lecture-oriented courses to more
dynamic and realistic teaching styles that incorporate testbed use
for class demonstrations or student assignments. These diverse
groups of users each have important deadlines that they hope to
meet with help of testbeds, such as conference and research demon-
stration deadlines, class projects, class demonstrations, etc.

Current testbed resource allocation practices are not well aligned
with these user needs. Most testbeds deploy no automated prior-
itization of allocation requests, serving them on first-come-first-
served basis [24, 3, 2, 7, 10], which makes it impossible to guar-
antee availability during deadlines. In this paper we focus on test-
beds that allow users to obtain exclusive access to some portion
of their resources. As user demand grows, these testbeds experi-
ence overload that leads to allocation failures. Most testbeds further
let users keep allocated resources for as long as needed [24, 3, 2].
While there are idle detection mechanisms that attempt to reclaim
unused resources, users can and do opt out of them. Based on our
experience from managing DeterLab most experiments are interac-
tive, which means that resource allocations should last at most a
day. Thus long-running experiments reflect a user’s unwillingness
to release resources at the end of their work day. We believe this
occurs primarily because: (1) testbeds lack mechanisms to easily
save disk state on multiple machines and recreate it the next day,
and (2) users have no guarantee that resources will be available the
next day. Some users request help of testbed staff to reserve re-
sources for major deadlines. Since many testbeds lack reservation
mechanisms [24, 3, 2], these are done manually by staff pulling re-
quested machines out from the available pool. This often occurs
early, so staff could guarantee availability, but it wastes resources
and increases testbed overload.

Testbeds need better and more predictable allocation strategies
as they evolve from a novel to a mainstream experimentation plat-
form. Our main goal in this paper is to understand the reasons for
resource allocation failures and to propose changes in testbed oper-
ation that would reduce these. We survey related work in Section
2. We then introduce our terminology and data in Sections 3 and
4. We explain the resource allocation problem in network testbeds
in Section 5. We then examine reasons for resource allocation fail-
ures in the DeterLab testbed’s [3, 5] operation during 8 years of its
existence in Section 6. DeterLab is a public testbed for security ex-
perimentation, hosted by USC/ISI and UC Berkeley. In early 2012
it had around 350 general PCs and several tens of special-purpose
nodes. While it is build on Emulab technology, its focus is on cyber
security research, test and evaluation. It provides resources, tools,
and infrastructure for researchers to conduct rigorous, repeatable
experiments with new security technologies, and test their effec-
tiveness in a realistic environment. DeterLab is used extensively
both by security researchers and educators. It also experiences in-
tensive internal use for development of new testbed technologies.



We find that 81.5% of failures occur due to a perceived resource
shortage, i.e., not because the testbed lacks enough nodes, but be-
cause it lacks enough of the right nodes that the user desires. As
user desires and testbed allocation strategies act together to create
the shortage of the nodes that are in current demand, we next inves-
tigate how much relaxing user constraints (Section 7) or improving
resource allocation strategy (Section 8) help reduce allocation fail-
ures. Finally, we investigate if changes in testbed resource alloca-
tion policy would further improve resource allocation both in cases
of perceived and in cases of true resource shortage in Section 9. We
conclude in Section 10.

While we only had access to DeterLab’s dataset, this testbed’s
resource allocation algorithms and practices derive from the use of
Emulab software [24], which is used extensively by 40+ testbeds
around the world [1]. Our findings should apply to these testbeds.

Main contributions of our paper are:

• This is the first analysis of causes for resource allocation fail-
ures in testbeds. We find that 81.5% of failures occur due
to a perceived resource shortage, when in fact there are suf-
ficient nodes to host a user’s request. Around half of these
cases occur because of inefficient testbed software, while the
rest occur because of over-specification in user’s resource re-
quests.

• We closely examine the resource allocation algorithm used
in Emulab testbeds – assign [20] – and show that it of-
ten performs suboptimally. We propose an improved algo-
rithm – assign+ – that reduces allocation failures to 77%
of those generated by assign, while running 10 times faster
and preserving more of the limited resources, such as inter-
switch bandwidth.

• We propose improvements to testbed resource allocation strat-
egy by gently relaxing user constraints, to reduce resource
allocation failures to 68.1% of those generated by assign.

• We propose modifications to testbed resource allocation pol-
icy that reshuffle allocated experiments to make space for
new ones. This further reduces allocation failures to 57.3%
of those generated by assign.

• We identify and demonstrate the need for some fair sharing
and prioritization of user allocation requests at times of true
overload. We propose two ways to modify testbed resource
allocation policy to achieve these effects: Take-a-Break and
Borrow-and-Return. In both, resources from long-running
experiments are reclaimed and offered to incoming ones, but
in Take-a-Break they are held as long as needed, while in
Borrow-and-Return they are returned back to the original ex-
periment after 4 hours. We show that both these approaches
improve fairness of resource allocation, while reducing allo-
cation failures to 25.3 – 25.6% of those generated by assign.

• During the course of our study we have also identified tools
that testbeds need to develop either to better serve their users
or to become more stable. We suggest five such improve-
ments throughout the paper.

All the data used in our study is anonymized and publicly released
at http://nsl.isi.edu/TestbedUsageData.

2. RELATED WORK
The wide adoption of emulation testbeds in the networking re-

search community has spurred studies on different approaches for

designing and managing them. For example, the resource man-
agement mechanisms for Globus and PlanetLab are contrasted and
compared extensively by Ripeanu [21]. Additionally, Banik et.
al [4] conduct empirical evaluations for different protocols that can
provide exclusive access to shared resources on PlanetLab. The
StarBED project has several unique solutions for emulation that in-
clude configuring the testbed and providing mechanisms for exper-
iment management [18, 19]. These works either evaluate pros and
cons of specific testbed management mechanisms or propose how
to build testbeds, but do not investigate resource allocation algo-
rithms, which is our focus.

Testbed usage and design practices have also attracted research
attention. Hermenier and Ricci examine the topological require-
ments of the experiments on the Emulab testbed [24] over the last
decade [9]. They propose a way to build better testbeds by: (1)
increasing the heterogeneity of node connectivity, (2) connecting
nodes to different switches to accommodate heterogeneous topolo-
gies without use of interswitch bandwidth, and (3) purchasing smaller
and cheaper switches to save costs. Our work is orthogonal to theirs
and focuses on optimizing allocation software and policies, regard-
less of testbed architecture. Kim et. al characterize the PlanetLab
testbed’s [7] usage over the last decade [13]. Their results indi-
cate that bartering and central banking schemes for resource alloca-
tion can handle only a small percentage of total scheduling require-
ments. They do not propose better resource allocation algorithms,
even though they identify the factors that account for high resource
contention or poor utilization.

Yu et al. in [25] propose collecting allocation requests during
a time window and then allocating testbed resources to satisfy the
constraints of this request group. They employ a greedy algorithm
to map nodes and path splitting to map links. Besides, they perform
online migration to change the route or splitting ratio of a virtual
link, which re-balances the mapping of virtual topologies to maxi-
mize the chance of accepting future requests. Their methods con-
sider the general mapping problem at a high-level way, but do not
take into account heterogeneity of testbed nodes. Besides, queuing
allocation requests in network testbeds would introduce potentially
large delays that users would not tolerate. Chowdhury et al. in [6]
utilize mixed integer programming to solve the resource allocation
problem, but their constraints are limited to CPU capacity and dis-
tance between the locations of two testbed nodes. J. Lu et. al [15]
develop a method for mapping virtual topologies onto a testbed in
a cost-efficient way. They consider traffic-based constraints but do
not consider node heterogeneity or node features.

In a broader setting, ISPs tend to address resource allocation
problems by over provisioning their resources (bandwidth). This
solution does not readily apply to network testbeds. First, testbeds
have limits on how many machines they can host that stem from
the space, weight, cooling and power capacity of the rooms that
host them. Second, testbeds are hosted by academic institutions
and funded through grants – this limits both human and financial
resources for purchase and maintenance of hardware. Finally, test-
bed use exhibits heavy tails along many dimensions (see Section
9.2), which prevents prediction of future resource needs.

Clusters and data centers face similar resource allocation issues
as testbeds [8, 11, 23]. In [8], Ghodsi et al. propose dominant re-
source fairness (DRF) for resource allocation in data centers. This
approach achieves fair allocation of heterogeneous resources be-
tween users who prioritize them differently. Unfortunately, like
other fair-sharing approaches, DRF is not readily applicable to test-
beds (see Section 9.2 for more details) due to interactive nature of
experimentation and due to different value of long vs short experi-
ments. In [11], Hindman et al. describe a platform called Mesos for



sharing clusters, by allowing multiple resource allocation frame-
works to run simultaneously. Mesos offers resource shares to the
frameworks, based on some institutional policy, e.g., fair share, and
they decide which offers to accept and which tasks to allocate on
them. Some principles from [11], such as resource offers, may ap-
ply to testbeds, but they assume users that are way more sophis-
ticated and informed about resource allocation than testbeds cur-
rently have. Condor [23] is a workload management system for
compute-intensive jobs that aims to harness unused resources on
heterogeneous and distributed hardware and can migrate data and
jobs as nodes become available. While some Condor ideas may ap-
ply to network testbeds to achieve instance migration (see Section
9) testbed nodes are usually heavily customized by users, which
prevents fine-grain migration that Condor excels at.

3. TERMINOLOGY
We now introduce several terms that relate to network testbed use

and illustrate them in Figure 1.
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Figure 1: Terminology

An experiment is a collection of inputs submitted by a user to
the testbed (one or more times) under the same identifier. These
inputs describe experimenter’s needs such as experiment topology,
software to be installed on nodes, etc. We will say that each input
represents a virtual topology. Experiments can be modified, e.g.
by changing number of requested nodes or their connectivity. In
Figure 1 there are two experiments A and B.

An instance is an instantiation of the experiment at the physical
resources of the testbed. We say that an instance has duration (how
long were resources allocated to it), size (how many nodes were
allocated) and virtual topology (how were nodes connected to each
other, what types of nodes were requested, what OS, etc.). The
same experiment can result in multiple non-overlapping instances,
one for each resource allocation. In Figure 1 there are five instances,
three linked to the experiment A, and two linked to B. Release of
the resources back to the testbed or instance modification denotes
the end of a particular instance.

A testbed project is a collection of experiment definitions and au-
thorized users, working on the same common project under a single
head-PI. In Figure 1 there is one project with two experiments and
three users.

An experiment can experience the following events: preload,
start, swapin, swapout, swapmod and destroy. Events
preload, start and destroy can occur only once during ex-
periment’s lifetime, while others can occur multiple times. Each
event is processed by one or more testbed scripts and can result
in a success or a failure. Figure 2 shows the state diagram of an
experiment, where state transitions occur on successful events. A
preload event leads to experiment’s virtual topology being stored

on the testbed, but no resources are yet allocated to the experiment
– experiment exists in the defined state. A swapin event leads to
resource allocation, changing the experiment’s state to allocated. A
start event is equivalent to a preload followed by a swapin.
A swapout event releases resources from the experiment, chang-
ing its state to defined. A swapmod event can occur either in de-
fined or in allocated state. It changes the experiment’s definition
but does not lead to state change. If a swapmod fails while the
experiment is in allocated state, the testbed software automatically
generates a swapout event and reverts experiment state to defined.
A destroy event removes an experiment’s virtual topology and
state from the testbed but history of its events still remains. Ta-
ble 1 shows the frequency of all experimental events in our dataset,
which is described in the following Section.

allocated
preload

start

swapin

swapout

defined
destroy

swapmod swapmod

Figure 2: Experiment state diagram

4. DATA
We analyze eight years of data about DeterLab’s operation col-

lected from its inception in February 2004 until February 2012. As
of February 2012, DeterLab had 154 active research projects (556
research users), 38 active class projects (1,336 users) and 11 active
internal projects (95 users). The testbed consisted of 346 general
PCs, and some special-purpose hardware. Half of the nodes are lo-
cated at UCS/ISI, and other half at UC Berkeley. Table 2 shows the
features of DeterLab’s PCs.

DeterLab runs Emulab’s software for experiment control [24],
which means that all testbed management events such as node al-

Event Count Frequency
preload 10,472 4%

start 16,043 6.1%
swapin 101,275 38.6%

swapmod 36,819 14%
swapout 75,156 28.7%
destroy 22,575 8.6%

total 262,340 100%

Table 1: Frequency of experimental events in the dataset

Type Disk CPU Mem Interf. Count
(GB) (GHz) (GB)

1 250 2.133 4 4 63
2 250 2.133 4 4 63
3 72 3 2 4 32
4 72 3 2 5 32
5 36 3 2 4 61
6 36 3 2 5 60
7 36 3 2 9 4
8 238 1.8 4 5 31

Table 2: DeterLab’s node types as of Jan 2011



Source Data Meaning
DB events Time, experiment, project, size, exit code for each event.
DB errors Time, experiment, cause and error message for each error.
FS /usr/testbed/expinfo Virtual topology, testbed resource snapshot, and resource allocation log for all

successful and for some unsuccessful resource allocation requests.

Table 3: Types of data analyzed to recreate the experimental events and state of the testbed

location, release, user account creation, etc. are issued from one
control node called boss and recorded in a database there. Ad-
ditionally, some events create files in the file system on the boss
node. We analyze a portion of database and file system state on
this node that relates to resource allocations. We have database
records about testbed events and any errors that occurred during
processing of these events. We further have files describing virtual
topologies and testbed state snapshots that were given to the alloca-
tion software – assign – and the allocation logs showing which
physical nodes were assigned to each experiment instance. The vir-
tual topology encodes user desires about the nodes they want, their
configuration and connectivity. The testbed state snapshot gives
a list of currently available nodes on the testbed, along with their
switch connectivity, supported operating system images, features
and feature weights (see Section 5 for explanation of these terms).
Such snapshots are created on each attempted start, swapin or
swapmod. The complete list of our data is shown in Table 3.

In our investigation we found that both database and file system
data can be inconsistent or missing. This can occur for several rea-
sons:

1. Different scripts may handle the same event and may gener-
ate database entries. It is possible for a script to behave in
an unexpected manner or overlook a corner case, leading to
inconsistent information. For example, for a small number
of experiments we found that database entries show consecu-
tive successful swapin events, which is an impossible state
transition. We believe that this occurs because one script
processes the event and records a success before the event
fully completes. In a small number of cases another script
detects a problem near the end of resource allocation and re-
verts the experiment’s state to defined but does not update the
database.

2. State transitions can be invoked manually by testbed opera-
tions staff, without generating recorded testbed events. For
example, we found a small number of experiments in allo-
cated state according to the database, while file system state
indicated that they returned the resources to the testbed. This
can occur when testbed operations staff manually evicts sev-
eral or all experiments to troubleshoot a testbed problem.

3. Testbed policies and software evolve, which may lead to dif-
ferent recording of an event over time. For example in 2004–
2006, when a user’s request for experiment modification had
a syntax error this was recoded in the database. This practice
was abandoned in later Emulab software releases. Similarly,
when a user’s request for experiment modification failed due
to temporary lack of testbed resources, this request and test-
bed’s state snapshot were recorded in the file system on the
boss node. This practice was abandoned in early 2007 mak-
ing it difficult to understand and troubleshoot resource allo-
cation errors.

4. In a small number of cases software generating unique iden-
tifiers for file names storing virtual topology and testbed state

snapshot had low randomness leading to newer files overwrit-
ing older ones within the same experiment. This means that
file system state for some instances is missing.

During our analysis, we detect and either correct or discard entries
with inconsistencies. We also attempt to infer missing data wher-
ever possible, by combining the database and the file system infor-
mation.

Suggestion 1: Testbeds need better software development prac-
tices that start from a system model and verify that developed code
matches the model, e.g., through model checking and unit testing.
While it is impossible to eliminate all bugs in a large codebase, a
systematic tying of code to requirements and models would help
eliminate inconsistencies in record-keeping and even facilitate au-
tomated detection and forensics of testbed problems.

5. TESTBED MAPPING PROBLEM
We now explain some specifics of testbed operation that relate to

resource allocation, using Figure 3 to illustrate them. Many of the
concepts in this Section were first introduced in [20].
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Figure 3: Illustration of the network testbed mapping problem

Over time network testbeds acquire nodes of different hardware
types leading to heterogeneity. Types can differ in number of net-
work interfaces, processor speed, memory size, disk space, etc. In
Figure 3 the drawing on the left shows a sample testbed architec-
ture. There are three hardware types: A, B and C, with 2, 2 and
6 nodes respectively. Each physical node is connected to a switch.
Because a single switch has a limited number of ports a testbed may
have multiple switches connected by limited-bandwidth links, each
hosting a subset of nodes. In Figure 3 there are three switches –
s1, s2 and s3 – with interswitch links shown as thick lines between
them. Often nodes of the same type are connected to the same
switch. Sometimes it is beneficial to connect different node types
to the same switch (e.g., nodes of type A and B are connected to s1)
or to connect some nodes to two different switches (e.g., nodes C5



and C6 connect to s1 and s3). DeterLab has instances of all three
node-to-switch connection types in its current architecture.

Users submit their experiment configuration requests to the test-
bed as a virtual topology. One such topology is shown in the right
drawing in Figure 3. A resource allocation algorithm attempts to
solve the testbed mapping problem [20]. It starts from the virtual
topology and a snapshot of the testbed state and attempts to find the
best selection of hardware that satisfies experimenter-imposed and
testbed-imposed constraints.

Testbed-imposed constraints consist of limitations on available
nodes of any given type, limitations on number of node interfaces,
and limited interswitch link bandwidth. Experimenter-imposed con-
straints are encoded in the virtual topology as desires and consist of:
(1) Node type constraints – a virtual node must be mapped to spe-
cific hardware type, (2) OS constraints – a virtual node must run
specific OS, (3) Connectivity constraints – a virtual node should
have specific number of network interfaces and must be connected
to another node by a link of specific bandwidth. Node type and OS
constraints are encoded explicitly by annotating nodes in the virtual
topology, and the connectivity constraints are implied in the topol-
ogy’s architecture. For example, in Figure 3, explicit constraints
request nodes n1 and n2 to be of type pc and run OS 1, while nodes
n3, n4 and n5 should be of type B or C. Implicit connectivity con-
straints require that n2 be mapped to a node with at least 3 network
interfaces, n1 to a node with at least 2 interfaces, and the rest to
nodes with at least 1 interface. Each link is required to have 1 Gbit
bandwidth. This limits the number of virtual links that can be al-
located to an interswitch link and in turn invalidates some mapping
of virtual to physical nodes that would oversubscribe interswitch
bandwidth. Emulab software further lets users specify fixed map-
pings: virtual nodes that map to specific physical nodes (e.g. a
user may request n1 to be mapped to A1). This sometimes helps
assign algorithm to find a solution, where it would otherwise
miss it. We elaborate on reasons for fixed mappings in the next
Section.

The notion of the node type [20] extends beyond simple hardware
types in two ways. First, a physical node can “satisfy” multiple
node types and may host multiple instances of the same type. For
example, node A1 (see annotations at the bottom left in Figure 3)
can host one virtual node of type A, one virtual node of type pc,
two virtual nodes of type delay, or ten virtual nodes of type pcvm
(virtual machine installed on a physical node). Second, a user can
specify a vclass – a set of node types instead of the single type for
any virtual node, e.g. in Figure 3 a user has asked for nodes n3,
n4 and n5 to be either of type B or of type C. vclasses can be hard
– requiring that all nodes be assigned to the same node type from
vclass (e.g., all are B or all are C) – and soft – allowing mixed
type allocations, from the same vclass (e.g., each could be B or
C). In DeterLab’s operation we have only encountered use of soft
vclasses. Corresponding to experimenter’s desires, physical nodes
have features. For example, in Figure 3 there are the following
features: (1) OS 1 runs on types A and B, (2) OS 2 runs on types
A and C, (3) firewallable feature is supported by types A and B, (4)
hosts-netfpga feature is supported by types B and C. Each feature
is accompanied by a weight that is used during resource allocation
process to score and compare different solutions.

Testbeds create base OS images for all their users, for popular OS
types like Linux, Windows and Free BSD. Over time testbed staff
creates newer versions of base images but the old ones still remain
on the testbed and are used, we believe due to inertia. Testbeds
further allow users to create custom disk images as a way of saving
experimental state between allocations. These images are rarely
upgraded to new OS versions. As testbeds grow, old custom and

base images cannot be supported by new hardware. Thus virtual
topologies with such images can be allocated only to a portion of
the testbed and OS desires turn into mapping constraints.

Suggestion 2: Testbeds need mechanisms that either provide
state saving without disk imaging, or help users to upgrade their
custom images automatically to new OS versions. Experiment spec-
ifications (virtual topologies) should also be upgraded automati-
cally to use newer base OS images. This would eliminate OS-based
constraints and improve allocation success.

An acceptable solution to the testbed mapping problem meets all
experimenter-imposed and testbed-imposed constraints. We note
that honoring an interswitch bandwidth constraint is a choice and
not a must. Testbed software can allocate any number of virtual
links onto the interswitch substrate, but if it oversubscribes this sub-
strate and if experimenters generate full-bandwidth load on the vir-
tual links they may experience lower than expected performance.
In our example in Figure 3 it is possible to allocate links n2-n4
and n2-n5 on the same 1 Gbit interswitch link, but if the experi-
menter sends 1 Gbit of traffic on each of them at the same time half
of the traffic will be dropped. There are two choices when evalu-
ating if interswitch bandwidth constraint is met: (1) evaluation can
be done only within the same experiment assuming no other experi-
ment uses the same interswitch link, and (2) evaluation can be done
taking into account all experiments that use the same interswitch
link. In practice, solution (1) is chosen because it improves the
resource allocation success rate. Risk of violating experimenter’s
desires is minimal because the incidence of multiple experiments
using the same interswitch link and generating high traffic at the
same time is low.

The best solution to the testbed mapping problem is such that
minimizes interswitch bandwidth consumption and minimizes un-
wanted features on selected physical nodes – these are the features
that are present on the nodes but were not desired by the experi-
menter. Doing so improves the chance of success for future alloca-
tions. In face of these allocation goals the testbed mapping problem
becomes NP-hard, because the number of possible solutions is too
large to be exhaustively searched for the best one.

6. WHY ALLOCATIONS FAIL
A resource allocation may fail for a number of reasons such as a

syntax error in the user’s request, a testbed software failure, a policy
violation by a user’s request, etc. In this paper we only investigate
resource allocation failures that occur due to temporary shortage of
testbed resources. This means that the same virtual topology would
successfully allocate on an empty testbed. We will call these TEMP
failures and classify them into the following categories:

1. FIXED: Virtual topology specified a fixed mapping of some
virtual nodes to specific physical nodes but testbed could not
obtain access to these nodes.

2. TYPE: Virtual topology had node type constraint that could
not be met by the testbed.

3. OS: Virtual topology had OS constraint that could not be met
by the testbed.

4. CONNECT: The testbed could not find a node with suffi-
cient interfaces.

5. INTERSWITCH: The allocation algorithm found a solution
but the projected interswitch bandwidth usage exceeded link
capacity.



6. TESTBED: There is a problem in the testbed’s software that
only becomes evident during resource allocation. One such
problem occurs when assign [20] – the current allocation
algorithm – fails to find a solution even though one exists.

Categories FIXED, TYPE, OS, CONNECT and INTERSWITCH
stem directly from the way testbeds address the testbed mapping
problem (see the previous Section) – a failure to satisfy user or test-
bed constraints will fall into one of these five categories. In our
analysis of TEMP failures on DeterLab we further find that bugs in
testbed configuration and software occasionally lead to TEMP fail-
ures, when in reality there are available resources to satisfy user
and testbed constraints. This leads us to create the TESTBED cat-
egory. One could view TEMP failures that fall into TESTBED cat-
egory as false TEMP failures, since they do not occur due to a tem-
porary resource shortage.

We first investigate why TEMP failures occurred historically on
the DeterLab’s testbed. We start with the records from the Deter-
Lab’s database that contain experiment identifier, time and alleged
cause of each failure, as well as the error message generated by the
testbed software. The database only has records for failures that oc-
curred after April 13, 2006. There are 24,206 records, out of which
11,176 have their cause classified as TEMP in the database. We
use the error messages to classify these TEMP failures into the cat-
egories above. We find that 47.5% are TYPE failures, 18.5% are
FIXED failures, 15.7% are OS failures, 3.8% are CONNECT fail-
ures and only 0.5% are INTERSWITCH failures. In 13.5% of cases
the error message indicates that mapping failed, but does not give
the specific reason. Finally there are 0.2% of failures that occur due
to a policy violation or a semantic problem in the experimenter’s
request but are misclassified as TEMP failures.

While the above analysis offers a glimpse into why specific al-
locations failed, we would like to know how many failures occur
due to true overload – there are not enough nodes on the testbed –
and how many occur due to perceived overload – there are enough
nodes on the testbed but experimenter or testbed constraints are vio-
lated. Cases of perceived overload could be eliminated either by re-
laxing experimenter’s constraints or by improving testbed software.
To answer these questions we need to match each TEMP failure to
the virtual topology and the testbed state snapshot that were given
to assign so we could mine the desired and the available number
of resources. We perform this matching in the following way:

1. We link each TEMP failure to a resource allocation log file
showing details of the allocation process, by matching the
time of the TEMP failure with the timestamp of the file.

2. From the log file we mine the file names of the virtual topol-
ogy and the testbed state snapshots that were used by the re-
source allocation software, i.e. the assign algorithm.

3. In 2007, DeterLab testbed stopped saving the virtual topol-
ogy and the testbed state files for failed allocations so we
must infer them from other data. To infer the virtual topology
we identify the testbed event (swapmod or swapin) that led
to that specific TEMP failure. For failures that occurred on
a swapin event, we attempt to find a previous successful
swapmod or swapin of the same experiment and link it to
a virtual topology using the same process from steps 1 and
2. We associate this topology with the TEMP failure. To
infer the testbed state at the time of TEMP failure, we pro-
cess the testbed state snapshots chronologically up to the time
of the failure and infer from those the physical node features
and testbed architecture (connections and bandwidth between
nodes and switches). We also take the last testbed snapshot

created before the TEMP failure and extract the list of avail-
able nodes at the time. We then process any swapout events
between the time of the last snapshot and the TEMP failure,
and add the released nodes to the available pool. This gives
us the testbed state at the time of TEMP failure. Then we
combine all this information and generate the testbed snap-
shot in the format required by the assign algorithm. This
inference process may result in an incorrect testbed state only
if some of the available nodes become unavailable in the time
between the last testbed snapshot and the TEMP failure. This
can happen due to a hardware error, a manual reservation by
the testbed staff, or because some of the nodes released by the
swapout events in that short time interval failed to reload
the default OS and required manual intervention by testbed
staff. While hardware errors and manual reservations are rare
on DeterLab, reload failures occur daily but usually affect a
handful of nodes. We thus believe that most of our inferred
testbed snapshots are correct.

We were able to match 9,066 out of 11,176 TEMP failures in
this manner – they form the matched-failure set that we analyze
further. We focus only on demand and availability of general PC
nodes, since only a small fraction of instances request special hard-
ware. Only 1,679 of TEMP errors or 18.5% occur because of a true
overload, meaning that there are less PCs than desired. This means
that 81.5% of TEMP errors could potentially be reduced or elim-
inated by improving testbed software or by educating users how
to minimize their use of constraints. To identify TESTBED errors
we run both the assign and our assign+ allocation algorithm
(described in the Section 8.2) on the remaining 7,387 pairs in the
matched-failure set.

We next modify virtual topologies in the matched-failure set to
remove fixed mappings, because they seem to often harm alloca-
tions, as evidenced by a high number of FIXED failures. In many
cases fixed mappings are inserted not by a user but by the testbed
software when a running instance is being modified, e.g. by adding
or removing nodes. This enables the testbed to keep the currently
allocated nodes associated with the instance and just drop some (in
case of removing nodes) or add a few more. However, if some of
the allocated nodes become unresponsive the entire resource alloca-
tion fails. We believe that this is an incorrect model, and the testbed
should fall back to the strategy of releasing all nodes and allocat-
ing from the entire available node pool. Another reason for fixed
mappings occurs in a case when nodes of a given type may dif-
fer based on their location, and a user prefers some locations over
others. We argue that these cases would be better handled through
node features or through creation of location-specific node types,
since fixed mappings allow users to select only one out of several
possible node choices.

We find that assign+ can successfully allocate resources in
1,392 cases, or 15.3% of our matched-failures set. We further find
that both assign and assign+ succeed in 2,251 or 24.8% of
cases. It is possible that the original failure, recorded in the database,
was a “bad run of the luck” event for assign, due to its random-
ized search strategy (see Section 8.1 for more details). It is further
possible that the original failure occurred due to a failure of some
other testbed software and was recorded as a TEMP failure. Either
way, we classify these failures as TESTBED failures. Finally, we
find that in 456 cases or 5% allocation failed due to a spelling error
in the database in some switch names. These entries are used when
testbed snapshots are created, and a spelling error leads to a dis-
connected testbed. We thus conclude that 3,288 or 36.3% of TEMP
errors occur due to experimenter’s constraints, 4,099 or 45.2% oc-
cur due to testbed software and 1,679 or 19.5% occur due to true



overload. There are thus three ways of addressing the allocation
problem: (1) helping users understand and reduce the constraints on
their topologies, (2) designing better resource allocation algorithms
and (3) enforcing some fair sharing of resources. We explore each
of these strategies in the following sections.

Suggestion 3: Testbeds should develop automated self-checking
software that detects events such as spelling errors in the database
records, real switch and node disconnections, etc., well before they
lead to resource allocation failures.

7. RELAXING USER CONSTRAINTS
We now explore how much user constraints influence allocabil-

ity of instances on DeterLab. We first match all the successfully
allocated instances in our dataset with their virtual topology and
the state of the empty testbed that existed at the time of their al-
location. For each topology, we simulate the checks in the testbed
mapping software for node type, OS and connectivity constraints
on this empty testbed. We limit our checks only to those nodes in
the virtual topology that can be allocated on general PCs, and the
testbed state only includes these PCs. For each node we record the
nodescore, showing the percentage of testbed that can satisfy this
node’s constraints. For example, if a user asked for a node of type
A or B with OS 1 and if there are 30 nodes of type A, 30 of type
B and 20 of type C in the testbed, with OS 1 supported on A and
C, the nodescore for this node would be 30/80 = 0.375 because
it can only be allocated to nodes of type A. We then calculate the
topscore, averaging all the nodescore’s in the virtual topology.
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Figure 4: Topscore values when we vary type restrictions

The red line in the Figure 4 shows the cumulative distribution
function (cdf) of all the topscores in the original topologies. There
are 30% of topologies that can allocate on less than 80% of the
testbed, 20% can allocate on less than half of the testbed and 10%
can allocate on less than 20% of the testbed. To identify the effect
of the node type, OS and connectivity constraints on the allocabil-
ity we modify virtual topologies in the following ways: (1) ALT-
TYPE: We allow use of alternative node types that have similar
or better hardware features than the user-specified node type; these
are described in more detail in Section 8.4, (2) NOTYPE: We com-
pletely remove the node type constraint, (3) NOOS-NOTYPE: We
remove both the node type and the OS constraints; the OS con-
straint can be removed by users upgrading their experiments to use
newer OS versions that are supported by all testbed hardware. Ef-
fect of these strategies on the allocability is also shown in Figure
4. Use of alternative types improves the allocability, especially of
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Figure 5: Topscore values when we vary OS restrictions

those topologies that were previously severely restricted. There are
now 15% of topologies now allocate on less than half of the testbed
and only 2% allocate on less than 20% of the testbed. Removal of
node type constraints has a profound effect. Only 11% of topolo-
gies now allocate on less than 80% of the testbed, only 3% on less
than half of the testbed and only 0.1% on less than 20% of the test-
bed. Finally, removing all node type and OS constraints leads to
only 0.3% of topologies to allocate on less than 80% of the testbed.

We next explore the effect of (1) NOOS: Removing OS restric-
tions, (2) NOOS-ALTTYPE: Removing OS restrictions and using
alternative node types. The effect of these strategies is shown in
Figure 5. Removal of OS constraints leads to 23% of topologies
that can allocate on less than 80% of the testbed, 17% can allocate
on less than half of the testbed and 10% can allocate on less than
20% of the testbed. If we add to this use of alternative types, 21%
of topologies that can allocate on less than 80% of the testbed, 12%
can allocate on less than half of the testbed and only 2% can allocate
on less than 20% of the testbed.

We do not explore how changing connectivity would influence
allocability, because connectivity constraints only affect a small
number of topologies, and lower the allocability by a small value.
This is reflected in NOOS-NOTYPE line in Figure 5 where it de-
parts from 1 to values 0.9–1 for about 15% of topologies.

This section has laid out strategies that users can deploy them-
selves to improve allocability of their topologies. But, how likely
is this to happen, i.e. are users flexible about their constraints? To
answer this, we try to characterize evolution of virtual topologies in
our dataset by first pairing failed allocations with the first following
successful allocation in the same experiment and then comparing
their topologies. We manage to pair 2,124 out of our 9,066 virtual
topologies from the matched-failures set. In 956 of those pairs the
topologies differ: in 639 cases a user has modified node type or OS
constraint, and in 322 cases a user has reduced the topology’s size.
We conclude that users naturally relax their constraints when faced
with an allocation failure about half of the time. When we examine
how long it takes a user to converge to a “good” set of constraints
we find that half of the users discover the constraint set that leads
to successful allocation within one hour, 66% within 4 hours, and
78% within a day. But this distribution is heavy-tailed with the tail
going into year-long values, possibly due to the user abandoning
the experiment and returning to it much later.

Having automated tools that identify and propose alternative con-
straints to users would improve this convergence time, and would



improve user experience. We believe that such an interactive dia-
logue with the user would work better then letting users specify how
important certain constraints are to them, since this more actively
engages the user and informs them about possible trade-offs.

Suggestion 4: Testbeds need tools that help users evaluate trade-
offs between different constraint sets and automatically suggest mod-
ifications that improve allocability. This could be done prior to the
actual attempt to allocate resources.

8. IMPROVING RESOURCE ALLOCATION
We now explain how assign algorithm works and how we im-

prove it in assign+.

8.1 assign

In [20] Ricci et al. propose and evaluate the assign algorithm
as a solver for the testbed mapping problem. Because this prob-
lem is NP-hard, Ricci et al. propose to solve it using simulated
annealing [14] – a heuristic that performs a cost-function-guided
exploration of a solution space. Simulated annealing starts from
a random solution and scores it using a custom cost function that
evaluates its quality. It then perturbs the solution using a generation
function to create the next one. If this solution is better than the pre-
vious one it is always accepted; otherwise it is accepted with some
small probability, controlled by temperature. This helps the simu-
lated annealing to get out of the locally optimal solutions and find
the global optimum. At the beginning of the search, the tempera-
ture is set to a high value, leading to most solutions being accepted.
Over time the temperature is lowered, following a custom cooling
schedule, making the algorithm converge to a single “best” solution.
There is no guarantee that the algorithm will find the best solution
but it should find one that is much better than a random assignment,
and fairly close to the best one. Obviously, as algorithm runs longer
its chance of finding the global optimum increases but so does the
runtime. To guarantee time-bounded operation, assign’s runtime
is limited, which may sometimes make it miss a possible solution.

To condense the search space, Ricci et al. introduce the concept
of pclasses – sets of nodes that have the same node types, features,
network interfaces and switch connections. In Figure 3 we iden-
tify four pclasses. Virtual nodes are then mapped to pclasses. The
assign algorithm starts from the set of all pclasses and precom-
putes for each virtual node a list of pclasses that are acceptable
candidates. It then moves all the virtual nodes into unassigned list
and, at each step, tries to map one node from this list to a pclass.
When all the nodes have been assigned, the algorithm tries in each
step to remap one randomly selected virtual node to another pclass.
Each solution is scored by calculating a penalty for used interswitch
bandwidth and for unwanted features. The actual scoring function
is quite complex but it approximately adds up unwanted feature
weights and fixed link penalties. A lower score denotes a better
solution. In the end assign selects the solution with the lowest
score as the best one. Algorithm 1 gives a high-level overview of
assign’s operation.

8.2 assign+

In designing assign+ our main insight was to use expert knowl-
edge of network testbed architecture to identify allocation strategies
that lead to minimizing interswitch bandwidth. These strategies are
deployed deterministically to generate candidate solutions, instead
of exploring the entire space of possible allocations via simulated
annealing, which significantly shortens the run time. We also recog-
nized that allocating strongly connected node clusters in experiment
topologies together leads to preservation of interswitch bandwidth
and shortens the run time. In the long run these strategies also lead

Algorithm 1 assign pseudocode.
1: generate pclasses; put all virtual nodes into unassigned set
2: map each virtual node to candidate pclasses
3: repeat
4: assign one node from unassigned to a pclass
5: until unassigned = ∅
6: repeat
7: solution = remap one virtual node to a different pclass
8: score solution; solutions+ = solution
9: until sufficient iterations or average score low

10: select the lowest scored solution as best

to better distribution of instances over heterogeneous testbed re-
sources.

Like assign, assign+ generates pclasses and precomputes
for each virtual node a list of pclasses that are acceptable candi-
dates. It then generates candidate lists, aggregating virtual nodes
that can be satisfied by the same candidate pclasses. For example,
in Figure 3 n1 can be satisfied by pclass1 or pclass2, n2 can be sat-
isfied only by pclass2 because it requires three network interfaces,
and n3, n4 and n5 can be satisfied by pclass2, pclass3 or pclass4.
Each pclass has a size which equals the number of currently avail-
able testbed nodes that belong to it. Next, the program calls its
allocate function five times, each time exploring a separate al-
location strategy.

The main idea of the allocate function is to divide the virtual
topology into several connected subgraphs and attempt to map each
subgraph or its portion in one step, if possible. Only if this fails, the
function attempts to map individual virtual nodes. This reduces the
number of allocation steps, while minimizing the interswitch band-
width, because connected nodes are mapped in one step whenever
possible.

The allocate function first breaks the virtual topology into
several connected partitions attempting to minimize the number of
cut edges. Our partitioning goal is to create a large number of pos-
sible partitions, where smaller partitions can be subsets of larger
ones. This allows us flexibility to map these partitions to different-
sized pclasses. We achieve this goal by traversing the topology
from edges to the center and forming parent-child relationships, so
that nodes closer to the center become parents of the farther nodes.

Graph partitioning problem has many well-known solutions (e.g.
[12]), but these either require the number of partitions to be known
in advance – whereas we want to keep this number flexible – or they
are too complex for our needs. We employ the following heuristic
to generate the partitions we need. We start from virtual nodes with
the smallest degree and score them with number 1, also initializ-
ing round counter to 1. In each consecutive round, links that are
directly connected to the scored nodes are marked, if the peer on
the other side of the link is either not scored yet or is scored with
the higher number. The peer becomes a “parent” of the scored node
if it does not already have one. The process stops when all nodes
in the virtual topology have been scored. We illustrate the scores
for nodes in the virtual topology in Figure 3. Black nodes belong
to one partition and white ones to the second one. Node n2 is the
parent of nodes n4 and n5 and node n1 is the parent of the node n3.

Next, the allocate function traverses the candidate list from
the most to the least restricted, attempting to map each virtual node
and, if possible, its children. Let us call the virtual node that is
currently being allocated the allocating node. The most restricted
candidate list has the smallest number of pclasses. In our example
this is the list for node n2. The function calculates the number of
virtual nodes that must be allocated to this list and the number of



physical nodes available in the list. If the first is larger than the sec-
ond the entire mapping fails. Otherwise, we calculate for each par-
ent node in the candidate list two types of children pools: minimum
pool and maximum pool. Both calculations only include those chil-
dren that have not yet been allocated. The minimum pool relates to
the candidate list and contains all the children of the node that must
be allocated to this list. The maximum pool relates to each pclass
in the candidate list and contains all the children of the given par-
ent node that can be allocated to this pclass. In our example, when
we allocate n1 its minimum pool would be empty because neither
n4 nor n5 must be allocated to pclass2, while the maximum pool
would contain n4 and n5 for pclass2. The allocate function tra-
verses each pclass in the current candidate list in an order particular
to each allocation strategy we explore. This order is always from
the most to the least desirable candidate. It first tries to allocate the
allocating node and its maximum pool. If there are no resources in
any of the pclasses of the candidate list it tries to allocate the allo-
cating node and its minimum pool. If this also fails, it tries only to
allocate the allocating node. If this fails the entire mapping fails.

Algorithm 2 assign+ pseudocode.
1: generate pclasses
2: map each virtual node to candidate pclasses
3: generate candidate lists
4: for strategy = (PART, SCORE, ISW, PREF, FRAG) do
5: solution = allocate(strategy)
6: score solution; solutions+ = solution
7: end for
8: select the solution with the lowest interswitch bw as best
9: break ties by selecting solution with the lowest score

There are five allocation strategies we pursue in the calls to the
allocate function: PART, SCORE, ISW, PREF and FRAG. Each
strategy uses expert knowledge of possible network testbed archi-
tectures to generate candidate solutions that are supposed to mini-
mize interswitch bandwidth use. The success of each strategy de-
pends on the available resources and the size and user-specified
constraints in a given virtual topology. The first strategy – PART –
minimizes partitions in the virtual topology by allocating pclasses
from largest to smallest size. This improves packing of future in-
stances and also reduces number of interswitch links. The second
– SCORE – minimizes the score of the allocation by allocating
pclasses from those with the smallest to those with the largest score.
We explore different ways to score a pclass, e.g., based on how
many features it supports, based on how often it is requested, or a
combination of both. When we score by features we do not use fea-
ture weights, but instead just add up counts of supported features.
The next three allocation strategies prefer those pclasses that al-
ready host parents or children of the allocating node, thus minimiz-
ing interswitch bandwidth demand. In addition to parent/child host
preference, the ISW strategy also prefers those pclasses that have
high-bandwidth interswitch links to pclasses, which host neigh-
bors of the allocating node. This only makes a difference when
interswitch links have different capacities, in which case ISW will
minimize the risk of mapping failure due to interswitch bandwidth
oversubscription. In addition to parent/child host preference, the
PREF strategy also prefers those pclasses that share a switch with
pclasses, which host neighbors of the allocating node. This mini-
mizes use of interswitch bandwidth because communication is con-
tained within one switch, even though it occurs among different
pclasses. The PREF strategy tries to both minimize the interswitch
bandwidth and to minimize partitions in the virtual topology by al-
locating from pclasses with the largest to those with the smallest

product of their preference and size. The FRAG strategy only de-
ploys parent/child preference and tries to use the smallest number
of pclasses by allocating from pclasses with the largest to those
with the smallest product of their preference and size.

At the end, the allocate function records the candidate so-
lution and then tries to further reduce interswitch bandwidth cost
by running Kernighan-Lin graph partitioning algorithm [12] to ex-
change some nodes between pclasses if possible. Each exchange
generates a new candidate solution. The algorithm stops when no
further reduction is possible in the interswitch bandwidth. Each
solution’s score is the sum of scores of all the physical nodes in it.

After all calls to the allocate function return, assign+ choo-
ses the best solution. This solution has the smallest interswitch
bandwidth. If multiple such solutions exist, the one with the small-
est score is selected. Algorithm 2 gives a high-level overview of
assign+’s operation.

8.3 Evaluation

Algorithm Failed allocations % Baseline
(out of 19,258)

assign 1,176 (mean) 100%
assign+.1 905 77%
assign+.1m 983 83.6%
assign+.2m 917 78%
assign+.at 801 68.1%
assign+.mig 701 59.6%
assign+.atmig 674 57.3%
assign+.tb 298 25.3%

assign+.borrow 301 25.6%

Table 4: Evaluation summary for allocation failure rates

To compare the quality of found solutions and the runtime of
assign and assign+, we needed a testbed state (hardware types
and count, node types, features, weights and operating systems sup-
ported by each hardware type, node and switch connectivity), and
a set of resource allocation requests. We reconstruct the state of
the DeterLab testbed on January 1, 2011 using virtual topology and
testbed state snapshot data from the filesystem. To make the al-
location challenging, we permanently remove 91 PC nodes from
the available pool, leaving 255. While this may seem extreme, our
analysis of testbed state over time indicates that often this many or
more PCs are unavailable due to either reserved but not yet used
nodes or to internal testbed development. We seed the set of re-
source allocation requests with all successful and failed allocations
on DeterLab in 2011. Each request contains the start and end time
of the instance and its virtual topology file. For failed allocations,
we generate their desired duration according to the duration dis-
tribution of successful allocations. Finally, we check that there
are no overlapping instances belonging to the same experiment. If
found, we keep the first instance and remove the following over-
lapping instances from the workload. We test this workload both
with assign and assign+ on empty testbed and remove 1.3%
of instances that fail with both algorithms, because the reduced-size
testbed does not meet experimenter’s constraints. We will label this
final simulation setup “2011 synthetic setup”. We then attempt to
allocate all workload’s instances, and release them in order dictated
by their creation and end times, evolving the testbed state for each
allocation and each release. Evaluation results are summarized in
Table 4.

Figure 6 shows the allocation failure rate over time on this setup
for both algorithms. Since assign deploys randomized search,
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Figure 6: Allocation failure rates

we show the mean and the standard deviation of its 10 runs. We
test several approaches to score calculation: assign+.1 deploys
assign-like approach, where node types with more unwanted fea-
tures are penalized higher, (2) assign+.1m, same as assign+.1
but with memory, so node types that are requested more often re-
ceive a higher penalty when allocated, and (3) assign+.2m scores
nodes only by how often they are requested. In case of assign,
the failure rate starts small and increases to almost 6% by the end of
the simulation. Curves for different flavors of assign+ have the
similar shape but the failure rate is always below that for assign,
reaching 4.7% at the end. Overall, assign+ creates only 77%
of allocation failures generated by assign. assign-like score
calculation outperforms the one that depends only on user request
frequency. In the rest of the paper we use assign+.1 under
assign+ label.
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Figure 7: Runtime versus topology size

Figure 7 shows the runtime of assign and assign+ versus
topology size, with y-axis being in the log scale. For both algo-
rithms the runtime depends on the size and complexity of the virtual
topology, and the number and diversity of available nodes on the
testbed. We show the average of runtimes for each topology size
and the error bars show one standard deviation around the mean.

assign+ is consistently around 10 times faster than assign,
thanks to its deterministic exploration of the search space.
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Figure 8: Interswitch bandwidth versus topology size

Figure 8 shows the interswitch bandwidth allocated by assign
and assign+ versus topology size. We group allocations into
bins based on the virtual topology size, with step 10, and show
the mean, with error bars showing one standard deviation. Here
too, assign+ significantly outperforms assign on each topol-
ogy size. On the average, assign+ allocates only 23% of the
interswitch bandwidth allocated by assign .
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Figure 9: Scalability

We further test the scalability of both algorithms by using Brite
[16] to generate realistic, Internet-like topologies of larger sizes.
These topologies are more complex and more connected than those
found in most testbed experiments [9] and thus challenge allocation
algorithms. We generate 10 topologies each of the size 10, 20, 50,
100, 200, 500, 1,000, 2,000, 5,000 and 10,000 nodes. For each node
we request pcvm type (virtual machines), making it possible to al-
locate large topologies on our limited testbed architecture. Each
allocation request runs on an empty testbed. Figure 9 shows means
and standard deviations for runtime of assign and assign+ ver-
sus the topology size, both on log scale. assign+ again outper-
forms assign having about 10 times shorter runtime. assign
further fails to find a solution for 10,000-node topologies, while



assign+ finds it. assign+ only allocates interswitch bandwidth
in 5,000 and 10,000 node cases, while assign allocates it for
much smaller topologies. We believe that mechanisms that limit
assign’s runtime for large topologies interfere with its ability to
find a good solution that minimizes the interswitch bandwidth.

8.4 Alternative Types
We now assume that users request specific node types because

they need some well-provisioned resource such as a large disk or
a fast CPU. We explore if we can further improve resource alloca-
tion success by expanding experimenter’s node type constraint to
equivalent or better hardware. In real deployment this would have
to be done only with user’s consent. We only consider disk, CPU
and memory specifications. We start from DeterLab’s node types
in January 2011, as shown in Table 2, and identify for each type
alternative types that have same or better features in these three
dimensions.

Figure 10 shows the effect of using alternative types on allocation
success of assign+, under the label assign+.at. It creates
68.1% of failed allocations generated by assign.
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Figure 10: Allocation failure rates for assign+, when using
alternative types and migration

9. CHANGING ALLOCATION POLICY
The approaches in the previous section change the resource al-

location strategy, but do not change the allocation policy on test-
beds that allows users to hold resources for arbitrarily long times
without interruption. In this section we investigate if changes in re-
source allocation policy would further improve allocation success.
We examine two such changes:

1. Experiment migration – where running instances can be mi-
grated to other resources in the testbed (that still satisfy user-
specified constraints) to make space for the allocating in-
stance.

2. Fair sharing – where running instances can be paused if they
have been running for a long time and are currently idle, so
their resources can be borrowed by an allocating instance.

We acknowledge that either of these changes would represent a ma-
jor shift in today’s network testbeds’ philosophy and use policy. Yet
such shift may be necessary as testbeds become more popular and

the demand on their resources exceeds capacity. Our work helps
evaluate potential benefits of such policy changes.

Further, the above changes are potentially disruptive for some
instances that rely on the constancy of hardware allocated to them
for the duration of their lifetime. We assume that users would have
mechanisms to opt out of these features, i.e. they could mark their
experiment as “do not migrate” or “do not pause”. We further
assume that, if the benefits of these policy changes seem signif-
icant, testbeds would develop mechanisms to seamlessly migrate
or pause and restart instances that would be minimally disruptive
to users. Finally, we emphasize that instances could be migrated
and/or paused only during idle times, when allocated machines ex-
hibit no significant terminal, CPU, disk or network activity. Emulab
software looks for such idle machines each 10 minutes, and records
each machine’s state (idle/non-idle) in the database, overwriting the
previous state. We have collected these reports for one year to in-
vestigate the extent of idle time in instances. Figure 11 shows the
distribution of the total idle time in four classes of instances: those
that last < 12, 12-24 h, 1-7 days and > 7 days. All instances have
significant idle time and long-lived instances are often idle for more
than a week! This leads us to believe that our proposed policy modi-
fications would apply to many instances and would not disrupt their
existing dynamics.
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Figure 11: Idle times for instances of different duration

9.1 Migration
We now explore how much we can improve resource allocation

by performing experiment migration. This would include stopping
some allocated instances and moving their configuration and data to
other testbed machines to “make space” for the allocating instance.
While there exist techniques in distributed systems that can mi-
grate running processes to another physical node [17], we propose a
much lighter-weight migration that would only move instances that
are idle at the time. The simplest implementation of such migration
would be to image all disks of the experimental machines, and load
those images to new machines, but that would require a lot of time
and disk space.

We test the migration on our “2011 synthetic setup”. If a reg-
ular resource allocation fails, we identify any instance that holds
node types requested by the allocating instance and is idle as the
migration candidate. We then order candidates from the smallest
to the largest and attempt to migrate them one at a time. To do so



we reclaim resources from the migration candidate, try to allocate
the allocating instance, and then try to reallocate the migration can-
didate. Allocation succeeds only if both of these actions succeed.
Otherwise we restore the old state and try the next candidate. We
only record a failure for the allocating instance if all migrations fail.
In real deployment this can be easily simulated, without disturbing
any instances, until the successful combination is found.

Figure 10 shows the allocation failure rate when using migration
during assign+ under assign+.mig label, and when combin-
ing migration and alternative types, under assign+.atmig label.
We assume that a migration candidate is always idle in our simula-
tion. Migration lowers the allocation failure rate to 59.6% of that
generated by assign. Adding the alternative types to migration
has a minor effect, lowering the allocation failure rate to 57.3% of
that generated by assign.

Suggestion 5: Testbeds need better state-saving mechanisms that
go beyond manual disk imaging, to support migration.

9.2 Fair-Sharing
When demand for a shared resource exceeds supply, a usual ap-

proach is to enforce fair sharing and penalize big users. Traditional
fair sharing where every user (or in testbed case every project) re-
ceives a fair share of resources works well when: (1) users have
roughly similar needs for the resource, or (2) the demand does
not heavily depend on the resource allocation success and jobs are
scheduled in fixed time slots. In the first case, one can implement
quotas on use, giving each user the same amount of credit and re-
plenishing it on periodic basis. In the second case, one can imple-
ment fair queuing (e.g., [22]), allocating jobs from big users when-
ever there is leftover resource from the small ones. Unfortunately,
neither of these approaches works well for testbeds.

Many measures of testbed usage exhibit heavy-tail properties that
violate the first assumption about users having similar needs. For
example, the distributions of instance size and duration is heavy-
tailed (Figure 12(a) and 12(b)): most instances are short and small,
but there are a few very large or very long instances that dominate
the distribution. If we assume that fairness should be measured at
the project level, heavy tail property manifests again. The distribu-
tion of node-hours per project (Figure 12(c)), obtained by summing
the products of size and duration in hours for all its instances, is
also heavy tailed. The second assumption is violated because most
fair-sharing algorithms are designed for fixed-size jobs while test-
bed instances have a wide range of durations that are not known in
advance.

We now quantify the extent of unfairness on DeterLab testbed.
We define a project as “unfair” if it uses more than its fair share
of PCs in a week. While we focus on PC use, similar definitions
can be devised for specific node types. We choose a week-long
interval to unify the occurrence of heavy use due to any combina-
tion of large instances, long instances or many parallel instances in
a project. A fair share of resources is defined as total number of
possible node-hours in a week, taking into account available and
allocated PCs, divided by the total number of active projects in that
week. A project can be classified as unfair one week and fair the
other week.

Figure 13 shows the percentage of total possible node-hours used
by unfair and by fair projects each week during 2011. There are 114
projects active during this time, each of which has been fair at some
point during the year; 27 projects have also been unfair. There were
total of 3,126 TEMP failures in 2011, averaging 58.7 failures per
project when it is unfair, and 26.1 failures per project, when it is
fair. While an unfair project has more than double the errors of a
fair project, this is expected, because unfair projects request more
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Figure 12: Heavy tails in testbed use measures

allocations per second, their allocations are larger and have longer
duration.

Penalizing big testbed users is difficult because large use in re-
search projects seems to be correlated with publications. We manu-
ally classify research projects on DeterLab as “outcome projects” if
they have published one or more peer-reviewed publication, or MS
and PhD thesis, in which they acknowledge use of DeterLab. We
find 48 outcome projects and 104 no-outcome projects. We then
define an instance as big if it uses 20 nodes or more, and as long
if it lasts one day or longer. Only 9% of instances are big and 5%
are long. Outcome projects have on the average 99 big and 33 long
instances, while no-outcome projects have 10 big and 8 long in-
stances. Thus big instances and long instances that lead to unfair



testbed use seem to be correlated with research publications, and
good publicity for the testbed, and are thus very valuable to testbed
owners. It would be unwise to alienate these users or discourage
heavy testbed use. Instead, we want to gently tip the scale in favor
of small users when possible.

We identify three design goals for fairness policy on testbeds:

1. Predictability. Any fairness approach must allow users to
accurately anticipate when they may be penalized.

2. User control. Actions taken to penalize a user must de-
pend solely on their actions, and testbeds should offer opt-out
mechanisms.

3. On-demand. Resources should be reclaimed only when there
is an instance whose allocation fails, and whose needs can be
satisfied by these resources.

One approach to tipping the scale would be to reclaim some
resources from unfair projects until their use is reduced to a fair
share. This would violate all three design goals, because unfair sta-
tus changes depending on how many other projects are active, and
freed resources could sit unused on the testbed. Another approach
would be to reclaim resources on demand from an instance that has
used the most node-hours. Again this leads to unpredictable behav-
ior from the user’s point of view, and it may interrupt short-running
but large instances that are difficult to allocate again. We opt for
the strategy that reclaims resources on demand from the longest-
running instance, as long as it has been running for more than one
day and is currently idle. This lets users identify which of their in-
stances may be reclaimed in advance. We propose two possible ap-
proaches to fair allocations: Take-a-Break and Borrow-and-Return.

9.3 Take-a-Break
In Take-a-Break approach, when a resource allocation fails, we

identify any instance that holds node types that are requested by the
allocating instance and is currently idle, as the break candidate. We
then select the candidate that has been running the longest and, if its
age is greater than one day, we release its resources to the allocating
instance. The break candidate is queued for allocation immediately,
and an attempt is made to allocate it after any resource release.

Figure 14 shows the rate of allocation failures for Take-a-Break
approach under the assign.tbreak label. We also deploy mi-
gration and alternative node types. We assume that a break can-
didate is always idle in our simulation. Failure rate is strikingly
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Figure 13: Usage of fair and unfair projects in 2011.

low, reaching 1.5% by the end of our simulation even though the
density of allocated instances is increased. Overall, assign+ with
Take-a-Break creates only 25.3% of failed allocations generated by
assign. This comes at the price – duration of 177 instances is
prolonged. Half of these instances experience delays of up to 1
hour, 79% up to 4 hours, and 97% up to 1 day. Only six instances
are delayed more than one day, the longest delay being 1.67 days.
Looking at relative delay, 72% of instances are only delayed up to
1% compared to their original duration, 94% of instances are de-
layed by at most 10% and the worst delay doubles the instance’s
duration.
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We now verify if we have tipped the scale in favor of fair pro-
jects. We first apply the fairness calculation to the allocations re-
sulting from running assign+ on our “2011 synthetic setup” and
obtain similar usage patterns, to those seen in the real dataset, ex-
cept that the allocation failures are reduced because we were remov-
ing overlapping instances during workload creation and we started
with an empty testbed. There were 14.5 failures per project when
it is unfair, and 3.98 failures per project, when it is fair. We then
apply the same calculation to the allocations resulting from running
assign+with Take-a-Break on our “2011 synthetic setup” and we
count both allocation failures and forcing an instance to take a break
as “failures”. We find that there are 18.6 failures per project when
it is unfair, and 1.62 failures per project, when it is fair. Thus unfair
projects are slightly penalized and the failure rate of fair projects is
more than halved.

9.4 Borrow-and-Return
While Take-a-Break approach helps fair projects obtain more re-

sources, it forces instances whose resources have been reclaimed
to wait for unpredictable duration. Borrow-and-Return approach
amends this. Its design is the same as Take-a-Break approach, but
resources are only “borrowed” from long-running instances for 4
hours, after which they are returned to their original owner. Users
receiving these borrowed nodes would be alerted to the fact that the
nodes will be reclaimed at a certain time. Instances interrupted this
way are queued and allocated as soon as possible.

Figure 14 shows the rate of allocation failures for Borrow-and-
Return approach, under the assign.borrow label. We also de-
ploy migration and alternative node types. Allocation failure rate



is similar to that of Take-a-Break approach – 25.6% of that of the
assign . Duration of 583 instances is prolonged. 80% of these
instances experience delays of up to 1 hour, 96% up to 4 hours, and
99% up to 1 day. Only five instances are delayed more than one day,
the longest delay being 1.9 days. Looking at relative delay, 25% of
instances are delayed up to 1% compared to their original duration,
76.1% of instances are delayed by at most 10%, 97% are delayed by
at most 100% and the worst delay extends the instance’s duration
4.5 times. This approach seems to find a good middle ground be-
tween heavily penalizing long instances, like Take-a-Break does,
and doing nothing. Fairness of Borrow-and-Return approach is
slightly worse than that of Take-a-Break, leading to the average of
18.9 failures for unfair projects, and 2.3 for fair projects.

10. CONCLUSIONS
Network testbeds are extensively used today, both for research

and for teaching, but their resource allocation algorithms and poli-
cies have not evolved much since their creation. This paper exam-
ines the causes for resource allocation failures in Emulab testbeds
and finds that 31.9% of failures could be avoided through: (1) pro-
viding better information to users about the cost of and the alterna-
tives to their topology constraints, and (2) better resource allocation
strategies. The remaining failures can be reduced to 25.3% of the
original by applying a gentle fair-sharing strategy such as Take-a-
Break or Borrow-and-Return. The main challenge in designing fair
testbed allocation policies lies in achieving fairness, while being
sensitive to human user needs for predictability and while nurturing
heavy users that bring most value to the testbed. Our investigation
is just the first of many that need to be undertaken to reconcile these
conflicting, but important goals.
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