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Abstract — Cybersecurity research demands extensive 

experimentation to be validated. This experimentation is 
inherently risky: it may involve any combination of live malicious 
code, disruptive actions and connectivity to the active Internet. 
Previously, risky experiments were heavily contained to reduce 
danger to the experimental infrastructure and the Internet. We 
argue that such an approach unnecessarily stifles research. 

In this paper we explore a collaborative two-tiered risky 
experiment management model. It incorporates input from both 
experimenters and testbed operators; each party specifies 
constraints on their component’s behavior. Experiment 
constraints limit behavior in ways that do not affect an 
experiment's validity, thus meeting usability goals. Testbed 
constraints build on experiment constraints to meet required 
safety goals. When combined, experiment and testbed constraints 
ensure that experiments are both useful to researchers and safe 
for the testbed and the Internet. 
 

Index Terms—Computer Network Security, Computer 
Facilities, Cooperative Systems 

I. INTRODUCTION 
As computer networks and systems become ever more 

fundamental to modern society, concerns about cybersecurity 
become increasingly important. The challenge of securing 
modern cyber-systems is further increased by their rapidly 
growing complexity and scope of application. In response to 
these factors, the cybersecurity research community demands 
increasingly realistic and sophisticated experimental 
capabilities, tools and methodologies. 

Such experimental cybersecurity research is often 
inherently risky. An experiment may involve releasing live 
malware, operating a botnet, or creating highly disruptive 
network conditions. These risks are fundamental to successful 
research; realism is required in replicating attacks so that 
proposed defenses can be thoroughly tested and future attacks 
anticipated. 

The common response to this requirement is to implement 
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strict containment or isolation capabilities within the 
experimental environment, in an attempt to ensure that no 
actual damage will be caused by an experiment. Such 
constrained environments are often provided by a testbed,1 and 
we focus on testbed-based environments in our work. 
Depending on the testbed, containment mechanisms may 
include complete disconnection from the outside world, disk 
scrubbing before and after each experiment, prohibiting 
experiments that run live malware code, and the like. 

But containment itself is highly limiting. A fully contained 
experiment is hard to observe, hard to establish, and hard to 
control, because it is so completely isolated from its 
environment. Similarly, it is hard to create with any assurance. 
Sneak paths, equipment failures and design mistakes can 
render containment ineffective in myriad unexpected ways. 
Most importantly, containment is not very useful. A far more 
interesting and powerful class of experiments are those that do 
interact with their larger environment, but only in carefully 
controlled and well-understood ways. 

Our work aims to radically increase the scope and 
usefulness of testbed-based experimental cybersecurity 
research by accommodating this observation. We do this by 
moving from simple containment to risky experiment 
management as a strategy. The work is based on a simple line 
of reasoning: 

• If the behavior of an experiment is completely 
unconstrained, the behavior of the host testbed must be 
completely constraining, because it can assume nothing 
about the experiment. 

• But, if the behavior of the experiment is constrained in 
some known and well-chosen way or ways, the 
behavior of the testbed can be less constraining, 
because the combination of experiment and testbed 
constraints together can provide the required overall 
assurance of good behavior. 

This concept is illustrated in Figure 1. We call the first sort 
of constraints “experiment constraints” or “T1 constraints.” 
We call the second class of constraints “testbed constraints” or 
“T2 constraints,” and often refer to overall concept as the 

 
1 Experimental capabilities, tools, and methodologies are often brought 

together to form testbeds. Testbeds [1][5][6][7] are becoming more prevalent 
in the larger computer systems research community because they allow 
researchers to share resource infrastructure, to access powerful tools, and act 
as a nucleation point for collaboration. These benefits combine to make 
testbeds a natural place for researchers in the same field to meet and conduct 
large-scale, complex, or cooperative experiments, and to build on others’ 
work. 
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“T1/T2 model.” 
The remainder of the paper is devoted to exploring this idea 

further. We discuss the benefits of the approach in Section II, 
present a simple pedagogical example in Section III, consider 
some key aspects of the approach in Section IV and discuss a 
proposed initial implementation in Section V. 

Figure 1: Composition of T1 and T2 Constraints 

II. BENEFITS 
The separate expression of experiment and testbed 

constraints in our model represents a separation of concerns. 
This separation of concerns is extremely powerful, because it 
allows experiment constraints and testbed constraints to be 
framed and expressed independently, in terms directly 
meaningful to their respective audience of experimenters and 
testbed designers. Because experiment (T1) constraints are 
explicit and presented in the language of the experimenter, he 
can begin to reason directly about which constraints he might 
accept without affecting the validity of his experiment, and 
without concern about how the testbed (T2) constraints are 
implemented. Similarly, the testbed designer and operator can 
reason about testbed constraints in terms directly related to 
facility function and implementation – the area they are best 
equipped to understand. 

The mechanism of composing experiment and testbed 
constraints to obtain a desired overall assurance is interesting 
and rich. As suggested below, it is possible to obtain useful 
risk mitigation behaviors through the composition of a broad 
range of T1 and T2 constraints, tuned to the needs of different 
experiment classes and acceptable risk levels. This richness is 
critical to our goal of supporting a diverse and sophisticated 
range of experiments. 

The factoring of constraints into separate experiment and 
testbed constraints simplifies risky experiment design and 
increases reusability. The experimenter presented with a 
selection of predefined T1 constraints can quickly choose an 
appropriate set – one that does not affect the validity of his 
experiment, but will still support known external properties. 
Similarly, the testbed designer can begin to reason about how 
to offer different “standard” testbed constraint environments 
as well known, robust, and documented services, rather than 
having to separately consider and review his operating 
procedure for each new experiment. 

Finally, the model we present leads to significantly 
increased verifiability of safe overall behavior. Two reasons 

are relevant. First, because experiment and testbed constraints 
are factored, the mechanisms implementing each can be 
simpler, extensively tested, and then reused across many 
experiments. Second, the assurance provided by the 
composition of these simpler constraints C = T2(T1()) may be 
subject to formal analysis. 

III. EXAMPLE 
As a pedagogical example, imagine an experiment designed 

to study worm propagation. The behavior of this experiment 
could be constrained as follows: 

• The worm code could be designed to commit suicide if 
it does not receive a “heartbeat” message from a 
specific source – perhaps digitally signed - every 30 
seconds. This behavior is a constraint on the 
experiment behavior, or T1 constraint. 

• The source node generating the heartbeat message 
could be located within a testbed, and the message 
blocked from propagating outside the testbed through a 
variety of mechanisms. This is a testbed, or T2 
constraint. 

When these constraints are combined, the overall effect is 
clear: the worm dies if it leaves the testbed. 

The astute reader may now notice a problem: A fast-acting 
worm might spread very far in the 30 seconds allowed by the 
above constraints. To address this, one could define an 
additional constraint – that the worm is only allowed to send 
messages at the rate of one message after each heartbeat. We 
now have two T1 constraints: one related to message 
generation rate, and one related to requirement for a heartbeat 
message. It should be apparent that with these and the T2 
heartbeat constraint, the resulting overall behavior is that the 
worm can only propagate one generation outside the testbed 
environment. 

This example illustrates a key benefit of the T1/T2 model: 
its ability to make explicit its impact on experiments. To 
illustrate, we observe that our second experiment above is 
valid only if limiting the message rate does not affect 
whatever property the experiment is designed to observe. This 
may or may not be true. If the experimenter is interested in 
how the worm chooses its next target, a limited message rate 
may be perfectly acceptable. If the experimenter is interested 
in timing the worm’s spread, it clearly is not. But, because the 
constraints on experiment behavior are explicit and defined, 
the experimenter can reason about the question and its answer. 

A further benefit is also apparent: constraints may be 
explicitly selected to match the experiment. If the message 
rate limiting constraint is unacceptable, it may be possible to 
devise an entirely different set of T1 and T2 constraints – ones 
that would be acceptable for a rate-of-propagation experiment, 
but may be unworkable for a choice-of-target experiment. For 
example, the experimenter could limit destination addresses in 
scans to a small, non-routable range. This ensures that scans 
will never leave the testbed, but prohibits studies of worm 
target selection at larger scale. More generally, we note that 
entirely different constraints, suited to entirely different 
experiments, may produce the same overall limits on 
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undesirable behavior. By choosing T1 and T2 constraints 
appropriate to the circumstances, our model allows a wide 
variety of research to be carried out, while still providing well-
defined, verifiable limitations on risk. 

IV. DESIGN ISSUES 
This section considers some key design issues related to the 
use of the T1/T2 model to manage risky experiments. 

A. Top-Level Goals 
The ultimate use of the two-constraint model is to 

implement a well-defined set of goals for each potentially 
risky experiment. These goals may be further subdivided as 
follows: 

1. Researcher’s experiment requirements. These goals 
define experiment categorization or behavior required 
to produce a valid research result. One subclass of 
experiment goals identifies explicitly risky behaviors 
that the user desires in the experiment, such as: self-
propagating malware, high-volume traffic, etc. Another 
subclass identifies required behaviors that are not 
themselves risky, but that are important to experiment 
validity. These might be blocked by certain testbed 
mechanisms if not explicitly identified.  

2. Researcher’s privacy goals. It is likely that some 
monitoring of user actions and traffic by the testbed 
will be necessary for several purposes, including: (1) to 
support overall testbed performance monitoring and 
management, (2) to ensure that user constraints are 
audited, as described in Section IV.C, (3) to reduce 
testbed liability in case of malicious incidents. Current 
academic testbeds assume one liberal set of user 
privacy goals, but this is not realistic since, e.g., 
commercial users have very different privacy 
expectations than academic users.   

3. User and Testbed safety goals. While the safety goals 
of each researcher and testbed will have a common 
flavor of “no harm to other users, the testbed or the 
Internet,” each testbed may define notions of harm in 
different ways. Unacceptable behaviors differ,  
depending on the testbed’s mission and the policies at 
the hosting institutions. Testbed goals must thus be 
explicitly defined in detail. 

Within this space, a first design task is to identify specific 
goals that are useful to researchers. While the list of goals is 
potentially infinite, observation of current research testbed use 
patterns suggests that a small subset list may address the needs 
of many common experiments, providing a useful starting 
point for both further work and experimental validation of the 
T1/T2 model’s usefulness. 

B. Constraint Sets 
Our ultimate research goal is the development of a fine-

grain framework for T1 and T2 constraints and a formal 
structure to reason about their composition to meet top-level 
goals. However, as a more immediate, practical step towards 
deploying useful risky experiment management capabilities 

and towards assessing the validity and value of the T1/T2 
model, we introduce the concept of the T1/T2 constraint set. 

A T1/T2 constraint set is a pre-established set of 
complementary T1 and T2 constraints that, when met, allow 
useful, potentially risky experiments to be run with well-
understood limits on external behavior. To be useful, a T1/T2 
constraint set must exhibit all of the following properties: 

• The semantic combination of the chosen T1 and T2 
constraints must produce a desirable risk management 
result. 

• The T1 constraints must be useful to the experimenter: 
some set of interesting experiments must execute 
correctly under the given constraints. 

• The T2 constraints must be implementable and 
verifiable within a particular testbed environment. 

It is useful to define and implement a number of T1/T2 
constraint sets within a given experimental environment. 
Figure 2 shows the motivation. In the figure, we assume that 
each of the represented constraint sets provides the same risky 
behavior management semantics. But we see that different T1 
and T2 constraints produce different results along another 
axis. The top set, with very weak T1 constraints, allows an 
essentially unconstrained experiment to proceed within the 
testbed, but in return requires strict constraints on testbed 
behavior and perhaps on experimental procedure. In contrast, 
if the behavior of the experiment itself is known to be strongly 
constrained, the behavior of the testbed can be less 
constraining, leading to a simpler experiment that is more able 
to interact with its environment. Because T1 and T2 
constraints are explicitly separated within the set, we are able 
to reason about these tradeoffs. Because several 
complementary constraint sets can be made available, the 
researcher is able to act on that reasoning to select the most 
suitable one. 

Figure 2: Alternate T1/T2 Constraint Sets 

While we have introduced constraint sets as a simplifying 
abstraction, we note that their ultimate value may be more 
fundamental. A constraint set is an example of a “design 
pattern” for risky experiments, and the existence of proven, 
well validated and documented constraint sets may serve to 
simplify the job of the experimenter in several dimensions. 
We thus expect to maintain the constraint set abstraction even 
as our work advances towards a more fine-grain constraint 
manipulation capability. 
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C. Assuring T1 Constraints 
The usefulness of the T1/T2 model depends fundamentally 

on the idea that it is possible to ensure that the behavior of an 
experiment is constrained in some dimension. At first glance, 
this is a challenging assumption. In fact, a variety of 
approaches to this problem are possible, each with its own 
strengths and weaknesses. 

The basis of a T1 constraint is the premise or principle on 
which it is asserted. A number of bases are possible. Among 
these are: 

Belief. The claim of constrained behavior on the part of an 
experiment can be asserted because the experimenter believes 
it to be true, based on understanding of the experiment and/or 
historical observation. Belief is a very weak basis, and only in 
very low-risk cases would it be appropriate to rely on belief 
alone. However, belief becomes a more legitimate basis for 
asserting a T1 constraint in conjunction with monitoring by 
the testbed to ensure that the asserted constraint is 
continuously valid. 

Correctness by construction. A T1 constraint may be 
asserted on the basis that it is implemented and assured by 
automatically generated code or a similar mechanism.  As an 
example, we are exploring modifications to Metasploit [8] that 
enable it to generate exploits with known T1 constraints. 

Verification. A T1 constraint may be asserted on the basis 
that the code implementing the experiment has been verified 
externally to exhibit or enforce the constraint. Verification 
may range from human auditing of the code to the use 
automatic program verification tools. Here the explicit and 
narrowly scoped nature of T1 constraints may be particularly 
valuable in limiting the difficulty of the program verification 
problem. 

Each of the methods above asserts the T1 constraint on a 
basis that is intrinsic to the experiment itself. A fourth option 
differs in that an external agent is used to ensure that the 
constraint holds. This is: 

Enforcement. A T1 constraint may be asserted on the basis 
that it is enforced on the experiment by an external agent or 
action of the experimenter, independently of whether the 
experiment would exhibit the constraint on its own. 
Enforcement-based constraints are valuable because they are 
potentially very strongly assured, and because they provide a 
means to artificially constrain the behavior of an experiment 
within the T1/T2 framework. 

A variety of enforcement mechanisms may be useful to 
ensure experiment T1 constraints in different circumstances. 
Among these: 

Wrapping is the addition of a “wrapper” around existing 
code to limit its externally visible behavior along some 
dimension. 

System call interposition is similar to wrapping in concept, 
but imposes the behavior constraint by restricting the 
experiment code’s interaction with the host operating system. 

Code modification is the external action of modifying the 
experiment code itself to impose a constraint on behavior.  

Emulation is the execution of experiment code in an 
emulated environment that constrains behavior, and/or 

execution of an emulation of the risky code itself, such as the 
use of a synthetically generated “worm” rather than the actual 
malware. 

Each of these bases for ensuring that T1 constraints hold 
will be appropriate in different circumstances. Combinations 
will likely be used when several constraints are to be ensured. 
Central questions to be resolved by ongoing work are the 
practicality of enforcing useful T1 constraints by these 
methods, and the best ways to provide these constraint 
management tools to the experimenter.  

V. PROPOSED INITIAL IMPLEMENTATION 
We are presently developing an initial implementation of 

the ideas presented here, within USC/ISI’s DETER [1] 
testbed. DETER is a large facility located at USC/ISI and UC 
Berkeley, targeted to support cybersecurity research. The 
testbed consists of some 370 experimental nodes that can be 
reserved for exclusive use in creating experiments, together 
with additional hardware such links and switches that are 
shared by all experiments. DETER’s control software is 
derived from Emulab [5]. An experimenter reserves nodes by 
“creating an experiment” with a desired topology and 
characteristics, using a Web interface offered by the testbed. 
The testbed then allocates resources according to 
experimenter’s specification. Our work builds on several 
existing aspects of the DETER facility. 

We assume that each experiment is potentially risky until 
proven otherwise. We initially address three types of risky 
behavior: (1) running malware code, (2) exhibiting disruptive 
behavior such as denial of service attacks, and (3) requiring 
connectivity with the outside Internet. The first two behaviors 
are intentionally risky, whereas the third behavior may be 
risky by accident, if experimental traffic with the outside is 
misconfigured and overloads resources, provokes an external 
attack on the testbed, or creates liability.    

We identify and address the following specific experimental 
risks: (1) malware traffic may infect testbed infrastructure 
needed for correct operation such as the testbed’s control 
software or switches, (2) experimental traffic of any sort may 
overload the testbed’s control plane or shared hardware, (3) 
disruptive actions may affect the control plane or shared 
hardware (4) in experiments with outside connectivity, 
experimental traffic sent to remote machines may infect, 
overload or disrupt these machines and remote networks, (5) 
in experiments with outside connectivity, experimental traffic 
may provoke retribution toward the testbed (e.g., from the 
Storm Network [2]) or create liability problems for the 
testbed, (6) malware may stay resident on machines after they 
are reclaimed by the testbed and may affect future experiments 
by other users. We expect this list of risks to grow as we 
proceed with our work.   

The above risks are contained via experiment and testbed 
constraints. Constraints are associated with each running 
experiment at its creation time, and are continuously active. 
Because a given experimental topology can be used for 
multiple different purposes over time, constraints would 
ideally be generated and applied dynamically. This however 
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increases the burden for users whose different runs exhibit the 
same risky behavior, and is also challenging because the 
testbed lacks means to detect different “runs” or changes in 
use within the same experiment. Instead, we associate 
constraints with experiments, but will provide mechanisms for 
users to modify these constraints while the experiment is 
active.   

Our initial list of experiment (T1) constraints contains the 
following actions: (1) users limit scanning behavior (rate 
and/or target selection) of self-propagating malware, (2) users 
limit targets of disruptive actions, such as denial-of-service, to 
non-routable addresses within the experimental network, (3) 
users limit experimental connectivity with the outside world to 
a set of machines under their control, and to specific protocols, 
(4) users limit the rate of traffic in their experiments, (5) users 
limit all experimental traffic to the experimental network, (6) 
users implement signatures or self-terminating behavior in 
malware they plan to use. We expect to grow this list as our 
work progresses.  

Section IV.C discusses different methods for ensuring the 
validity of T1 constraints. As an initial position, we adopt a 
verification approach. We require that all experiment 
constraints are auditable by the testbed. We utilize the 
testbed’s experiment management infrastructure to implement 
monitoring tools: these tools verify that each constraint 
associated with an experiment holds throughout the 
experiment’s lifetime. In case experiment constraints are 
violated, the management infrastructure will take corrective 
actions that may range from emailing the user and testbed 
operators to terminating the experiment. 

Our initial list of testbed (T2) constraints and corresponding 
actions to be implemented includes: (1) isolation of 
experiments on the control plane using a separate virtual LAN 
for each experiment, (2) experimental traffic filtering and rate-
limiting on the control plane using hardware-specific filters at 
switches to prevent disruption and overload of shared 
infrastructure, (3) allowing outside connectivity via 
specialized machines (tunnel nodes) that connect the 
experimental network to the outside, (4) controlling 
experimental traffic contents and rate with the outside Internet 
via firewall rules and the Bro intrusion detection system [3] 
for deep packet inspection, both installed on tunnel nodes, (5) 
recording of traffic on tunnel nodes, recording of login activity 
on experimental nodes, and association of traffic, logged in 
users, and experiment names for potential liability reasons. 
Again, this list of constraints and actions will grow during the 
course of our work.  

To ensure that T2 constraints are continuously met, we 
again augment the testbed’s management infrastructure to 
detect violations of these constraints caused by hardware or 
software failures. Because these T2 constraint failures should 
never occur, our initial response will be to log debugging 
information and terminate testbed operation. 

To capture risk management parameters related to 
experiments, we are developing a domain-specific language 
known as REALM for specification of top-level goals and 
T1/T2 constraints. REALM specifications will be 

standardized, so users and testbed operators will have a 
limited choice of goal and constraint sets. The standardization 
enables us to automate specification processing and 
determiniation of testbed constraints, given top-level goals and 
experiment constraints. The REALM language will also be 
extensible, so novel goals and constraints can be added as our 
ability to support and reason about them develops.  

Although it is possible for users to write REALM 
specifications directly, our intent is that REALM be the output 
and interchange language for a variety of tools that capture 
and manipulate risky experiment management information. As 
an example, we will explore strategies for high-level 
specification of goals and constraints within DETER’s 
existing experiment management tool SEER [4]. User input 
will be recorded and automatically translated into REALM 
specifications, and the resulting constraints will be associated 
with the experiment.  

Using this system, researchers will be able to specify 
experiment categorization, privacy goals and appropriate 
experiment constraints at the time of experiment creation. 
Testbed constraints will be generated based both on the 
REALM specification input by the user, and the testbed safety 
specification (also in REALM) defined once by the testbed 
operators. Mechanism is then executed to allow researcher and 
testbed operator to agree on particular available constraint 
sets, as described in Section IV.B. The selected constraints 
will then be put into place by the testbed and monitored by 
management infrastructure as described previously, to ensure 
that they are continuously enforced. 
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