
Techreport ISI-TR-699
LegoTG: Composable Traffic Generation with a Custom Blueprint

Jelena Mirkovic*†, Genevieve Bartlett†
*University of Southern California, †Information Sciences Institute

ABSTRACT
Traffic generation is critically needed in networking research
for experimentation, stress-testing and validation. Traffic
generation is not just creation and sending of packets, but
often includes routing of generated traffic, its modulation in
network via drops and delays, and its consumption at the
receiver. Current approaches to traffic generation all suffer
from two major drawbacks: (1) A fixed traffic blueprint—a
fixed set of traffic features and their models, which cannot
satisfy a broad range of user needs. (2) A monolithic, large
code base, which users find very hard to change.

In this paper we explore the problem “how to design a
traffic generator that can meet a broad range of needs”. We
decompose traffic generation into modular parts, identify a
basic set of modules which can satisfy a broad range of needs
and realize all these functionalities in our LegoTG framework.
We demonstrate the composability, versatility and ease of use
of our framework. We further show how this narrow waist of
traffic generation can be used to reproduce the functionalities
of existing traffic generators, and go well beyond them.

1. INTRODUCTION
Network researchers often need to generate network pack-

ets in testbed experiments for problem modeling and system
testing. Traffic generation needs are very diverse and closely
depend on the details of the experiment and the researcher’s
goals. One researcher may want to generate many small
packets at a high rate to test a router, another may want re-
alistic and responsive TCP flows to test a middlebox, yet
another may want a specific volume and content of HTTP
GET messages to test a Web service. Traffic generation is
not just the creation of packets, but also routing of generated
traffic, traffic modulation via drops and delays, and proper
consumption at the receiver. Even a simple replay of packets
via tcpreplay [1] between just two machines requires many
functionalities such as link-header rewriting, routing and IP
aliasing (or address rewriting) for addresses in the replayed
trace, and a sink to consume packets at the receiver. In this
paper we explore the following research challenge: How do
we design and implement traffic generation that (1) meets
many diverse, existing needs, and (2) can be easily extended
to meet new needs.

To date, the complex process of traffic generation has been
explored by many (e.g. iPerf [2], Tcpreplay [1], Harpoon [3],
Swing [4], D-ITG [5]). We see two main drawbacks with
existing solutions:

Fixed traffic blueprints: We define a “traffic blueprint” as
the (1) selection of traffic features that matter for a given ex-
periment (e.g., packet rate, congestion responsiveness), and

(2) how these features are modeled and initialized (e.g., Har-
poon [3] models each TCP flow as a single file transfer, and
can initialize models from Netflow traces). A traffic blueprint
must be realized in the experiment, through generation and
consumption of packets and emulation of network features
such as delay, drop and jitter. Current approaches each define
and implement a single traffic blueprint, limiting the set of
traffic features a user can tune, fixing how these features are
modeled, and tying the realization of traffic generation to this
fixed model. Users must modify existing generator code to
explore new blueprints, or write their own generators.

Monolithic code base: In real networks many entities in-
teract to produce traffic. Traffic generators subsume this
complexity into a single code base that realizes multiple
functionalities, e.g., packet generation/consumption, IP virtu-
alization, etc. This creates large, monolithic code and makes
modifying or extending existing generators an arduous task.

We make the following research contributions:
1. We demonstrate the need for custom traffic blueprints

based on a survey of current research practices. We decom-
pose traffic generation into orthogonal tiers: traffic feature
selection, feature models, and traffic realization. We then
divide realization into separate functionalities, so that each
functionality can be achieved by a stand-alone customizable
component which we call a “TGblock”. This modularization
facilitates high code reuse, as researchers can combine TG-
blocks from different traffic generators, modify, replace and
add TGblocks to fit their needs.

2. We propose a narrow waist of traffic generation—the
basic set of functionalities that can satisfy many researcher
needs, and that can combine to reproduce and go beyond the
functionalities of existing traffic generators.

3. We propose a framework called LegoTG—for compos-
able traffic generation with custom blueprints. Our frame-
work facilitates easy reconfiguration, sharing and customiza-
tion of traffic generation in testbed experiments, and easy
adoption of new code by users.

We further address engineering challenges of implement-
ing a framework which has: (1) self-contained traffic genera-
tion, (2) the ability to incorporate third-party traffic genera-
tors, and (3) portability to different experimentation platforms.
Our engineering contributions lie in identification of these
functionalities, their implementation in LegoTG, and their
deployment and evaluation on the DeterLab testbed [6, 7].
LegoTG is free and publicly available under GPL [8] from
our project Web site [9].

2. TRAFFIC GENERATION
Network traffic is the product of a complex set of interac-

1

tions between multiple entities at the physical, link, network,
transport, application and user layers. We say that a traffic
generator “operates at a given layer” if it exposes parameters
to control traffic features at that layer. There are many ways
a researcher may want to model and control these features—
modeling some in detail, while ignoring or simplifying others.
In this section we survey researchers’ traffic generation needs,
and discuss how we can meet these needs through decompo-
sition of the traffic generation process. We focus on traffic
generation in network testbeds and live networks.

2.1 Needs
To quantify researcher needs, we survey work published

in Sigcomm 2013 and NSDI 2013, and note the usage of
traffic generation tools that create network packets in testbeds
or in live networks. Results are shown in Table 1. Around
half of the papers use traffic generation and a majority of
those (65–69%) use simple, custom generators written by the
authors. The rest use existing, third-party, traffic generators.
Out of these, near half use network-level traffic generators
such as iPerf [2] and netperf [10], while the other half uses
application-level traffic generators such as Selenium [11] and
web-page-replay [12]. The majority of papers use traffic
generators to stress-test their proposed system, and only a
few use them to replay or generate realistic network traffic.

Need 1: Diversity and multiple layers. Our survey illus-
trates several points: (1) Researchers need a variety of traffic
generation tools at different layers of the network stack. (2)
Traffic generation in research papers is often simple. We
believe this happens because simple tools like iPerf [2] are
easy to understand and deploy. But if systems are not tested
with realistic traffic, which is often very diverse and has un-
predictable behaviors, this may lead to incorrect research
outcomes [13]. (3) Custom tools are used by the majority of
researchers (65–69%)! We believe this is because researchers
need features that existing tools do not support, and changing
existing tools is difficult, so researchers develop their own.
Custom traffic generation hinders repeatability as tools are
often not portable or released publicly. We conclude that
researchers need customizable traffic generation, with gener-
ators that operate at multiple layers of the network stack.

Need 2: Modularity and customizability. Can diverse
traffic generation be achieved with a single generator? One
could design a generator that offers a feature superset of cur-
rent generators, and allows users to control these features
via a very long list of options. But, such a generator would
be overly complex and require a large code base, making
porting, installation and use challenging. We conclude that
researchers need modular traffic generation, where functional-
ities are clearly separated, module code is small and modules
are easily customized, added or replaced.

Need 3: Composability. Within even a single paper, the
needs for traffic generation can be quite varied. For exam-
ple, three papers from Sigcomm’13 and one from NSDI’13

use multiple traffic generators to meet their needs. Because
traffic generator models and components differ widely (see
Table 2), switching between generators is challenging and
time consuming. Further, sometimes a researcher may need
to combine multiple traffic generators in a single experiment.
For example, she may need realistic and responsive TCP traf-
fic (e.g., using Swing [4]) coupled with realistic UDP traffic
(e.g., using tcpreplay [1]). Such a combination is very chal-
lenging today and requires a large amount of manual work
to deploy and synchronize multiple traffic generators. We
conclude that researchers need composable traffic generation,
which allows for easy switching between and combining of
traffic models or generators.

Traffic generator SIGCOMM’13 NSDI’13
Some traf.gen. 17 16

Custom 11 11
iPerf, netperf 4 3

tpc-w, httperf, ClassBench 1 1
Selenium, web-page-replay 1 1

Commercial 1 0
Total 39 36

Table 1: Traffic generator use in Sigcomm’13 / NSDI’13

2.2 Novel Traffic Generation Paradigm
To address the needs we identified, we decompose the traf-

fic generation process into multiple tiers and functionalities.
First, we break traffic generation into three tiers, to decouple
the goal of traffic generation from its realization:

Tier 1: Traffic features that matter in a particular network
experiment, and consist of a subset of: (1) network, transport
and application header fields, (2) traffic content, (3) and in-
teractions of generator components between each other and
with other facets of the environment.

Tier 2: Feature models specify how each traffic feature is
parameterized and initialized, e.g., from a traffic trace (to
achieve realism) or using user-specified values (to achieve
controllability). Together Tier 1 and 2 define a traffic blueprint.

Tier 3: Realizers are pieces of software that interact together
to realize the traffic blueprint. They create and consume the
desired packets, modulate packets in the network (e.g. adding
delays) and route packets on the experiment topology.

Decisions at higher tiers affect the lower tiers but not vice
versa. For example, it is possible to change a feature model
without changing the set of features that matter (e.g., replace
a single-valued parameter with a distributional one), and it
is possible to replace one realizer with another one without
changing the feature model (e.g., use iPerf [2] to generate a
given traffic load instead of netcat [14]).

There are many realizers. We group them into the follow-
ing functionality classes:

Class 1: Feature extraction. If a researcher needs realis-
tic traffic generation, parameter values for feature models
need to be extracted from traffic traces. We sub-divide this
functionality into cleaning (removing traffic from traces that

2

Decomposition iPerf D-ITG Harpoon Swing

Traffic features

one-way flow:
dur., rate, proto.
dst port
tcp/OS options

one-way flow:
dur., rate
pkts and # bytes
DS flags, TTL, proto
src/ dst IP/port
pkt size and freq.

one-way flow:
rate
total:
vol/interv.
src/dst distrb/interv.

total:
app. mix
flow dynamics
host delays
congest. response

Feature models single-value
user spec.

single-value or distribution
user spec.

src-dst pair: sessions
session: flows, inter-flow delay
flows: file transfer
extr. from traces

app: sources
source: sessions, inter-sess. delay
session: RREs, inter-RRE delay
RRE: conns, inter-conn delay
conn: reqs, resps, inter-req delay
extr. from traces

Realizers
Packet gener.
Packet consum.
iPerf(269K)

Packet gener.
ITGSend(155K)
Packet consum.
ITGRcv(122K)

Feat. ext.
harpoon_flowproc(48K)
Packet gener. and consum.
harpoon(153K)

Feat. ext, Packet gener. and consum.
Swing (420K)
IP virt. and Network emul.
ModelNet (234K)

Table 2: Decomposition of several popular traffic generators

packet generators or testbed environments cannot realize, e.g.,
traffic to reserved IPs), filtering (removing traffic that cannot
be modeled with chosen models) and extraction (extracting
parameter values).

Class 2: Feature modulation. Some traffic features may
need to be modulated before generation to meet experiment
needs. For example, rewriting IPs or ports, increasing con-
nection duration, dropping connections with low volume, etc.

Class 3: IP virtualization. Traffic generation often involves
multiple senders and receivers. If the features-of-interest
include source and destination IPs, a researcher will need
to virtualize multiple IP addresses on a single physical ma-
chine during experimentation. We subdivide virtualization
into mapping (deciding which physical machine virtualizes
which IP), aliasing (setting up virtualized IPs) and routing
of virtualized IPs.

Class 4: Packet generation. This functionality builds the
actual packets, according to the model.

Class 5: Packet consumption. Some traffic generation
tools produce one-way flows (e.g., tcpreplay [1], D-ITG [5],
iperf [2]). These tools need packet consumption at traffic
destinations, to avoid generating ICMP service unreachable
or TCP RST messages.

Class 6: Traffic modulation. As traffic travels through the
experiment network it can be modulated to introduce delays,
drops and jitter, and to filter or modify packets. We subdivide
traffic modulation into network emulation, traffic filtering
and traffic rewriting.

Class 7: Synchronization. This functionality synchronizes
certain actions among experiment nodes and/or different soft-
ware modules, when needed.

Fig. 1 illustrates our decomposition into tiers and function-
alities. Table 2 applies this decomposition to several popular
traffic generators. We make the following observations from
results in Table 2: (1) Current generators differ widely with
regard to the traffic models they use, their parameterization
and initialization, and their complexity, (2) Generator code is
monolithic and large, offering multiple intertwined function-

alities. We list these functionalities and the number of lines
of code required for each in the last row of Table 2.

We propose a novel traffic generation paradigm where
generation tiers and realizer functionalities are clearly sepa-
rated, and implemented through stand-alone software mod-
ules. This enables composition and easy replacement of one
module with another. Separation also keeps each module’s
code small, enabling easy customization. Modular software
is not new, but our vision for traffic generation goes well
beyond just modularization. Our traffic generation modules—
TGblocks—are stand-alone and interchangeable, much like
Lego™ blocks are, allowing for combination and exchange
of blocks contributed by multiple authors. This leads to com-
posable, customizable traffic generation.

1. Feature selection

2. Feature models

3. Realizers

Cleaning
Filtering

Extraction

Feature modulation

Mapping

Aliasing
Routing

Packet generation

Packet consumption

Network emulation
Traffic filtering

Traffic rewriting

Feature extraction

IP virtualization

Traffic modulation

DeterLabClean (437)
ADUFilter (1.4K)
twosewextract (1.4K)
pcapextract (134)

twosew2swing (982)
twosew2harpoon (307)

dividebyevents (321)
dividebypkts (240)
ipalias (487)
iproute (407)
tcpreplay (446)
mimic (2.7K)

hostdelay (1.2K)

sink (20)

NARROW WAISTFUNCTIONALITIESTIERS

text2pcap (222)

Synchronization multisynchro (298)

Figure 1: Decomposition of traffic generation into tiers and functional-
ities, and basic set, implemented by us.

3. NARROW WAIST
We use our decomposition into tiers to identify those ele-

ments at each tier that meet the needs of the majority of re-
searchers. We further focus on how to realize these elements
to provide a base for easy additions and customizations. This

3

leads us to a basic set of functionalities—the narrow waist
of traffic generation—which we realize through TGblocks,
described in Sec. 5.1.

3.1 Tiers and Functionalities
We make three observations which, in turn, define the

scope and core of the narrow waist, and define how mod-
ular pieces communicate with each other to allow for easy
customization and addition.

Scope: Network and Transport Layer. In research pub-
lications the most common traffic features of interest are at
the network and transport layers, including TCP responsive-
ness to packet loss and delay and network emulation of drops
and delays. Far less common is traffic generation at the ap-
plication layer, where a multitude of tools exist for server
benchmarking or traffic capture and replay. We thus focus
in this paper at the network and transport layers only. This
scope informs what functionalities we need at each tier.

Tier 1 (Traffic features): We need features in the IP and
transport header fields, and a two-way TCP flow abstraction
with responsiveness to packet drops and delays.

Tier 2 (Models): Most commonly used models in research
literature for the features we selected in Tier 1 are: (1) packet-
based models, with user-supplied fields (eg. [2, 5]), and (2)
two-way, application data unit (ADU) based, flow models
for congestion responsive traffic [4, 15]. We support these
two models in our narrow waist. Other models can easily be
added to extend the narrow waist (See Sec. 5.2).

Tier 3 (Realizers): We need only a handful of realizers
to support the narrow waist. At the core is packet genera-
tion (class 4) at the packet and the TCP flow level. Packet
consumption (class 5) is needed for the packet-based model
only, and network emulation (class 6) is needed for the flow-
based model. Feature extraction (class 1) is needed to support
replay at the packet and flow level. IP virtualization (class
3) is needed to support multiple source and destination IPs
on a single virtual machine. Lastly, tight synchronization
(class 7) is needed to ensure all physical machines start traffic
generation at the same time.

Core: Model-based Generation via Replay. Traffic gen-
eration tools typically perform replay-based or model-based
generation—where the former replays deterministically from
a traffic log, and the latter generates traffic based on a stochas-
tic model. We observe that we can realize model-based gen-
eration by first letting the model produce a “script” of the
desired behavior or traffic, and then feeding this output to a
replay-based traffic generator. Thus we include only replay-
based packet generators in the narrow-waist.

Universal Communication: Text files, packet/flow data.
To support easy, human-readable communication between
modeling tools and replay tools, we use textual and not binary
“scripts” that are produced by modeling tools and consumed
by replay tools. In this format, each packet or flow is de-
scribed separately. This allows for easy debugging, extension

and manipulation of a modeling tool’s output by popular text-
manipulation tools like grep, sed and awk. If disk space is
tight, text files compress well when there is high regularity,
e.g., if most packets/flows resemble each other, which is often
the case in experiments.

3.2 Traffic Models
We support two traffic models in our narrow waist. Our

packet-based model uses a subset of fields used by tcpreplay
to describe each packet: time of packet’s generation, all IP
header fields (no options) and all transport header fields (TCP,
UDP or ICMP, no options). Our two-way, ADU-based flow
model describes each TCP flow as a series of ADU events.
We start from models used in [4, 15], and modify and extend
them to support a wider variety of flow dynamics. Each flow
is equivalent to one TCP connection, initiated by a client
with a server. Clients and servers send ADUs to each other.
Each ADU is a chunk of data sent by the application in a
single message to the transport layer, which may break the
ADU into several packets. Either party may send an ADU
based on internal application triggers (e.g., an FTP client
has read a new chunk of data from disk and sends it to the
server) or based on receipt and processing of an ADU sent
by the other party (e.g., a Web server sends back a page
after receiving and processing a user’s request). We support
both these dynamics with two types of events: SEND events,
which record generation of data from one party to another,
and WAIT events, which record waiting for a given amount
of data to arrive from a party, before proceeding with events.
We call our model TwoSew: Two-way SEND-WAIT model.

In TwoSew, each event has the following fields: (1) actor:
the IP address of the party performing the event, (2) eventtype:
SEND or WAIT, (3) bytes: the number of bytes to send or
to wait for, (4) twait: the time to wait. For SEND events,
twait is the time measured from the previous SEND by the
same party, and it mimics waiting for application triggers.
For WAIT events, twait is the time measured from when the
party receives total of bytes from another party, and it mimics
the processing time of ADUs and user think time.

TwoSew’s event structure is versatile enough to support a
variety of scenarios: (1) request-response—where one party
sends a request and waits for a response from another party be-
fore proceeding, (2) parallel sends—where two machines are
sending data to each other simultaneously and (3) a mixture
thereof. TwoSew supports pauses between the connection
start and the first ADU by using a non-zero wtime value
in the first SEND event. TwoSew can also support pauses
between the connection’s last ADU and its termination (via
FIN or RST) by inserting a WAIT event for the client and the
server at the end with non-zero wtime. All these scenarios
are well-represented in real network traces.

TwoSew is more expressive than previous models. For
example Swing’s [4] model cannot support communications
with parallel sends, and Tmix’s [15] model cannot support the
mixture of request-response and parallel sends on the same

4

connection. Further, neither model can support the ADU
processing time at the server, and the delays at the start and
the end of a connection.

4. THE LEGOTG FRAMEWORK
In this section we provide the details of our LegoTG frame-

work and discuss how we meet our identified needs of modu-
larity, customizability and composability. LegoTG consists
of TGblocks that wrap various realizers, and an Orchestrator
that combines and coordinates these blocks. TGblocks can
combine in various ways to achieve differing traffic gener-
ation goals. Each block can be run independently, which
allows for easy testing, modification and replacement.

The Orchestrator is a command-line tool responsible for
deploying, driving and monitoring TGblocks. Using an exper-
iment configuration file—called an ExFile, the Orchestrator
identifies which blocks to use and how, where and when to de-
ploy these blocks. The Orchestrator runs on a single control
node, and uses SSH to coordinate with remote machines.

Self-contained traffic generation. The Orchestrator per-
forms all the actions required to install, set up, run, stop and
test each TGblock. It also keeps track of dependencies be-
tween blocks and propagates outputs of some blocks into
inputs of other blocks (even across different physical nodes).
Thus the Orchestrator has full control over the entire traffic
generation process, allowing for self-contained generation.

Working with existing and new tools. Assimilating a tool
into LegoTG is a simple process. One defines a wrapper—
called a block interface file or BIF—that contains the details
on how to install, set up, run, stop and test this tool. Together,
a BIF and the tool that is wrapped comprise a TGblock. BIF
functions use the Orchestrator’s API to specify interactions
with remote machines. A BIF is tool specific, not experiment
specific, so a BIF need only be written once for each tool
integrated into LegoTG. This allows for easy portability of
new tools between experiments, and between users. BIFs are
small and easy to write, as we discuss in Sec. 4.2. Excerpts
from a sample BIF which wraps tcpreplay [1] are shown in
Fig. 3. The entire tcpreplay BIF is 194 lines and includes
rewriting link-layer headers and padding any truncated pack-
ets, to create valid packets that can be sent out.

Portability to different platforms. LegoTG and TGblocks
are written in Python, which is supported on a wide range plat-
forms. LegoTG uses SSH for orchestration of experiments
which is supported in many testbeds, and live networks.

4.1 The Orchestrator
Fig. 2 depicts the Orchestrator running a simple replay

experiment, called TcpReplay, in a typical set up—a testbed,
with a researcher controlling the experiment from her laptop
using the Orchestrator. The experiment uses three nodes: a
node running tcpreplay [1] (n1) to replay traffic from a file,
a sink node (n2) to consume this traffic, and a node running
tcpdump [16] (r) to capture replayed traffic for analysis. If

Figure 2: An example set up: TcpReplay experiment.

BIF Example: tcpreplay
class blockInterface():
Attributes filled in by Orchestrator at runtime:
HOST_NAME = ’’
HOST_OS = ’’
...
Attributes which can be configured from an ExFile
replay_file = ’’
option_string = ’’
...
def install(self):
o = OrchestratorFunctions.OrchestratorFunctions()
if ’ubuntu’ in self.HOST_OS:
result = o.run("sudo apt-get install tcpreplay")

...
def start(self):
...
print("Starting replay on %s:%s"%(o.hostname(),iface))
command ="sudo tcpreplay %s -i %s %s"

%(self.option_string,iface,self.replay_file))
result = o.run_long(command)

...
def stop(self):
...
result = o.run("sudo kill -INT %s" % pid)

Figure 3: An example BIF

a user wants to replay previously captured traffic without
modifying its IP addresses, we also need virtualized IPs (IP
aliasing) on traffic sources and destinations that are routable
on all nodes.

The Orchestrator runs locally on the experimenter’s laptop,
and reads the local ExFile. The ExFile includes information
on which blocks are needed, where to find the BIFs for these
blocks, (e.g. in Fig. 2 from a remote machine), and where
to find the software for these blocks (e.g. in Fig. 2 from two
different software repositories—one local to the testbed, one
not). The Orchestrator pulls the BIFs, and determines how to
install the needed software (e.g. tcpreplay). Once installation
is done, the Orchestrator calls setup, test and run for each of
the required blocks, configuring software according to the
options set in the ExFile. The Orchestrator works to run as
many tasks as possible in parallel across the machines in an
experiment, while ensuring that dependent blocks and their
actions are run after all dependencies have completed. While
the Orchestrator performs coordination between blocks, tight
synchronization between TGblocks is achieved through a
separate synchronization block (see Sec. 5.1).

4.2 BIF: Block Interface File
Each BIF contains a simple Python class. The functions of

5

this class are run by the Orchestrator at the appropriate times
and on the appropriate remote machines during an experiment.
The standard set of functions in the BIF are install, setup, test,
start and stop. Depending on the tool being wrapped, some,
none or all of these functions may be defined. Users can also
add new functions to a BIF, and execute them by calling them
from an ExFile, or from the Orchestrator’s command-line
interface. Attributes listed in a BIF are set at runtime and can
be configured from the ExFile to customize how a block is
set up and run on each machine.

Fig. 3 shows excerpts of a BIF which wraps tcpreplay [1]
to replay raw packets. The BIF exposes several configurable
attributes, which can be set in an experimenter’s ExFile (eg.
the replay file name “replay_file”). BIFs make use of a set of
Orchestrator Functions which implement common tasks such
as run_long(), a non-blocking call which runs a command
in a detached remote shell, or run(), a blocking call to run
the command remotely, and return results. These functions
streamline creating new BIFs for tool integration.

4.3 ExFiles: Experiment Configuration
The ExFile captures all the details of an experiment: where

software repositories are, where to install and how to con-
figure these software tools, how tools are synchronized, and
all the inputs and outputs. This single point of configuration
enables easy prototyping, modifying and sharing of traffic
generation processes. Fig. 4 shows an example ExFile for
the TcpReplay experiment (Fig. 2) which uses three testbed
nodes, located behind a gateway, and fetches BIFs from a
remote server. Sections in an ExFile are denoted with single
brackets ([section]), and nested subsections use an increasing
number of brackets (eg. [[subsection]]).

4.3.1 Parts
The ExFile consists of five main parts: (1) globals (lines 1–

4): definition of static variables. (2) logging (lines 5–7):
optional log targets and settings. (3) hosts (starting line 8):
list of hosts in the experiment that may run a TGblock, or
serve content needed by a TGblock. This section contains any
non-standard details about how a host should be accessed via
SSH (such as via a gateway), and any preferred environment
details for a host, e.g., which perl installation to use. (4)
groups (lines 16–20): list of hosts in various functionality
groups, e.g., traffic sources, traffic sinks, routers, etc. (5)
sections: list of phases that comprise the experiment. Each
section consists of subsections.

The example file contains three sections: “extraction” (line
21), “resource allocation” (line 23) and “experiment” (line 33).
A section contains information on what blocks to run, and in
which order. For example, line 34 instructs the Orchestrator
to execute the blocks defined “alias”, “route”, “sink”, “trace”
and “replay” subsections, in that order, during the “experi-
ment” section. Each block is described in a subsection (e.g.
[[alias]]), which specifies how to run the block: its target (eg.
line 37), the definition for the block (path to its BIF file e.g.

ExFile Example: TcpReplay Experiment
1 part_allocation=/home/msmith/allocation.txt
2 biflib=bifserver:/user/share/bif/
3 tracedir=/home/msmith/traces/
4 remote_repo = someserver:/user/share/software
5 [logging]
6 log_file = /home/msmith/logs/replay.log
7 log_level = 5
8 [hosts]
9 user = msmith

10 [[testbed.net]]
11 gateway = gate.testbed.net
12 nodes = n1, r, n2
13 [[somewhere.net]]
14 nodes = someserver.subdomain, bifserver
15 key_filename=~msmith/.ssh/bifkey
16 [groups]
17 replay_grp = n1
18 tcpdump_grp = r
19 sink_grp = n2
20 all_testbed = replay_grp, trace_grp, sink_grp
21 [extraction]
22 ...
23 [resource allocation]
24 ...
25 [[divide]]
26 target = local
27 def = $biflib/alias/BIF.py
28 [[[input]]]
29 trace_file = original_trace.dump
30 [[[output]]]
31 part_allocation = $part_allocation
32 ...
33 [experiment]
34 order = alias, route, sink, trace, replay
35 actions = install, setup, run
36 [[alias]]
37 target = all
38 def = $biflib/alias/BIF.py
39 [[[input]]]
40 config = $part_allocation
41 [[[args]]]
42 script = $remote_repo/alias/alias.sh
43 [[route]]
44 target = all
45 ...
46 [[sink]]
47 target = sink_grp
48 ...
49 [[replay]]
50 target = replay_grp
51 def = $biflib/tcpreplay/BIF.py
52 [[[args]]]
53 replay_file = $tracedir/replay.pcap
54 ...
55 [[trace]]
56 target = trace_grp
57 force_quit_during = start
58 def = $biflib/tcpdump/
59 [[[output]]]
60 dumpfile = %host%-%iface%.dump
61 [[[args]]]
62 auto_determine_iface = True

Figure 4: An example ExFile

6

line 38), and its inputs, outputs and arguments (details in Sec.
4.3.3). The subsection’s name need not reflect the name of
its associated TGblock.

4.3.2 Targets and Groups
A target of a TGblock is one or more groups—a collection

of hosts the TGblock will run on. Groups are specified in the
[groups] section, and provide an easy way for users to port
ExFiles and change the roles of experiment nodes. Group
definitions can be nested and a host can belong to multiple
groups or to none.

4.3.3 TGBlock Attributes
A TGblock’s attributes are specified in three optional sub-

sections [[[input]]] , [[[output]]] and [[[args]]]. The Orches-
trator will use attributes in the [[[input]]] and [[[output]]] sec-
tions to determine dependency between blocks, and attempt
to move files between machines as needed. For example,
if the section for a trace block lists “output1.pcap” under
[[[output]]], the Orchestrator would look in sections for other
blocks to see if any listed “output1.pcap” in their [[[input]]]
section. If so, the Orchestrator would check that this file
existed and was moved to the machine(s) that should run the
dependent block, before it executes the block’s run function.
All other configurable options of a tool wrapped by a BIF,
which do not represent inputs and outputs for a TGblock go
into the [[[args]]] section.

4.3.4 Variable Expansion
The Orchestrator supports two types of variable expansion:

static expansion of variables local to the ExFile and runtime
expansion of variables that are calculated by the Orchestrator
each time a TGblock is run on a host. Static expansion (vari-
ables starting with $) is useful in porting ExFiles between en-
vironments and making ExFiles more readable. For example,
a user could specify biflib=bifserver:/user/share/bif/

at the start of the ExFile, and use $biflib throughout the
rest of the file. Runtime expansion (variables enclosed by
%’s) is handy to specify variables, which change based on the
target. For example, in Fig. 4, line 60, the output file for the
trace block (%host%-%iface%.dump) will be replaced by the
host name and network interface name for each host/interface
pair this block is run on. This runtime expansion is handled
by the Orchestrator based on a dictionary which matches
a variable name with a function that returns its expansion.
The Orchestrator includes a basic set of runtime expansion
functions. Users can extend this set by providing a dictio-
nary mapping variable names to custom expansion functions.
Variable expansion and abstraction of hosts into functional
groups facilitate easy porting of ExFiles.

4.3.5 An Orchestrator Run
At the command line, a user can specify the section (e.g.

extraction) the Orchestrator starts in and optionally, a subset
of functions to run (e.g. install) from that section. The
“stop” function of each TGblock is called when a user cancels

execution or if the force_quit_during variable (eg. line 57)
is used. This variable specifies a function that once completed
by all other TGblocks, triggers calling the stop function for
the given TGblock. In Fig. 2, after all the TGblocks finish
their “start” function, the Orchestrator will call the “stop”
function for the trace TGblock.

5. IMPLEMENTED TGBLOCKS
Here we provide details about TGblocks we implemented:

(1) to support the narrow waist of traffic generation (Sec. 3),
and (2) to demonstrate the versatility and extensibility of our
narrow waist functionalities. These blocks are summarized in
Fig. 1. Some blocks contain only a BIF, wrapping an existing
tool, (e.g. tcpreplay [1]) while others contain both a BIF and a
tool built by us (e.g. mimic).

TGblocks in our narrow waist aim to support a large di-
versity of researcher needs with a small, modular code base.
Each TGblock contains a small number of lines of code (a
few hundred to a few thousand as shown in Fig. 1 in parenthe-
ses). Comparing the line count of our TGblocks and the count
of state-of-the-art traffic generators (shown in Fig. 2), our
code-base is two orders of magnitude smaller. This smaller
size enables easy customization by users, when needed.

Though our code in our narrow waist is designed to be
small, this small set of TGblocks may not suffice for some
researchers. For example, a researcher may want to use a
packet generation tool that is faster or more familiar to her
than our tcpreplay block. Lego TG allows for easy addition
of new blocks, and easy composition of blocks. Thus, a
researcher can mix and match tools that we provide, with
tools of her choice, to best meet her needs.

5.1 Blocks for the Narrow Waist
Blocks supporting the narrow waist of traffic generation

are shown blue in Fig. 1. At the core of our narrow waist are
two packet generators, tcpreplay for raw packet replay and
mimic for TCP responsive replay, and one packet consumer,
called sink.

Tcpreplay wraps the popular tcpreplay tool [1] that replays
previously captured traffic. Tcpreplay reads packets from a
libpcap file, and then builds and sends raw packets. While
this works for experiments on a single machine, packets gen-
erated this way cannot be routed (because they have a wrong
MAC address in the link header and may be truncated during
capture). Further, these packets need to be consumed at the
receiver, to avoid generation of TCP RST or ICMP service
unreachable responses. Our tcpreplay block determines the
appropriate MAC addresses for the experiment, then rewrites
MAC addresses, pads truncated packets, and marks replayed
packets (using the TOS field) so that the sink block at the
receiver identifies and consumes only these packets.

Mimic wraps a tool we built of the same name, for congestion-
responsive traffic replay. Mimic re-enacts TCP communica-
tions between many hosts, by reading the record of each
connection from an input file, opening TCP sockets, con-

7

t1

t2t3

t4

t5

t6 t7

t8

client server

len=10

ack a

len= 3, ack b

len=10

len=10, ack e

t9

t8
len= 3, ack c

t10

t11

ack d
t12

t13

client, SEND, 10, 0
client, SEND,10, t3-t1
server, WAIT, 20, t5-t4
server, SEND, 3, 0
server, SEND, 3, t8-t7
client, WAIT, 6, t10-t9
client, SEND, 10, t12-t3

Request-response

client, SEND, 10, 0
client, SEND,10, t3-t1
server, WAIT, 10, t5-t4
server, SEND, 3, 0
server, SEND, 3, t8-t7
client, WAIT, 3, t10-t9
client, SEND, 10, t12-t3

Some parallel sends

client, SEND, 10, 0
client, SEND,10, t3-t1
server, SEND, 3, 0
server, SEND, 3, t8-t7
client, SEND, 10, t12-t3

All parallel sends

Figure 5: An example client-server communication

necting clients to servers, and handling the ADUs on each
connection (performing SEND and WAIT actions). We run
one mimic process per physical machine.

Extraction is supported through the twosew2mimic, pcapex-
tract and text2pcap blocks. The twosew2mimic block wraps the
same-named tool we designed, which extracts features used in
our TwoSew model (Sec. 3.2) from libpcap traces and outputs
files that are used by Mimic. Fig. 5 illustrates twosew2mimic’s
identification of events from traces. In this example, the client
sends two 10-byte packets, the server sends an ACK, and then
sends two 3-byte packets. Finally, the client sends 10 bytes
to the server. Several scenarios are possible depending on the
values of a–e in the acknowledgments:

Request-response. If a = b = c = 20 and d = e = 6
the client has sent a request to the server. The server waited
for the full request (20B), processed it and sent a reply. The
client waited for the full reply (6B), processed it and sent
another request.

Some parallel sends. If a < 20 or d < 6 the corresponding
SEND events occur in parallel with SEND events from the
other party. We show an example where a = 10, b = 20, c =
20 and d = 3, e = 6 in Fig. 5. While the second SEND event
from the server was acknowledging 20 bytes from the client,
note that we do not generate a corresponding WAIT event.
This is because we only view lone ACK packets as an indica-
tion of waiting for a transmission from the other party. ACKs
appended to data packets are considered opportunistic—data
has arrived from the other party and is being acknowledged,
but such data was not crucial for the current packet emission.

All parallel sends. If there were no lone ACK packets in
our example (shown in dashed lines) we would say that all
SEND events from the client occur in parallel with SEND
events from the server.

Twosew2mimic extracts TCP traffic for replay, and keeps
the original IP addresses and ports. It ignores transport-level
retransmissions and hardware duplicates. A connection in
twosew2mimic is defined by the tuple of source and destination
IPs and ports, as well as a start and end time. The first packet
seen on a connection defines the start and the last packet or
a final handshake is the end. Further, twosew2mimic gathers
RTT samples between each original packet sent and its first

acknowledgment, for each source IP. It exports the mean
and the minimum of these into a file used by hostdelay for
network emulation. A user can easily modify any of these
design decisions in twosew2mimic by changing only a handful
of lines.

Pcapextract wraps a tool we designed of the same name,
which extracts traffic from a libpcap file to a textual format.
The text2pcap block wraps the same-named tool, which trans-
lates a textual representation of packets to libpcap format.
This allows users to very easily build custom packets with
desired features, by writing tools that produce textual output,
which is then converted into libpcap format and replayed
using the tcpreplay block.

IP mapping is supported through the dividebyevents and di-
videbypkts blocks. Each block wraps the same-named tool,
which maps IPs in an input file to physical hosts in the exper-
iment, and balances either send/receive events (dividebyevents)
or packets (dividebypkts) per host.

Aliasing & routing are supported by the ipailas and iproute
blocks, which wrap scripts with standard UNIX commands
to set up IP aliases and static routes for virtualization.

Network emulation is performed through the hostdelay block,
which emulates propagation delay per source IP, and is im-
plemented using the Click software router [17] 1.

Synchronization of TGblocks is performed through the mul-
tisynchro block. Such synchronization may be necessary, for
example, when starting generators on different nodes at the
same time. A tool may load large input from disk into mem-
ory before beginning generation, and a user will want to
synchronize the generation after input loading on each node
is complete. TGblocks, when configured by the ExFile to
synchronize, make a blocking call to a specified synchroniza-
tion tool before starting such a synchronized task. This call
returns when all hosts in a group have been synchronized. A
synchronization block is responsible for installing this tool
and disseminating group information.

Our multisynchro block starts a master that waits for a ready
signal from each node in a synchronization group. The mas-
ter sends out announcements via IP multicast. When ready,
nodes check for these announcements, and then send ready
signals to the master via TCP. Once all nodes are confirmed as
ready, the master sends a multicast count-down to a synchro-
nized “go time”. This synchronizing method scales easily on
private network testbeds, e.g. Emulab [18] or DeterLab [6]
(see Sec. 6.5). In environments where multicast is not avail-
able (e.g. PlanetLab [19]) a researcher could write and use a
different synchronizing block based on an alternate method
(e.g. NTP [20]).

5.2 Extending the Narrow Waist
We have developed two TGblocks to show how easily

LegoTG’s narrow waist can be used to implement different
traffic models. These blocks, twosew2swing and twosew2harpoon

1Implementation of drops and jitter will be added soon

8

convert the output of twosew2mimic to encode traffic models
used by the Swing [4] and the Harpoon [3] traffic genera-
tors, respectively. The output produced from these blocks
causes mimic to generate the same traffic that Swing/Harpoon
would generate. This illustrates the versatility of our narrow
waist, since with just around 1,000 lines of code in these
blocks, we can replicate functionalities of two third-party
traffic generators with differing traffic models.

Swing [4] views the data exchange shown in Fig. 5, as a
single two-way flow, and models the sizes of requests and re-
sponses on the flow, and inter-request delays. Swing’s model
assumes that the server has no significant processing delay.
In our example, there would be 20B and 10B request sam-
ples, 6B and 0B for response size samples, and t10− t0 for
inter-request delay samples. Swing’s model further groups
connections into RREs, and RREs into sessions based on
timing, as described in [4], and extracts several parameters
for each identified connection, RRE and session, as sum-
marized in Table 2. Swing’s traffic generator then draws
values from this empirical distribution to produce statisti-
cally similar traffic in experiments. Twosew2swing encodes
Swing’s traffic model using TwoSew’s SEND and WAIT
events by: (1) extracting the same parameters and values
as Swing does from twosew2mimic’s output, (2) drawing at
random from these, as Swing does, to produce new connec-
tions and request-response exchanges, and then (3) for each
request/response, if the request is non-zero Twosew2swing gen-
erates a SEND event with the twait being the time of the
last SEND event from the same party plus inter-request delay.
For the non-zero response, twosew2swing generates a WAIT
event for the request bytes, followed by a SEND event with
zero twait.

Harpoon views the data exchange shown in Fig. 5 as two
one-way flows, and only models the file sizes (amount of data
sent on the flow) and inter-flow delays. twosew2harpoon also
starts from twosew2mimic’s output, compressing all SEND
events from the client and the server. Using the example
in Fig. 5, this model would arrive at two file sizes—30B
and 6B—and use t2–t1 as the inter-flow delay. To generate
Harpoon’s models twosew2harpoon draws from distributions
of total data sent on TCP connections and inter-connection
delays, as suggested in [3]. It generates two events for each
connection—SEND at the client, and WAIT at the server.

5.3 Additional TGBlocks
There are two additional utility blocks that we have de-

veloped: DeterLabClean which removes packets from libpcap
traces that use IPs reserved on DeterLab [6, 7], which is our
platform for LegoTG experiments, and ADUFilter, which re-
moves all non-TCP traffic, and TCP traffic from connections
that do not satisfy some user specified inclusion criteria.

6. EVALUATION
In this section we use a series of experiments to demon-

strate LegoTG’s capabilities: easy configuration and modifi-

Figure 6: Experimental topology

NetworkReplay: TCPReplay’s modifications
...
[hosts]

...
nodes = n1,n2,n3,n4,n5,r,n6,n7,n8,n9,n10

...
[groups]

replay_grp = n1,n2,n3,n4,n5,n6,n7,n8,n9,n10
sink_grp = replay_grp
...

order =alias,route,sink,trace,multisynchro,replay
...

[[replay]]
...

[[multisynchro]]
.. target, def, args cut for space ..

Figure 7: TcpReplay → NetworkReplay

cation, combination of functionalities, and easy realization of
new traffic models with the same code. All our experiments
are performed on the DeterLab testbed [6]. For simplicity, we
use a single topology with 13 physical nodes (Fig. 6) for all
experiments, to highlight changes between traffic generation
settings in the same environment. We use a trace from the
MAWI traffic repository [21] collected on March 1st, 2012
at 2pm, in some of our experiments. This trace contains 15
minutes of traffic collected on a trans-Pacific link between
Japan and US. We replay only 1 minute of traffic from this
trace so we can highlight small-scale details. Other traces
and longer durations can be as easily replayed. Table 4 shows
some statistics about our chosen trace in the first row.

6.1 Network Replay
We start with a simple experiment that replays traffic from

the MAWI trace on our topology. Table 3 shows in the first
column the TGblocks that need to be deployed and their

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

G
bp

s

Time (s)

Total
Clean

TCPreplay, 10 machines

Figure 8: Replayed traffic vs. Original Trace

9

Experiment Blocks and targets
Network replay ipalias, tcpreplay, sink, multisynchro (n1–n10), route (all), DeterLabclean (any)
Transport replay ipalias, mimic (n1–n10), route (all), DeterLabclean, ADUfilter, twosew2mimic (any), host delay (c1, c2)

Network+Transport replay ipalias, sink, tcpreplay, mimic, multisyncrho (n1–n10), route (all), DeterLabclean, ADUfilter, twosew2mimic (any)
Swing ipalias, mimic (n1–n10), route (all), DeterLabclean, ADUfilter, twosew2mimic, twosew2swing (any), hostdelay (c1, c2)

Harpoon ipalias, mimic (n1–n10), route (all), DeterLabclean, ADUfilter, twosew2mimic, twosew2harpoon (any)
D-ITG ipalias, tcpreplay, sink, multisynchro (n1–n10), route (all), text2pcap (any)

Table 3: TGblocks and their deployment

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

G
bp

s

Time (s)

Total
Clean

1 sample
data, 1 sample

data, 5 samples (Swing)
data, 1 sample, proper (Harpoon)

Figure 9: Bandwidth after applying a traffic filter

locations. Even this simple experiment requires complex
functionalities to make generated traffic flow in the network.
Packets need to be padded—since the original trace has trun-
cated packets—and rewritten to adjust MAC addresses and
fix checksums. Aliasing and routing must be set up to allow
generated packets to reach their destinations. Sinks need to
be set up to consume traffic. Lastly, tcpreplay processes need
to be tightly synchronized so generation across machines
starts at the same time. LegoTG does all this seamlessly. We
evolve our sample ExFile from Fig. 4 into the ExFile for this
experiment by only modifying the hosts and group sections
(for the larger topology), and adding multisynchro block. These
changes are shown in Fig. 7. Aggregated replayed traffic from
ten separate machines is shown in Fig. 8: the replayed traffic
(solid line) matches well the original traffic (gray area).

filter pkts (M) GB IPs (K) IP pairs (K) conns (K)
none 3 2 137.6 145.2 -
clean 2.68 1.95 125.9 133 -
tcp 2.35 1.89 89 91 -

1 sample 1.54 1.31 5.3 5.5 24.8
data, 1 sample 1.46 1.26 3.9 4.4 9.2
data, 5 samples 1.1 0.9 1.9 2.4 6.9

data, proper 0.46 0.4 1.9 1.8 5.1
Table 4: Some statistics about our chosen MAWI trace

6.2 Transport Replay
We now evolve our experiment to perform transport-level,

congestion responsive replay with mimic. Existing tools for
transport layer fidelity, such as Swing [4], Tmix [15] and
Harpoon [3], extract model parameters only from TCP con-
nections that meet certain requirements. To illustrate how
little of a realistic trace meets these requirements we apply
the ADUFilter block to our trace, to obtain four separate

traces of TCP traffic, containing only the connections where:
(1) both source and destination have at least one RTT sam-
ple (1-sample), (2) same as (1) and there is at least one data
packet exchanged on the connection (data, 1-sample), (3)
same as (2) but at least 5 RTT samples are required for each
host (data, 5-samples), (4) there is at least one data packet
exchanged and the TCP connections start and end with a
proper 3-way handshake (data, proper). Swing’s extraction
requires conditions in filter #3 [4] and Harpoon’s requires
conditions from filter #4 [3]. Statistics for these filters are
given in Table 4 and traffic per second in the resulting traces
is shown in Fig. 9. All filters only leave a small fraction
of the IPs and pairs communicating in the trace—less than
4% of the original pairs. Filters #3 and #4 additionally drop
much of the bandwidth exchanged in the trace. For example,
Swing’s filter drops more than half of the packets and bytes,
and Harpoon’s filter drops more than 80%. We emphasize
that this loss of fidelity may be acceptable for a wide range of
experiments, but the fact that these filters have very different
and large fidelity losses across different traffic features sup-
ports our argument for customizable (so researchers can try
novel models) and composable (so researchers can combine
models) traffic generation.

Fig. 11 shows required modifications to the ExFile to
evolve the previous network replay into transport replay. We
remove the sink group since the sink’s functionality is pro-
vided by mimic, and introduce a hostdelay block and group
for network delay emulation. We configure the hostdelay
block with the location of the source code for Click and our
custom Click element, and give this block twosew2mimic’s
output containing the delays inferred from the trace, and the
assignment of virtual IPs to physical hosts.

In the experiment, we use “data, 1 sample” constraint for
the ADUfilter, run this trace through twosew2mimic, and re-
play congestion-responsive traffic with and without network
emulation. Replayed traffic, shown in Fig. 10(a) matches
very well the traffic from the trace, regardless of the pres-
ence of network emulation. This is because durations of
most high-volume connections in the trace are dominated by
client/server delays and not by network delays. To illustrate
this, we look at the connection durations with and without
network delays. Fig. 10(b) shows the distribution of con-
nection durations in replayed connections, with and without
network emulation, compared to durations in the original
trace. Connection durations above half a second are domi-
nated by think times (client and server delays between and
during data exchanges) and match well the original trace, with
and without network emulation. Shorter connections require

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

G
bp

s

Time (s)

Total
(1) no data, 1 sample

Mimic without network delays
Mimic with network delays

(a) Traffic replayed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10

C
D

F

Flow Duration (s)

Original
Mimic without network delays

Mimic with network delays

(b) Connection durations
Figure 10: Traffic replayed by mimic and connection durations

TransportReplay: NetworkReplay’s modifications
[groups]
...

sink_grp = replay_grp
hd_grp = c1, c2

...
[extraction]

[[twosew2mimic]]
.. target, def, args cut for space ..

...
order = alias,route,sink,trace,hostdelay,

multisynchro,mimic,replay
...

[[hostdelay]]
.. target, def, args cut for space ..

[[mimic]]
.. target, def, args cut for space ..

Figure 11: NetworkReplay → TransportReplay.

network emulation for a good match. There are two areas of
discrepancy—10–100 ms, and 0.5–5 s. Both of these occur
due to a large number of events per second handled by each
mimic process, and disappear when we use more machines.

6.3 Network + Transport Replay
Transport-level models impose restrictions on the TCP

connections they model, as illustrated in the previous sec-
tion. Compared to the original trace, these restrictions greatly
reduce the volume of packets and bytes per second in the
experiment, as well as the diversity of IP addresses in traffic.
Some researchers may want to replicate both the responsive-
ness of traffic as well as the traffic volume and IP diversity in
the original trace. This requires a combination of network and
transport replay, and their synchronization. Without LegoTG
this coordination requires great manual effort.

With LegoTG, we can run such a combination easily. To
evolve TransportReplay into TransportPlusNetwork replay
we return the sink and the replay blocks. Additionally, we pre-
process the traffic trace into two traces: one containing traffic
that meets “data, 1 sample”, which serves as input to mimic,
and the second containing the rest of the traffic, which serves
as input to tcpreplay. The aggregate traffic replayed by mimic
and replay blocks is shown in Fig. 12 (solid line); we also

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

G
bp

s

Time (s)

Total
Clean

TCPreplay + Mimic
TCPreplay traffic

Mimic traffic

Figure 12: Traffic replayed by mimic and replay

indicate the portions of traffic handled by each block. The
aggregate replayed is nearly identical to the original traffic.

6.4 Model-Palooza
We now demonstrate LegoTG’s narrow waist, which al-

lows us to realize various traffic models with the same ADU
structure, and with the same realizators.

For example, to run an experiment with the Swing’s traffic
model we only need to modify the extraction section to add
the twosew2swing block. Similarly, for Harpoon, we modify
the extraction to add twosew2harpoon. In the Harpoon exper-
iment we also take out hostdelay, since the Harpoon traffic
generator does not include network emulation.

Fig. 13(a) shows the traffic filtered by the “data, 1 sample”
constraint, as modeled by Swing and Harpoon, and replayed
by mimic. Swing is a stochastic traffic generator and does not
aim to exactly match the original trace [4]. Harpoon, on the
other hand, aims to match traffic in the input trace over coarse
time intervals [3] and this is demonstrated in Fig. 13.

Fig. 13(b) shows the CDF of connection durations in ex-
periments with Harpoon and Swing. Neither of these traffic

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60

G
bp

s

Time (s)

Total
(1) no data, 1 sample

Harpoon
Swing

(a) Traffic replayed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10

C
D

F

Flow Duration (s)

Original
Swing

Harpoon

(b) Connection durations
Figure 13: Traffic replayed by Harpoon and Swing and connection durations

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50 60

G
bp

s

Time (s)

Intended
TCPreplay, 2 mach
TCPreplay, 4 mach

Figure 14: Intended and replayed traffic with “wavy” pattern: first
attempt creates too high ops for 2-machine replay.

models matches well the original distribution of connection
duration. Swing does not reproduce connections that last
more than 1s with high fidelity, because Swing does not
model server delays. Harpoon’s connections are all very short
(85% are shorter than 1s, versus 65% in the original trace)
as Harpoon only includes one data exchange from client to
server. We emphasize that these discrepancies may be accept-
able in a large number of experiments, and that the choice
of the model depends on the experimentation goal. LegoTG
allows researchers to easily experiment with different models
to identify the one that best meets their needs.

D-ITG [5] offers many options for traffic flow configura-
tions, as listed in Table 2. We can achieve these same func-
tionalities in LegoTG by generating a text file with packet
descriptions, and using text2pcap to produce input to the Net-
workReplay experiment.

But, we can go well beyond D-ITG’s functionality! For
example, the researcher can control the traffic rate to achieve
any desired shape, and she can modify any network or trans-
port level fields to any desired value. To demonstrate this

we write a simple program that generates a text file describ-
ing communication between 10 sources and 10 destinations,
using multiple flows. Each flow sends packets with lengths
drawn at random from [10–1,000] byte range and send times
drawn from exponential (λ = 5 ms) distribution. Flow du-
rations follow Paretto distribution with α = 1 and xm = 1.
We choose connection start and end times and the number of
flows to achieve a “wavy” pattern of traffic over 60 seconds
with wave interval of 12 seconds. The traffic from the created
libpcap trace and the replayed traffic are shown in Fig. 14.

Separation of model-based generation from the trace-based
packet generation allows for quick discovery and diagnostics
of any causes for mismatch between intended and generated
traffic. These could be due to model implementation errors
or testbed limitations. For example, in Fig. 14, we show the
wavy pattern from the created trace, and its replay on two and
four machines. The intended traffic has too-high a packet rate
to be replayed by two machines but four machines achieve the
desired fidelity. Deploying four (or more) machines requires
a single-line change in the ExFile.

6.5 Scalability
Scalability of traffic generation with LegoTG depends on

two factors: (1) the scalability of tools used in TGblocks and
(2) the scalability of LegoTG’s Orchestrator.

Our narrow-waist TGblocks use many existing tools, such
as tcpreplay and Click, and scale as well as these tools. Per-
formance of our Mimic tool for congestion-responsive traffic
replay is limited by the number of per-second send and re-
ceive operations that can be supported on a physical machine
that deploys the tool, and by the number of simultaneous
TCP sockets that can be opened by the operating system. On
mid-line hardware—Dual Xeon with 2G of memory—Mimic
can handle up to 500 (SEND/WAIT) events per second before
fidelity degrades. But LegoTG’s separation of models from
realization, and our ExFiles, make diagnosis of scalability
issues and scaling up of the traffic generation process to more

12

physical machines very easy.
We tested the ability of our synchronization tool used in

our multisynchro block to synchronize 50, 100, and 500 pro-
cesses. All processes start within 4–8 milliseconds of each
other regardless of the number of processes being synced,
but the time required to register all processes as ready in-
creases linearly with process count (up to 30 seconds for 500
processes). We believe the vast majority of testbed experi-
ments will need to synchronize far fewer than 500 processes.
Researchers requiring higher-fidelity synchronization can re-
place our multisynchro block with a more capable block.

LegoTG relies on its Orchestrator to coordinate experi-
ments. Orchestrator’s scalability is most impacted by the
SSH’s configuration parameters that limit simultaneously
open SSH connections by one client IP, at the testbed’s SSH
gateway. Orchestrator handles this limitation by cycling
through SSH connections, opening and closing connections
as needed. When tested with 500 virtual nodes, Orchestrator
could deliver commands to all nodes within 10–20 seconds.
Thus even with default settings, Orchestrator performs well
in large-scale experiments.

7. RELATED WORK
To our knowledge, we are the first to propose a traffic gen-

eration solution, which fully decouples the many components
of generation. The parts that comprise LegoTG are related to
two bodies of work.

First, our Orchestrator is related to testbed execution man-
agement solutions such as SEER [22] and MAGI [23] on
DeterLab [6], plush [24] on PlanetLab [19] and gush [25]
on GENI [26]. Any of these solutions could have formed
the basis for LegoTG’s Orchestrator, but these solutions are
tightly coupled to their respective testbed platforms and we
wanted portability. The Orchestrator installs only on a sin-
gle control machine, such as a researcher’s laptop, sending
commands via SSH to remote machines. SSH support is
ubiquitous on many testbeds, such as Emulab [18], Planetlab,
GENI, and DeterLab, thus Orchestrator is more portable and
can support heterogeneous experimentation across multiple
testbed platforms.

Second, TGblocks incorporate many existing tools and
parts of other traffic generators, e.g., Click [17]. Throughout
the paper we discussed several popular traffic generators [1,
3, 4, 5], and showed how these generators and their blueprints
can be expressed through our framework. Thus functionalities
of LegoTG surpass those of existing traffic generators, and
achieve this with modular and much smaller code base. Our
TwoSew model is further related to Tmix [15], a tool for
NS-2, but it supports mixing of request-response dynamic
with parallel sends on the same connection, while Tmix does
not.

8. CONCLUSIONS
Traffic generation is essential in networking research, and

needs for it vary greatly between experiments and users. In

this paper we argued that a traffic generator’s main goals
should be modularity and flexibility, and not building a “one-
size-fits-all” tool. To achieve these goals we decoupled fea-
ture extraction, modeling and generation and identified a nar-
row waist of basic functionalities which meet a wide range of
needs. Our LegoTG framework realizes this modular traffic
generation process. TGblocks that implement various func-
tionalities can be easily interchanged, combined and modified.
We demonstrated the power of LegoTG to emulate current
traffic models, and build new ones through a series of experi-
ments on the DeterLab testbed.

9. REFERENCES
[1] A. Turner, “tcpreplay.”

http://tcpreplay.synfin.net/.
[2] ESnet / Lawrence Berkleley National Laboratory,

“iperf3: A TCP, UDP, and SCTP network bandwidth
measurement tool.”
https://github.com/esnet/iperf.

[3] J. Sommers, H. Kim, and P. Barford, “Harpoon: A
flow-level traffic generator for router and network tests,”
SIGMETRICS Perform. Eval. Rev., vol. 32,
pp. 392–392, June 2004.

[4] K. V. Vishwanath and A. Vahdat, “Swing: realistic and
responsive network traffic generation,” IEEE/ACM
Trans. Netw., vol. 17, pp. 712–725, June 2009.

[5] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and
G. Ventre, “D-itg distributed internet traffic generator,”
in Proceedings of the The Quantitative Evaluation of
Systems, First International Conference, QEST ’04,
(Washington, DC, USA), pp. 316–317, IEEE Computer
Society, 2004.

[6] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph,
K. Sklower, R. Ostrenga, and S. Schwab, “Experiences
with deter: A testbed for security research,” in 2nd
IEEE Conference on Testbeds and Research
Infrastructure for the Development of Networks and
Communities (TridentCom 2006), March 2006.

[7] The DETER Project, “DETERlab.”
http://www.deterlab.net/.

[8] Free Software Foundation, Inc., “GNU General Public
License.”
http://www.gnu.org/copyleft/gpl.html.

[9] A. Author, “Legotg web page.” Anonymized URL.
[10] Rick Jones, “Netperf.”

http://www.netperf.org/netperf/.
[11] “Selenium.” http://seleniumhq.org/.
[12] “web-page-replay.” http://github.com/

chromium/web-page-replay.
[13] K. V. Vishwanath and A. Vahdat, “Evaluating

distributed systems: Does background traffic matter?,”
in USENIX 2008 Annual Technical Conference on
Annual Technical Conference, ATC’08, (Berkeley, CA,
USA), pp. 227–240, USENIX Association, 2008.

[14] “GNU Netcat.”

13

http://netcat.sourceforge.net/.
[15] M. C. Weigle, P. Adurthi, F. Hernández-Campos,

K. Jeffay, and F. D. Smith, “Tmix: a tool for generating
realistic tcp application workloads in ns-2,”
SIGCOMM Comput. Commun. Rev., vol. 36,
pp. 65–76, July 2006.

[16] “tcpdump/libpcap.”
http://www.tcpdump.org/.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The click modular router,” ACM Trans.
Comput. Syst., vol. 18, pp. 263–297, Aug. 2000.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar, “An Integrated Experimental Environment
for Distributed Systems and Networks,” in Proceedings
of OSDI, 2002.

[19] T. P. Consortium, “PlanetLab — An open platform for
developing, deploying and accessing planetary-scale
services.” http://www.planet-lab.org/.

[20] Network Time Foundation, “NTP: The Network Time
Protocol.” http://www.ntp.org/.

[21] “MAWI Working Group Traffic Archive.”
http://tracer.csl.sony.co.jp/mawi/.

[22] S. Schwab, B. Wilson, C. Ko, and A. Hussain, “SEER:

a Security Experimentation EnviRonment for DETER,”
in Proceedings of the DETER Community Workshop
on Cyber Security Experimentation and Test on
DETER Community Workshop on Cyber Security
Experimentation and Test, 2007.

[23] “Montage AGent Infrastructure.”
http://montage.deterlab.net/montage/.

[24] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat,
“Planetlab application management using plush,”
SIGOPS Oper. Syst. Rev., vol. 40, pp. 33–40, Jan.
2006.

[25] J. Albrecht and D. Huang, “Managing distributed
applications using gush,” in Testbeds and Research
Infrastructures. Development of Networks and
Communities (T. Magedanz, A. Gavras, N. Thanh, and
J. Chase, eds.), vol. 46 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and
Telecommunications Engineering, pp. 401–411,
Springer Berlin Heidelberg, 2011.

[26] M. Berman, J. Chase, L. Landweber, A. Nakao, M. Ott,
D. Raychaudhuri, R. Ricci, and I. Seskar, “GENI: A
federated testbed for innovative network experiments,”
Computer Networks, Special issue on Future Internet
Testbeds, March 2014.

14

