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ABSTRACT

IP spoofing has been a persistent Internet security threat
for decades. While research solutions exist that can help an
edge network detect spoofed and reflected traffic, the sheer
volume of such traffic requires handling further upstream.

We propose RESECT—a self-learning spoofed packet filter
that detects spoofed traffic upstream from the victim by
combining information about the traffic’s expected route and
about the sender’s response to a few packet drops. RESECT
is unique in its ability to autonomously learn correct filtering
rules when routes change, or when routing is asymmetric or
multipath. Its operation has a minimal effect on legitimate
traffic, while it quickly detects and drops spoofed packets. In
isolated deployment, RESECT greatly reduces spoofed traffic
to the deploying network and its customers, to 8–26% of its
intended rate. If deployed at 50 best-connected autonomous
systems, RESECT protects the deploying networks and their
customers from 99% of spoofed traffic, and filters 91% of
spoofed traffic sent to any other destination. RESECT is
thus both a practical and highly effective solution for IP
spoofing defense.
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1 INTRODUCTION

IP spoofing—forging the sender’s address in the IP header—
has been an Internet security threat for decades. Spoofing is
an essential ingredient of reflector DDoS attacks, which are
currently on the rise [1, 9, 22, 33], and it is used in a myriad
of other threats (see Section 2).

While research solutions exist that can help an edge net-
work under attack detect spoofed and reflected traffic, the
sheer volume of such traffic requires handling further up-
stream. Several approaches have been proposed to detect
and filter spoofed traffic [6, 10, 11, 13, 18, 23, 25] upstream
from the attack victim. Spoofed traffic filters build a table
of expected values of some traffic parameters (e.g., traffic
direction, previous hop, number of hops, signature) for every
given source. When traffic arrives with mismatching values, it
is considered spoofed and is then filtered out. Ingress filtering
or BCP 38 [11] is one type of spoofed traffic filter; it detects
random spoofing near its source because the spoofed traffic
comes from an unexpected direction (from inside the network
vs. from the outside).

But the filtering approaches that use static information
(ingress filtering [11], IDPF [10], spoofing prevention method
[6]) are ineffective—they cannot filter much of the spoofed
traffic unless widely deployed [20]. On the other hand, the
approaches that use dynamic information about the true
source’s traffic path (route-based filtering [23], hop-count
filtering [13], path identifier [25] and packet passports [18]),
can be effective in sparse deployment, but they are impractical.
They cannot learn correct filtering information when routes
change, or when routes are asymmetric or multipath. Figure 1
illustrates a route-based filter at network C that knows traffic
from source A comes via a previous hop network B, and thus
it can filter M’s attack on E, which spoofs A’s addresses. But
when A’s path changes to go through D, B currently has no
way to learn this and update the filter table.

In this paper we propose RESECT, a system that en-
hances dynamic filters [13, 18, 23, 25] with the ability to
autonomously learn correct filtering information. Because
dynamic filters are very effective in sparse deployment [20],
RESECT is both practical and effective. A RESECT system
is coupled with a dynamic filter, and helps maintain its ta-
ble of expected values for its chosen traffic parameter. We
will refer to this joint system as “RESECT filter.” When a
mismatching packet reaches the RESECT filter, RESECT
triggers a learning process to possibly update the values in
the filter table. During learning, RESECT drops a small
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Figure 1: Example of a route-based filter with its
filter table. Using information from the table, which
says that A’s traffic should come via previous hop B,
C can filter the attack from M on E, which spoofs
A’s addresses. However, when routing changes so A
comes to C via D, C has no way to update its table.

number of the source’s TCP packets. It then identifies re-
transmissions of these packets and infers the correct previous
hop from them.

Our evaluation shows that rare drops introduced by RE-
SECT have no noticeable impact on TCP traffic. Drops to
legitimate traffic occur only on route changes, which for most
prefixes means one to five times per day [29]. On those rare
occasions when packets are dropped, more than 99.94% of
TCP connections experience no drops and no ill effects, while
the rest experience a single packet drop, and quickly recover.
We thus claim that RESECT would be mostly transparent to
end users. At the same time, RESECT filters more than 99%
of reflector and random-spoofing DDoS attacks, effectively
defeating spoofing on the Internet.

RESECT is practical, as it requires modifications only to
the deploying networks. It brings great benefits to these net-
works, removing 74–91% of their incoming spoofed traffic in
isolated deployment. Further, if deployed at 50 best-connected
ASes (less than 0.1% of the entire Internet), RESECT removes
99% of incoming spoofed traffic at the deploying networks,
and 91% of spoofed traffic sent to anyone in the Internet!
RESECT is thus very effective in sparse deployment and
could be a game-changing solution to IP spoofing.

2 SPOOFING IS PREVALENT

In this section we detail the prevalence of IP spoofing and
its use in attacks. We highlight two of the most common
and most damaging uses of IP spoofing—volumetric and
reflector DDoS attacks. Besides these, IP spoofing is used for
decoy scanning [21], in-window TCP reset attacks [34], DNS
poisoning [35] and spam filter circumvention [5].

Volumetric DDoS Attacks. These attacks send a large
volume of packets to the target. IP spoofing is used to hide
the attack machines’ identities, usually by forging random ad-
dresses from the entire IPv4 address space. Arbor Network’s
security report for 2016 [1] found that 41% of enterprise and
government institutions and 60% of data centers experienced
a volumetric attack that exceeded their network capacity.

Reflector DDoS Attacks. In these attacks, the attacker
spoofs the IP address of the victim in service requests sent
to public servers. The servers respond to the victim, flooding
it. Often reflector attacks exploit the amplification effect—
the fact that some small requests elicit large responses from
a server. Recently, there has been a large increase in both
frequency and volume of reflector attacks [1], with the largest
attack exceeding 1 Tbps [22].

How Many Networks Can Spoof? The Spoofer project
[5] measures this by sending spoofed traffic from volunteer
machines all over the world to a few select servers. These
measurements show that around 56.8% of autonomous sys-
tems deploy ingress filtering [11], which ensures that their
customers cannot send spoofed traffic. Thus, almost half of
the autonomous systems can be used today to source spoofed
traffic.

3 RELATED WORK

IP spoofing has been around for a long time, and there
is a large volume of research work on combating it. Some
spoofing defenses call for Internet redesign, such as TVA [40].
But Internet redesign is not likely to happen soon. We need
incrementally deployable spoofing solutions that are effective
in sparse deployment.

Other defenses trace spoofed traffic to its original source,
such as IP-traceback [30, 31]. Traceback solutions are unattrac-
tive because they only detect spoofing after the fact, which
means that another solution is needed to actively filter
spoofed traffic.

Some defenses filter only reflected traffic (replies to spoofed
packets), but not spoofed traffic itself. These defenses include
RAD [14], Peng et al. [24] and SNF [4]. They are also inef-
fective unless deployed in the Internet’s core or on most of
the reflectors. RESECT filters spoofed traffic, thus handling
a wider range of attacks, and it is very effective in sparse
deployment.

Like RESECT, Subramanian et al. [32] propose dropping
some small portion of TCP packets and using retransmis-
sions to detect established TCP connections. They aim to
detect functional routes, not filter spoofed traffic, and do not
evaluate the effect of dropping on TCP traffic. Our paper is
the first that proposes use of TCP packet drops for spoofed
packet filtering, and it fully evaluates the impact of drops on
TCP traffic.

Finally, some defenses are spoofed packet filters [6, 10, 11,
13, 18, 23, 25], and aim to detect spoofed traffic based on some
traffic feature and filter it out upstream from its destination.
We discuss these in more detail in the next section and explain
their need for a mechanism like RESECT.

In addition to work that focuses on filtering spoofed traffic,
other related research seeks to identify networks that allow
spoofing [5, 17], understand how spoofing is used for ampli-
fication attacks [17, 28], and understand how symmetry in
communications can be used to detect and filter unwanted
traffic [16].
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4 SPOOFED TRAFFIC FILTERS

Spoofed traffic filters build a filter table, which associates
each source address or prefix with some traffic parameter
(e.g., a route to the filter, a secret mark, etc.). During regular
operation, the chosen parameter’s values are inferred from
each packet and compared to the values noted for the packets’
sources in the filter table. Mismatching packets are considered
spoofed and dropped.

To date, seven filtering approaches have been proposed,
summarized in Table 1. Three approaches use static infor-
mation for filtering: ingress filtering [11], IDPF [10] and the
Spoofing Prevention Method [6]. Ingress filtering [11] uses the
direction of traffic. The Spoofing Prevention Method [6] uses
a secret exchanged between the source and filter and carried
in source’s packets. Inter-domain packet filtering [10] uses
the set of feasible previous hops that could carry a source’s
traffic just before it reaches the filter. This information is
static because it does not change as routing changes. In [20]
we evaluated the performance of filtering defenses. We found
that static-information filters are not very effective in sparse
deployment. Their effectiveness seems to grow linearly with
deployment, and thus very large deployment is needed to
effectively filter attacks.

Four filtering approaches use dynamic information about
a source’s path to the filter. The passport approach [18] uses
a sequence of marks, each derived from a secret shared be-
tween a source and filters on the path to the destination. A
source finds the correct path, which will be taken by traf-
fic, and places appropriate marks in its packets. The path
identifier approach [25] uses a similar sequence of marks, but
they are placed by the filters without a source’s cooperation.
They are thus less secure, but the approach is more effec-
tive in sparse deployment because it can work with legacy
sources. A hop-count filter uses the number of router-hops
(inferred from the TTL field) between the source and the
filter, which may not be very stable [3]. A route-based filter
uses the previous hop traversed by a source’s packets before
reaching the filter. In our study [20] we found that three
dynamic-information filters—route-based filters, hop-count
filters and path-identifier filters—were very effective in sparse
deployment. When deployed on 0.1% of the most connected
autonomous systems, these filters could remove more than
90% of attack traffic. Packet passport filters were less effective
than the rest because they require a source’s cooperation.

The difficulty in deploying the three dynamic filters that
promise to be very effective lies in their inability to update
filtering information on realistic routing events, such as route
changes, asymmetric and multi-path routing. Currently, these
filters have no way to learn up-to-date filtering information
on the fly. This is the problem that RESECT aims to solve.

5 RESECT

We now describe how RESECT works, and how it can be
interfaced with a route-based filter. Hop-count filters and
path-identifier filters could also be enhanced by RESECT in
a similar manner.

5.1 Overview

RESECT builds and maintains a filter table, which contains
expected previous hop information for each source. For scal-
ability, it makes sense to store information per source prefix
instead of address. In our evaluation we assume /24 prefix
size. In reality, we expect that prefixes in the filter table could
have variable size, and that the number of entries would be
of the same order of magnitude as the entries in forwarding
tables.

RESECT is installed inline and monitors all traffic and all
entries in a filter table. We extend the key to the table to be
the combination of a source prefix and a previous hop. Thus,
one source prefix can be associated with several previous hops
(via several entries) to allow for multipath routing. RESECT
learns and updates these {prefix, previous hop} combinations
via the learning process (Section 5.2).

Each filter table entry is associated with state, which can
be MISSING, NEW, VALID, INVALID and SPARSE. Figure
2(a) illustrates state transitions for a RESECT entry. The
table starts empty, i.e., all entries are in the MISSING state.
When packets come on such entries, the learning process
starts and entry is moved into NEW state. When learning
finishes, the entry becomes either VALID or INVALID for
some amount of time, and traffic matching this entry will
be forwarded or dropped, respectively. A VALID entry has
a ValidTimer, which is renewed on any traffic match. Its
expiration is guided by RESECT’s Tvalid parameter. An
INVALID entry has a FilterTimer, which expires after a
fixed interval, controlled by the parameter Tfilter. Expired
entries are deleted from the table, i.e., they transition into
the MISSING state. There may be up to one special entry
in the table, called “default entry,” in the SPARSE state.
This entry is used to filter traffic involved in an ongoing
random-spoofing attack. We provide more details about this
in Section 5.3.

In addition to learning, RESECT employs two other mechanisms—
bounding and flood detection. We describe all three mech-
anisms next and summarize the cases they handle in Table
2.

5.2 Learning

The goal of the learning is to establish whether the sources
of traffic arriving on a NEW entry are legitimate or spoofed.
We designed this process so that it quickly and accurately
detects valid sources, while it is very difficult for the attacker
to manipulate the outcome.

During learning, RESECT drops random 𝐷 out of the
first 𝑁 TCP packets that match a NEW entry, and forwards
the rest. We experimented with data, SYN and FIN packets,
which are all retransmitted on drops, and converged on using
just data packets because that led to the smallest collateral
damage at a reasonable decision delay.1 We call these 𝑁

1Dropped SYN and FIN packets are detected by the sender via RTO
timeout, which can lead to large delays. Data packets are usually sent
in bulk and, with our low drop rates, most drops are detected via
triple duplicate acknowledgments.
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type filter parameter

ingress filter traffic direction
static inter-domain packet filter set of feasible previous hops

spoofing prevention packet mark per dest, placed by source

packet passports sequence of packet marks per route, placed by source
dynamic route-based packet filter one previous hops

hop-count filter hop count between source and filter
path identifier sequence of packet marks, placed by filters

Table 1: Filtering approaches and the parameters they use in their filter table.

packets the test packets. All other packets matching a NEW
entry, such as UDP, TCP SYN, ICMP, etc., are forwarded.

A legitimate sender will learn which packets were dropped
via TCP’s duplicate acknowledgments or via the retrans-
mission timer’s expiry. Such a sender will retransmit all 𝐷
dropped, and very few of 𝑁−𝐷 forwarded packets. RESECT
detects this behavior by storing unique identifiers (TCP se-
quence numbers) of dropped and forwarded packets in its
DroppedQueue and the ForwardedQueue, respectively, for
each entry. It assigns one valid point to the entry when a
packet from the DroppedQueue is repeated for the first time.
Conversely, it assigns one invalid point to the entry every
time a packet from the ForwardedQueue is repeated. All
repeated test packets are forwarded. If a NEW entry collects
𝐷 valid points, its state is changed to VALID. This is how
RESECT learns new correct filtering information on route
changes.

An attacker may try to manipulate RESECT. He may
choose to repeat no packets—simple TCP-data attack, or he
may try to guess which ones to repeat—repeating TCP-data
attack. To handle the simple TCP-data attack, RESECT
starts a DropTimer for the entry in the learning process
each time a matching packet is dropped due to learning,
and restarts it each time a dropped packet is repeated for
the first time. On timeout, the associated entry is declared
INVALID. To handle the repeating TCP-data attack, we
designed the learning process to penalize repeating of packets
that RESECT has forwarded. This is the reason why invalid
points are incremented on every repetition of packets in the
ForwardedQueue, while valid points are only incremented
on the first repetition of packets in the DroppedQueue. A
guessing attacker will thus quickly accumulate invalid points.
If a NEW entry collects (𝑁 −𝐷)/2 invalid points, its state
is changed to INVALID.

We use 𝐷 and (𝑁 −𝐷)/2 as valid and invalid point thresh-
olds, respectively. We tested other values for valid and invalid
point thresholds, but these had the best trade-off between
false positives and false negatives.

5.3 Bounding and Flood Detection

There are two types of attacks, listed below, that require
additional mechanisms apart from learning.

Reflector Attacks. Let a reflector attack, sending spoofed
traffic, occur after a long period of no attacks. The attack
may arrive on a MISSING or a VALID entry; recall that an
entry consists of {prefix, previous hop} combination. Attacks
arriving on a VALID entry arrive on an expected previous
hop and will not be filtered because they will match the entry.
So the deployment goal of RESECT would be to maximize
the chance of attacks arriving on MISSING entries. This is
achieved when RESECT is deployed on highly connected
networks, such as those in the Internet core.

When spoofed traffic for reflector attacks arrives on a MISS-
ING entry, it will likely use non-TCP-data packets, such as
DNS or NTP requests. RESECT will trigger the learning
process, but without additional mechanisms, learning will
never complete because there will not be enough packets in
the DroppedQueue and the ForwardedQueue. Reflector at-
tacks are handled through the bounding process in RESECT,
limiting the number of packets that can be forwarded on
NEW entries associated with a given source, using parameter
MAXpkts. When this value is exceeded, all the source’s entries
that were in the NEW state become INVALID.

Random-spoofing Attacks. Because these attacks spoof
at random in a large address space (often the entire IPv4
space), many NEW entries would be formed by RESECT,
and it would take a long time for their learning to complete—
allowing the attack to flood the victim in the meantime.
RESECT’s flood detection handles random-spoofing attacks
by detecting likely victims of these attacks and adding a
pre-filter step to all traffic arriving on NEW entries. RE-
SECT detects likely victims by caching the most frequent
destinations of packets (test or regular packets) that match
a NEW entry in a small cache associated with each entry—
dstCache. When more than MAXpref prefixes have entries
in a NEW state, RESECT examines the dstCaches of these
entries. Each IP that appears in many caches (more than
ENTdst) and has received many packets (more than MAXpb

packets total) is moved into the victim set. RESECT detects
a flood whenever the victim set is not empty. The victim set
then contains likely victims of the random-spoofing attack.

To pre-filter traffic to these likely victims, RESECT creates
a default entry in the SPARSE state, if not already present,
and adds the victim set to the entry’s dstCache. The NEW
entries whose dstCache is completely contained in the victim
set of the default entry are deleted. There can be only one
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Mechanism Case handled

Learning Route changes and spoofed TCP-data
pkts

Bounding Reflector attacks with spoofed UDP pkts
Flood Spoofed volumetric attacks
detection

Table 2: RESECT’s mechanisms and cases they han-
dle

default entry in a filter table. A packet would match a default
entry only if it matches no other entry in the table and its
destination IP is in the victim set. Such packets are dropped.
Similar to an INVALID entry, a SPARSE entry also has
FilterTimer associated with it, which expires after Tfilter

seconds and leads to the entry’s deletion.
It may seem that bounding and flood detection would

suffice to filter spoofed traffic, and that learning is redundant.
But without learning, bounding and flood detection would
have many false positives, filtering traffic from large senders
or traffic to popular destinations. Learning enables bound-
ing and flood detection to work only on traffic that arrives
with unexpected {prefix, previous hop} combinations, due
to route changes or due to spoofing, which greatly reduces
false positives.

5.4 Effect on Legitimate Traffic

In this section we discuss how RESECT affects legitimate
traffic. During learning, RESECT drops may impose delays
on legitimate traffic. We first explain why packet dropping
is necessary. We then discuss that RESECT’s dropping is
rare, limited to a small fraction of connections and limited
to a single packet drop on a connection, and thus introduces
no perceptible reduction in quality of service (QoS). We end
the section with a discussion of other rare situations when
RESECT may negatively interact with legitimate traffic.

Why Drop? RESECT learns expected previous hops by
observing retransmissions of packets it drops on TCP connec-
tions. We considered two alternatives to dropping: sending
probe packets to traffic sources, or detecting established
TCP connection by observing traffic. Probing does not work,
because many Internet hosts filter unsolicited traffic [12]
and many others use dynamic IPs [39]. This would lead to
sparsely populated filter tables, which would be ineffective in
filtering attacks. Observing traffic to detect established TCP
connections works reliably only when routing is symmetric.
Otherwise the attacker can easily spoof an established connec-
tion in unidirectional traffic. This leaves dropping as the only
viable mechanism to detect established TCP connections.
Dropping establishes a communication channel between RE-
SECT and the alleged packet source that the attacker cannot
observe.

Dropping Is Rare. A small fraction of legitimate traffic
will be dropped when a route change occurs that affects its
source’s entry at a RESECT filter, or when its source sends

traffic after a long pause (e.g., several hours or days). Redford
et al. [27] found that a vast majority of BGP paths are stable,
with a change frequency of five times per a day to once a
week. Thus, dropping of legitimate traffic by RESECT should
be very rare.

Dropping could also occur if a legitimate source’s entry
were mistakenly flagged as INVALID during learning. This
could happen if a prefix experiences a route change or if there
is congestion on the path that leads to excessive retransmis-
sions. The case of high congestion and route change affecting
the same entry should be very rare, since Internet packet loss
is low [36], and route changes are rare [27].

Dropping Is Limited. In Section 6 we show that at small
drop rates (0.1–0.2%), which we recommend, less than 1.6%
of legitimate connections experience any delays during learn-
ing. Taking into account learning frequency, less than 0.06%
of legitimate connections in a day would be affected by a
RESECT filter. These connections would be randomly chosen
across multiple addresses and users, which makes it unlikely
for any single user’s QoS to be affected.

Dropping is not only rare and limited to a few connections,
it also usually affects only one packet per connection. TCP
and various applications recover quickly from such isolated
drops. We show in Section 6.3 that only 8.8% of users whose
traffic was dropped notice reduced service quality.

To summarize, any single user in any single day would
stand a very small chance (among all other users) that one
of their connections would experience a single packet drop,
from which it would quickly recover. Such a user would have
only an 8.8% chance of perceiving lower QoS at that time.
At other times, RESECT’s operation would be transparent.

Dropping Is Serialized. A given connection could expe-
rience learning at multiple RESECT filters simultaneously,
which could lead some filters to reach the INVALID decision
because packets they forwarded were dropped downstream.
RESECT handles this through implicit filter synchronization.
A filter that has an entry in the learning process places a
well-known value in the IPv4’s TOS field (or IPv6’s flow iden-
tifier field) of test packets that it forwards for that entry. A
downstream RESECT filter that sees marked packets delays
its learning for the given source, until either the traffic stops
being marked or when 𝑁marked marked packets have been
seen. When the first RESECT filter completes learning, it
stops marking the packets, which allows the next downstream
filter to start learning. The attacker that fakes the well-known
value in the TOS field can postpone learning for a maximum
of 𝑁marked packets.

We analyzed the AS-level Internet topology (see Section
6), and found that 99% of paths were up to four AS hops
long; thus at most, four filters could learn about the same
source simultaneously. Assuming 𝑁 = 10, 000 (see Section 6
for rationale), using 𝑁marked = 4 * 10, 000 = 40, 000 ensures
no misclassifications due to cascaded filters, while filtering
all but the first 40, 000 attack packets. This means that a
1 Gbps attack would be filtered in under half a second. We
have also evaluated cascaded RESECT filters, but summarize
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Figure 2: State diagram showing state transitions for learning (black lines), bounding (dashed red line) and flood
detection (dotted blue lines).

results due to space. The effect of 𝐶 cascaded filters, each
with parameter 𝑁 , is the same as the effect of one filter with
parameter 𝐶 ×𝑁 .

Coincidence of Legitimate and Attack Traffic on the
Same Entry. Attack and legitimate traffic may both arrive
at the same entry and thus will share the same fate. If this
entry is in the VALID state (legitimate traffic has made the
entry VALID prior to the attack), both traffic types will be
forwarded. This situation is rare, and would occur in 3–8%
of all possible attack scenarios [20]. If the entry is in the
INVALID state or NEW state, which ends up declared IN-
VALID, both attack and legitimate traffic would be dropped.
This situation only occurs if the legitimate source experi-
enced a BGP path change at the same time or shortly after
a spoofing attack, it was actively generating traffic at that
time, and the new legitimate traffic’s path overlaps the attack
path. While spoofing attacks are relatively frequent, attacks
that spoof any single prefix should be rare. Routing changes
are also rare for most prefixes and legitimate traffic is bursty.
Further, an entry should be in the NEW or INVALID state
for a very short time (a few minutes, see Section 6). The
probability of a spoofing attack, a routing change and legit-
imate traffic all affecting the same entry at the same time
should thus be very low.

Prefixes That Send Mostly UDP Traffic. Filter table
entries for prefixes that rarely send TCP packets, such as
those hosting popular DNS or NTP servers, may mistakenly
be classified as INVALID by RESECT’s bounding mecha-
nism. This effect can be controlled by carefully setting the
MAXpkts parameter, as we discuss in Section 5.5. In short,
the deploying network would profile its transit traffic, mea-
suring the maximum number of non-TCP-data packets sent
by any prefix, before 𝑁 TCP-data packets. It would then set
the MAXpkts to a value higher than this maximum. In our
measurements on recent MAWI traces (2017), the maximum
length of a non-TCP-data sequence was around 38,000 pack-
ets. In our evaluation (Section 6), we used a much higher
number—1,000,000 or MAXpkts—and have shown that this
leads to no misclassifications of legitimate traffic and filters

reflector attacks within seconds. Thus, we feel confident that
RESECT would not harm legitimate senders that rarely send
TCP traffic.

Congestion. If a source prefix experiences packet drops due
to congestion at the same time as a route change, legitimate
senders may repeat packets that were originally forwarded
by RESECT, which may lead to an INVALID state. Packet
loss in the Internet is usually low [36], and route changes are
rare, which greatly minimizes the probability of those two
events occurring simultaneously. Even if this happens, the
duration of RESECT’s filtering and its collateral damage are
bounded by FilterTimer to a few minutes.

5.5 Configuring and Bootstrapping

RESECT has eleven parameters summarized in Table 3, but
only two need to be tuned by a deploying network, while our
recommended values (based on experimental results) can be
used for others. The ValidTimer value determines how often
legitimate traffic will experience learning due to inactivity, i.e.,
in absence of attacks or route changes. A deploying network
could measure packet inter-arrival times on filter entries, and
set the ValidTimer to match a high percentile (e.g., 99.99%).
Further, the MAXpkts parameter determines the maximum
number of non-TCP-data packets that could be seen on a
filter entry before 𝑁 TCP data packets are seen. A deploying
network would measure this value from the traffic it forwards,
for each source prefix, and choose the maximum or a high
percentile as its threshold. We applied the same approach to
calibrate this parameter in our evaluation.

When bootstrapping a RESECT filter at its installation,
one could stagger learning on MISSING entries. This would
ensure that TCP connections do not experience drops in both
directions.

6 EVALUATION

In this section we first evaluate RESECT’s impact on legiti-
mate and attack traffic (Sections 6.1 and 6.2). We replay in
congestion-responsive manner the TCP traffic from several
public traffic traces, and in some tests, we overlay it with
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Label Meaning Recommended

Learning

𝑁 # test pkts 10,000
𝐷 # dropped pkts 10–20

𝑑 = 𝐷/𝑁 % dropped pkts 0.1–0.2%
Tdrop DropTimer timeout 10 s
Tfilter FilterTimer timeout 190 s
Tvalid ValidTimer timeout measure

Bounding

MAXpkts # pkts on NEW entries for a
src

measure

Flood detection

MAXpref # prefixes with NEW entries 100
ENTdst # NEW entries that send traf-

fic to a dst
100

MAXpb # pkts to a dst on NEW entries 100,000
𝑁marked # marked pkts 40,000

Table 3: RESECT parameters and recommended val-
ues

Trace Date pkts/bytes

CAIDA – San Jose 07/21/2011 2.2 B/2025 B
CAIDA – Chicago 03/24/2011 3.8 B/2208 B

MAWI 05/15/2011 34 M/26 B

Table 4: Traces used in evaluation: M=million,
B=billion.

attacks. In a congestion-responsive replay, sender and re-
ceiver dynamics, as well as network conditions, are faithfully
reproduced and traffic drops in simulation lead to retrans-
missions and connection delays, just like they would in real
deployment.

We replay traffic traces in NS-2 simulations using Tmix
[38], an NS-2 module that replays TCP traffic from a given
trace in a congestion-responsive manner, emulating realistic
end-to-end network delays (mined from traffic), and realistic
retransmission behavior on any packet drops. We preserve the
original IP addresses and port numbers in replayed traffic to
faithfully reproduce per-prefix, per-source and per-connection
behavior in our tests. We use one backbone trace shared by
MAWI [19] and two shared by CAIDA (San Jose and Chicago)
[8]. These were the largest and most diverse traces we could
find. Table 4 summarizes some statistics about the traces.

We further evaluate RESECT’s operational cost and im-
pact on human-perceived QoS by implementing it in the
Click 2.0 software router [15], and running tests on the Deter-
lab testbed [2] (Section 6.3). Finally, we evaluate how much
RESECT would help with today’s attacks (Section 6.4).

6.1 Parameter Tests

We first examine the effect of 𝑁 and 𝑑 = 𝐷/𝑁 parameter
settings on RESECT’s accuracy of classification and collateral
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Figure 3: Collateral damage vs drop rate 𝑑

damage. These tests use only legitimate traffic. The trace is
replayed by two Tmix agents through one RESECT filter, and
we evaluate the effect of the filter’s actions on this traffic. All
timers were set to never expire. RESECT starts with an empty
filter table, so each entry goes through learning once only,
and we simulate no routing changes. This test lets us estimate
the damage to all connections from one learning cycle. Our
measure of collateral damage is the percentage of connections
that experience any delay due to packet dropping.

Figure 3 shows the percentage of all legitimate TCP con-
nections in the test, which are delayed, as we vary the drop
rate 𝑑 between 0.1% and 10%, on a log-log scale. We run each
test 10 times and show only the average, since standard devia-
tion is very low. Number of test packets, 𝑁 , is set to 1, 000 for
sub-1% drop rate and to 100 for drop rates above 1%. These
values of 𝑁 were chosen to strike a balance between number
of drops (at least 1 per prefix) and the number of prefixes
for which we reach the decision (so we can measure decision
accuracy). Smaller 𝑁 values would lead to zero packet drops
on some prefixes, and would not be realistic. And larger 𝑁
values lead to fewer prefixes that generate enough TCP data
packets in our 15-minute traces, for learning to converge.

Collateral damage to legitimate traffic is very small, and
grows linearly with the drop rate. It ranges from 0.1–0.4% of
connections being affected at 0.1% drop rate to 5.8%–8.4%
at 10% drop rate for the CAIDA-SanJose and MAWI traces,
respectively. The effect on legitimate connections is more
pronounced for the CAIDA-Chicago trace, because it has
a few very large connections (0.01% of connections in this
trace carry 40% of packets). All the affected connections lose
a single packet, and quickly recover. We suggest a 0.2% or
0.1% drop rate based on these tests, which lead to at most
1.6% connections being delayed during learning.

We next examine the effect of the parameter 𝑁—how many
test packets are used—on collateral damage. For these tests
we fix the drop rate 𝑑 at 0.1%, 0.2% and 1%, and vary 𝑁
from 1, 000 to 10, 000. Since the effect is similar on all traffic
traces we only show the results for the CAIDA-SanJose trace
in Figure 4. The damage grows logarithmically with 𝑁 and
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Figure 4: Collateral damage vs 𝑁

remains very small for all tested values. We recommend the
highest value we tested—10, 000—because it leads to good
resiliency against packet-repeating attacks (Section 7).

We also measured the classification accuracy of RESECT
in all these tests; it was 100%, i.e., RESECT always correctly
classified the new filter table entry as VALID.

6.2 Timeout Tests

RESECT’s decision speed depends on how quickly a source
prefix sends 𝑁 unique TCP data packets during learning,
and how quickly it repeats dropped packets. A legitimate
source may send traffic quickly or slowly, but it will always
promptly repeat dropped packets. In this case, learning is
entirely driven by traffic and can take as long as needed. An
attacker may send TCP-data traffic aggressively and never
repeat any. In this case the learning process will last at most
until DropTimer expires, which is controlled by parameter
Tdrop. We tested Tdrop values of 1, 2, 5 and 10 seconds, and
set the 𝑁 and 𝑑 to 1,000 and 0.1% respectively. We kept the
rest of the settings as shown in the previous section. Note
that Tmix mines realistic end-to-end delays from traffic, so
our simulation includes realistic RTT distributions. Figure 5
shows the classification accuracy on the MAWI trace, and the
results on other traces are similar. The accuracy is 100% for
a 10-second value and declines as smaller values are tested
due to a few large RTTs. Since RTT distribution is very
similar in many public traces [13], we recommend 10 seconds
for Tdrop parameter.

The setting for the FilterTimer, Tfilter, will determine how
much of the attack is filtered before its INVALID entry ex-
pires. If we select Tdrop = 10 seconds as the lowest acceptable
value for DropTimer timeout, then setting Tfilter = 190 sec-
onds would achieve filtering effectiveness of 95%. It also limits
dropping to legitimate traffic, in the case of an erroneous
INVALID decision, to a little over 3 minutes.

Timeout setting for the ValidTimer, Tvalid, depends on
the network’s traffic dynamics and should be calibrated by
each deploying network.
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Figure 5: Classification accuracy vs DropTimer time-
out

6.3 Human-Perceived QoS

All legitimate connections in our tests that were affected by
RESECT’s learning experienced a single packet drop. We ran
tests with Mechanical Turk participants and our prototype
implementation of RESECT in a Click software router to
measure impact of such drops on quality of service (QoS).
Each participant was asked to click through a set of five
small, static Web pages and rate their loading speed. We
dropped a random 1 in 10 user data packets. Drops on a client
connection in an interactive application, such as Web, create
the worst impact on QoS. Further, since our drops occur on a
2-data-packet TCP connection, retransmissions are triggered
on the TCP’s retransmission timer expiry, which may take two
RTTs. This is worse than drops on larger connections that are
quickly detected through triple duplicate acknowledgments.

Each participant was asked to rate each page’s loading
speed on a scale of 0 (worst) to 5 (best). We say that a
user has “perceived the RESECT-induced QoS drop” if she
gave a lower rating to the page whose initial request was
dropped by RESECT than the average of ratings she gave to
other pages. We report our findings for 34 participants. Only
three participants perceived the RESECT-induced QoS drop,
which is 8.8% of all participants. These users had a drop in
the middle of their interaction (pages 2 and 3 out of 5) and
were able to return to higher QoS perception at subsequent
page loads. We thus conclude that (1) many humans (91.2%)
do not notice single-packet drops, and (2) there is no lasting
impact from isolated drops on a user’s QoS perception.

6.4 Effect on Today’s Attacks

We now evaluate how well RESECT would handle today’s
reflector and random-spoofing denial-of-service attacks. We
first evaluate the benefit than an AS and its customers would
see from deploying RESECT, assuming all attack traffic ar-
rives on INVALID entries. We then evaluate how quickly one
RESECT filter would respond to an attack, which arrives on
a MISSING entry.
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Figure 6: Filtered incoming spoofed traffic for (a) a

RESECT-deploying network and its customers, (b) ev-

eryone in the Internet.

Benefit from RESECT. We obtained AS-level connec-
tivity and relationship information from CAIDA [7] and
evaluated the protection that RESECT offers to a deploying
AS and its customers from spoofed traffic. We evaluated de-
ployment on a random 1–50 ASes from the following groups:
tier-1 (top 50 connected ASes), tier-2 (next top 50 connected
ASes), or tier-3 (all other ASes that have at least one cus-
tomer link). We further assumed that a random 56.8% of
ASes deploy ingress filtering [5]. Figure 6(a) shows the me-
dian percentage of spoofed traffic filtered at the deploying
AS after RESECT’s filtering and after ingress filtering. At
even a single-node deployment, 45–61% more spoofed traffic
is filtered by RESECT than by ingress filtering. At 50 AS de-
ployment, tier-3 deployment filters 74% of the spoofed traffic,
tier-2 deployment filters 91%, and tier-1 deployment filters
more than 99%. We also evaluated the overall reduction of
spoofed traffic in the Internet by deploying RESECT; this is
shown in Figure 6(b). Only tier-1 deployment significantly
filters spoofed traffic; it filters 91% when 50 tier-1 nodes
deploy RESECT.
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Figure 7: Attack detection delay vs collateral dam-
age

Filtering Reflector Attacks. We now investigate how
to set up the parameter MAXpkts for the RESECT’s bound-
ing algorithm to minimize risk to legitimate traffic while
effectively filtering attacks. We simulate RESECT’s handling
of legitimate traffic on our three traces using libpcap to read
each packet (this includes non-TCP packets), and change its
entry’s state to INVALID if MAXpkts packets have been seen
before 𝑁 TCP data packets, and to VALID otherwise. We
vary 𝑁 from 100 to 10, 000, and vary MAXpkts parameter
from 1,000 to 1,000,000 packets. For reflector attacks, we
calculate the number of packets per second sent by a DNS
amplification attack that are sufficient to flood a link with 100
Gbps, 60 Gbps, 10 Gbps, 1 Gbps and 100 Mbps bandwidth.
We assume an amplification effect of 70 and DNS query size
of 60 B [26]. Attacks last 15 minutes and are filtered after
the first MAXpkts. INVALID entries expire after Tfilter = 190
seconds.

We show the results for the CAIDA-Chicago trace; other
results are similar. Figure 7 shows the percentage of all
legitimate traffic dropped on the x-axis against the attack
detection delay in seconds on the y-axis. Figure 8 shows the
legitimate versus attack packets dropped, both as percentages.
Zero collateral damage corresponds to the setting MAXpkts =
1, 000, 000. With that setting, 100 Gbps and 60 Gbps attacks
are detected within a fraction of a second and 99.8% of attack
packets are filtered. A 10-Gbps attack is detected within 4
seconds and 98% of attack packets are filtered. Smaller attacks
of 1 Gbps and 100 Mbps take 33.6 and 336 seconds to be
detected, respectively, and 85% and 36% of their traffic is
filtered.

Filtering Random-Spoofed Attacks. We use the same
simulation approach as in the previous test, and explore
different values for MAXpref, ENTdst and MAXpb parameters.
For legitimate traffic, each entry’s state is changed to NEW
with probability 0.1 at a random point during the simulation.
This leads to 10% of entries being in learning, which is much
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Figure 8: Attack packets filtered vs collateral dam-
age

higher than would be the case in real deployment.2 When
an entry goes into learning, we start populating its dstCache,
whose size we fixed at 10 entries. Each second we run the flood
detection test on all learning entries and record the number
of destinations for which we falsely detect a random spoofing
attack. The entry changes from NEW to VALID when 𝑁
TCP data packets have been seen. We vary 𝑁 from 100 to
10, 000. We summarize results due to space: MAXpref = 100
and either ENTdst > 100 or MAXpb < 100, 000 had zero false
positives, while detecting 1 Gbps and larger attacks in under
2 seconds. If we used Tfilter = 190 seconds, almost all attack
traffic would be filtered by RESECT.

An attacker may choose to perform an avoidance attack—
to spoof only a subset of IPv4 address ranges, e.g., only
within 𝑋 /24 prefixes. If 𝑋 < MAXpref and 𝑋 < ENTdst,
such an attack would not be detected as a random-spoofing
volumetric attack by RESECT. Instead, each entry would
go into learning independently, allowing the attacker to send
spoofed traffic for a brief interval, until INVALID decision
is reached. This attack could then evolve into cycling attack
to continuously flood the target. We propose how to handle
this in Section 7.

7 ATTACKS ON RESECT

We considered several attacks on RESECT, which could lead
to an erroneous VALID or INVALID decision.

Packet-Repeating Attack. An attacker familiar with
RESECT’s operation could try to guess which packets they
should repeat to achieve a VALID decision for their spoofed
traffic. Because RESECT penalizes wrong guesses (by incre-
menting invalid points), a permutation attack is the optimal
attacker strategy. The attacker sends a sequence of 𝑁 unique
packets, and repeats a random permutation of those. Let 𝑉
be the number of valid points needed for a VALID decision,
and 𝑆 be the number of invalid points needed for an INVALID

2Let the filter table have 𝐸 entries, each with 5 route changes per
day. Each learning cycle lasts at most 𝑇drop = 10 seconds. Assuming
independently distributed route changes, in any single second 𝐸 * 5 *
10/24/3600 = 0.0006 * 𝐸 or 0.06% of entries would be in learning.
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Figure 9: How to set 𝑁 , 𝑑 for desired limit on 𝑝success,
shown in the legend.

decision. The attacker must gain 𝑉 valid points before col-
lecting 𝑆 invalid points to trick RESECT. The probability
of the attacker defeating RESECT using the permutation
attack is:

𝑝success =

∑︀𝐷
𝑖=𝑉

(︀
𝐷
𝑖

)︀(︀
𝑁−𝐷

𝑉 +𝑆−𝑖−1

)︀(︀
𝑁

𝑉 +𝑆−1

)︀
We use 𝑉 = 𝐷 and 𝑆 = (𝑁 −𝐷)/2.
Figure 9 shows how to set 𝑁 and 𝑑 = 𝐷/𝑁 to limit

the probability of attack success to some desired low value.
For example, for 𝑑 = 0.2% and 𝑁 = 10, 000, an attacker
would have a 1 in 100,000 chance to trick RESECT, but
all other attack traffic would be filtered for Tfilter = 190
seconds. Thus, on the average, an attacker would have to
continuously launch attacks for 190 * 50, 000/24/3, 600 = 109
days before succeeding to convert one MISSING entry into a
VALID entry. We conclude that packet-repeating attacks are
ineffective for the attacker.

Congestion Attacks. The attacker could lead RESECT
to reach an INVALID decision for a rarely active prefix by
inducing that prefix to contact the attacker’s server, and
then the attacker would drop all traffic, which triggers re-
transmission. This attack will only be successful if several
events coincide: (1) the prefix rarely sends traffic through
the given RESECT filter, (2) some host from the prefix can
be induced to contact the attacker and this traffic passes
through the given RESECT filter, (3) the prefix sends some
legitimate traffic shortly after the attack through the given
filter. Since these conditions cannot be controlled or observed
by the attacker, this attack is unlikely.

Collusion Attack. An attacker may collude with a “helper”
host, which could observe traffic near the victim and commu-
nicate to the attacker which packets were forwarded during
learning. The attacker can then correctly repeat the dropped
packets to validate an entry for any source. Using an AS-level
map of the Internet, we calculated the fraction of the Internet
ASes that could be helpers for each possible pair of attack
host/target, assuming RESECT was deployed at the 50 tier
1 ASes. For 50% of pairs, less than 0.5% of Internet locations
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were a suitable helper; for 80% of pairs there were less than
2%, and the highest value was 3.5%. Thus, an attacker must
work hard to find a suitable helper for each attack host and
must repeat this whenever he wants to send spoofed traffic
to a new victim. This makes collusion attacks unlikely.

Cycling Attack. An attacker may perform a cycling
attack, in which he randomly spoofs a subset of sources,
and moves on to a new subset when the previous subset
is filtered by RESECT. We can handle this attack with a
mechanism similar to flood detection. We can set a low-
value threshold on the number of INVALID entries within
a time interval (similar to MAXpref). When this threshold is
exceeded, RESECT would trigger the same algorithm used
for flood detection, but on INVALID entries. This would lead
to a default entry in the SPARSE state, which would match
all the attack traffic.

8 DEPLOYMENT CHALLENGES

We now discuss the cost of deploying RESECT and deploy-
ment challenges such as incentives for filters.

8.1 Cost

RESECT could be deployed on dedicated hardware inline
with traffic. We now estimate RESECT’s processing and
memory cost. For each packet, RESECT performs a filter
table lookup, optionally records the packet’s sequence number
and updates some counters, and stores the destination IP
address in dstCache, These operations can be performed
at line speeds today. To evaluate this processing cost, we
implemented RESECT in a Click 2.0 software router [15] on
the DeterLab testbed [2]. We regenerated traffic from the
MAWI trace, so that we preserve connection volume, timing of
packets and packet sizes, as well as packet sources. RESECT’s
processing cost was 75 ns per packet; it included 1–2 hash
table lookups per packet, and was dominated by the inefficient
hash table implementation in Click. Taking the MAWI trace’s
average packet size of 385 B, RESECT could support network
links of up to 5 Gbps with this straightforward software router
implementation, and it would be much faster in hardware.

RESECT also incurs a storage cost. For route-based fil-
tering, each filter table entry would store the source prefix
(32 bits), the expected previous hop (12 bits based on the
current connectivity of ASes in the Internet AS map), and
the state (2 bits). Thus, in absence of learning, each entry
would need 46 bits ≈ 6 B. Assuming that RESECT filters
can perform the same aggregation of prefixes as routers do
for FIBs, there would be around 400,000 entries [37], and a
basic filter table would need 2.4 MB of storage.

Each entry may also go into learning process, and this
requires storage for 𝑁 unique packet identifiers, a small hash
table for dstCache with at most 8 B per entry, seven integer
counters, and three timers. For 𝑁 = 10, 000, the total size of
an entry should be just above 40 KB. In regular operation,
only a few entries would go into learning simultaneously. A
random-spoofed traffic, which forces learning on many entries,

will be quickly detected by RESECT’s flood detection, which
frees up learning process memory.

8.2 Deployment Options

RESECT performs best when deployed on tier-1 and tier-2
networks, but it may be very difficult to achieve adoption
in these large networks. They are in critical positions on
the Internet, and must forward traffic as quickly as possible.
Requiring them to store state, and to drop some packets
voluntarily during learning, is a hard sell. However, most
networks today do many complicated operations for different
traffic flows, for security or added functionality, beyond tran-
sit. Those networks use middleboxes and network-function
virtualization (NFV) to support these complicated operations
for a small fraction of flows, while maintaining fast handling
of the rest of the traffic. RESECT would fit well into this
model as another type of functionality to be offered at a
middlebox or a VM using NFV.

Ultimately, spoofing is a long-present, serious and increas-
ing problem, as are large-volume DDoS attacks that deploy
spoofing. Something must be done! Prior research [20] has
shown that core deployment of route-dependent filters would
reduce spoofing in the Internet to minuscule levels, and ben-
efit all Internet hosts at a very small deployment. RESECT
makes these claims hold in realistic routing situations, and
has very low impact on legitimate traffic. We believe that
these good results merit further investigation, and possible
adoption of RESECT by large, well-connected networks.

RESECT could be deployed at smaller ISPs instead of
large networks. Such deployment would protect the ISP’s
customers from volumetric spoofing attacks, but it would not
protect them from reflector attacks. This is because spoofed
traffic in reflector attacks traverses many Internet paths and
requires Internet core deployment of filters to be detected and
removed. Reflected traffic converges at the victim, but such
traffic is not spoofed, and cannot be handled by RESECT.

RESECT could further be deployed in proximity of mis-
managed networks [41], e.g., by their peers. Since many at-
tacks are launched from a small number of such networks,
small RESECT deployment could largely reduce both vol-
umetric and reflector spoofing attacks while having no ill
effect on the rest of the Internet or on legitimate traffic from
mismanaged networks.

9 CONCLUSION

IP spoofing is an ongoing problem on the Internet that has
not yet been solved in a practical and effective manner. RE-
SECT offers a solution that is both practical and effective.
RESECT works without changes to Internet hosts, and fil-
ters 74–91% of incoming spoofed traffic at the deploying
networks. Further, at tier 1 deployment, RESECT filters 99%
of incoming spoofed traffic at the deploying networks, and it
filters 91% of spoofed traffic sent to any destination. While
RESECT drops some legitimate traffic during learning, this
dropping is rare and limited, leading to no perceptible QoS
loss. RESECT has an excellent classification accuracy and
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is resilient to both naive and sophisticated attacks. We thus
believe it is a practical and effective solution to IP spoofing.
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