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Abstract—Accurate information about address and block usage
in the Internet has many applications in planning address
allocation, topology studies, and simulations. Prior studies used
active probing, sometimes augmented with passive observation,
to study macroscopic phenomena, such as the overall usage of
the IPv4 address space. This paper instead studies the complete-
ness of passive sources: how well they can observe microscopic
phenomena such as address usage within a given network. We
define sparsity as the limitation of a given monitor to see a target,
and we quantify the effects of interest, temporal, and coverage
sparsity. To study sparsity, we introduce inverted analysis, a novel
approach that uses complete passive observations of a few end
networks (three campus networks in our case) to infer what of
these networks would be seen by millions of virtual monitors near
their traffic’s destinations. Unsurprisingly, we find that monitors
near popular content see many more targets and that visibility
is strongly influenced by bipartite traffic between clients and
servers. We are the first to quantify these effects and show
their implications for the study of Internet liveness from passive
observations. We find that visibility is heavy-tailed, with only
0.5% monitors seeing more than 10% of our targets’ addresses,
and is most affected by interest sparsity over temporal and
coverage sparsity. Visibility is also strongly bipartite. Monitors
of a different class than a target (e.g., a server monitor observing
a client target) outperform monitors of the same class as a
target in 82-99% of cases in our datasets. Finally, we find that
adding active probing to passive observations greatly improves
visibility of both server and client target addresses, but is not
critical for visibility of target blocks. Our findings are valuable
to understand limitations of existing measurement studies, and to
develop methods to maximize microscopic completeness in future
studies.

I. INTRODUCTION

Accurately measuring Internet address and block usage
(liveness) is of growing importance with many applications.
Such information is vital for understanding use trends and
identifying under-used portions in the Internet and in improving
the efficiency of measuring network topologies [10], Internet
outages [19], and DHCP allocation strategies [20]. It can
also provide data for network simulations [14], [17]. But
these applications may need accurate liveness data not just at
the macroscopic, Internet-wide scale, but also at microscopic
scales—for specific network blocks or organizations.

Prior studies of liveness have used active probing [5], [12],
[19], sometimes in conjunction with passive observations [8],
[23], [20] to provide an Internet-wide view of address and block
usage. Both active probing and passive observation, however,
will miss some addresses and blocks. These errors may be
inconsequential at the macroscopic level (across the whole
Internet address space), but they can introduce a systematic

measurement bias at the microscopic level, when considering
specific networks. For example, where missing thousands of
addresses is just measurement noise on the entire address space,
if these missing addresses are all cloud servers or embedded
devices, their omission would bias studies of server traffic
or IoT security. Prior work sought to quantify sources of
measurement error, at the macroscopic level [12], [23], [20] and
we compared the effectiveness of passive and active for service
discovery in a campus network—one example of a microscopic
view [2]. This paper complements these past efforts by studying
the specific factors which influence the ability of passive
data sources to accurately observe specific host and network
populations, measuring microscopical activity. Our findings
can help researchers improve collection strategies, interpret
and refine observations, and clarify sources of imprecision in
Internet measurements.

The first contribution of our paper is inverted analysis,
a new measurement methodology that helps us assess the
completeness of microscopic passive observations. We assume
a monitor, placed at some vantage point, assesses liveness
for a given target network, through the traffic that the target
sends. Inverted analysis uses complete passive observations
at edge networks (three large U.S. universities, in our case),
and treats these networks as our measurement targets. We then
place “virtual” monitors at all other network blocks, allowing
us to estimate what each virtual monitor would see of our
targets, and to reason about causes of incompleteness of these
microscopic observations.

Our second contribution is to identify types of sparsity—the
properties of the monitor and target that limit visibility. Interest
sparsity reflects how much users near the monitor care about
content hosted by the target, and vice versa. Temporal sparsity
follows from the finite duration of any observation, which may
miss infrequently used addresses. Coverage sparsity occurs
when a monitor does not observe some links or when traffic
is down-sampled to handle high line rates. While intuition
suggests that macroscopic visibility of popular monitors will
be high, we are the first to quantify this effect at a microscopic
level. We find that visibility is heavy-tailed, with only 0.5%
monitors seeing more than 10% of addresses at our three
university targets. We further find that visibility is bipartite—
most networks host primarily clients or servers, which leads
to bipartite traffic and hinders complete observations between
networks of the same type. While this intuitive as well, we are
the first to quantify these effects. We find that, when observing



a randomly chosen set of addresses, 99% of the time server
monitors outperform client monitors when observing client
addresses, and 82% of the time client monitors outperform
server monitors when observing server addresses. Finally, we
find that interest sparsity has a dominating effect on visibility,
while temporal and coverage sparsity only attenuate this effect.

Our third contribution is to identify the implications of
interest sparsity on existing Internet measurement studies.
While prior studies recognized the importance of using multiple
data sources [8], [7], [20] to study liveness, and the importance
of observations at popular servers, ours is the first work that
sheds light on causes of reduced visibility and populations that
may be poorly observed by a given monitor. We find that due
to bipartite traffic and heavy-tail popularity any single observer,
large or small, will systematically miss certain populations. In
fact, we find in §V-C that even small observers can outperform
large ones on certain populations. Our work provides guidelines
that suggest who will be missed by a given set of observations,
and how to select the best additional sources to fill these gaps.
One of the additional sources we consider is active probing,
as it was used in many recent studies of Internet liveness [8],
[23], [20]. We find that active probing and passive observation
discover complementary sets of address information, while
their visibility into blocks is comparable. Active outperforms
passive for 99% of server addresses, and passive at popular
servers outperforms active for almost 100% of client addresses.

II. PROBLEM STATEMENT: LIVENESS AND SPARSITY

We first frame the problem we study, defining liveness,
visibility and sparsity. With this background, we then move on
to describe our inverted analysis approach in §III-A.

Liveness. Liveness estimation can be cumulative, denoting
a target as live if it is active in any available data source
during some long time interval [7], [23], [12], or it can be
instantaneous, giving a snapshot of live addresses at a given
time [9]. Liveness can further be assessed via counts of live
addresses, or by learning their exact identities. One may also
study liveness of blocks of adjacent addresses. This paper
examines cumulative counts of live addresses and /24-prefix
blocks (“blocks” for short) using passive observations.

Components of Passive and Active Measurement. Internet
liveness was studied through passive observations, active
probing [5], [12], [9], and their combination [2], [8], [23], [20].
Active measurement sends probes (ICMP echo or TCP SYN)
and recognizes addresses that reply as live. Addresses could be
probed once (census) or repeatedly (survey) in a measurement
period. Passive observations denote sources of traffic as live
as seen by a monitor, and recorded as packets, flows (pcap,
netflow, and Argus are common formats) or host/server log
entries. Both techniques have limitations, since passive monitors
are vulnerable to spoofing (forged source addresses), and active
measurement may encounter honey pots [1].

Visibility and Sparsity. We define the visibility Vm,t of a
monitor m with respect to a given target t as the percentage of
t’s live addresses or /24 blocks that are observed by m. Vm,t is
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Fig. 1: A real monitor at a Known Network and two virtual
monitors.

the fraction of ground truth m is able to learn about t. Sparsity
is a limitation of the monitor that reduces its visibility.

We identify three types of sparsity. Interest sparsity occurs
when a monitor does not observe the target because the lack
of user interest leads to a lack of observable traffic. This
could happen because end clients from a target network are
not interested in the content served by networks close to the
monitor, and vice versa. Temporal sparsity occurs when a
monitor’s observation is short and thus it misses targets that
are intermittently active. Coverage sparsity occurs when a
monitor does not observe some links or when observations are
down-sampled to reduce the load. In this paper we examine
the impact of these three types of sparsity on visibility.

III. METHODOLOGY

We next describe inverted analysis, our novel approach to
studying passive monitors, and describe our data sources.

III-A Inverted Analysis
We propose inverted analysis to study the limitations of

Internet-wide passive monitoring, as illustrated in Fig. 1. We
start from observations of a passive monitor R placed at the
edge of some organizations’ network (the Known Network).
This placement allows the monitor to observe most or all traffic
sent by this network, including regular client/server traffic due
to user interest, responses to external scans and scans sent by
the Known Network. Thus R’s observations are a good source
for estimation of the ground truth for the Known Network.

The idea behind inverted analysis is that we can use traffic
seen by a real monitor (colored lines in Fig. 1 seen by the
monitor R) to project what any virtual monitor (e.g., V1 and
V2), located near the traffic’s destinations, would see of the
ground truth for the Known Network. In our example R sees
bi-directional traffic between k0.0 and m1.0, k0.1 and m2.0
and k0.2 and m3.0. From this R can conclude that there are
three live addresses in the Known Network—our ground truth.
It can also project that if monitors were deployed at positions
illustrated by V1 and V2, V1 would observe two live addresses
and V2 would observe only one live address from the Known
Network. This enables us to study the visibility (as defined
in §II) of our three university targets (§III-B), whose traffic
we can passively observe, by many possible monitors in the
Internet.



While we assume a monitor at a network’s edge, one could
also use an aggregate of network service logs or host logs to
infer liveness. We have two such aggregate monitors in our
datasets (§III-B). Further, either a real or a virtual monitor could
be placed at backbone links instead of a network’s edge [4], [6].
Due to asymmetric routing, real monitors on backbone links
may suffer from large amounts of coverage sparsity and thus
cannot be used for inverted analysis to infer ground truth about
any target. However, if inverted analysis were enriched with
accurate routing information, one could place virtual monitors
on backbone links. We leave this for future work.

For discussion purposes we group virtual monitors by their
power, the fraction of the ground truth they observe. We
consider four regions of visibility: low (< 1%), medium (1-
10%), high (10-50%) and near-complete (50-100%).

III-B Data Sources
We use five passive datasets in our study, from four sources:

two Web server log summaries from a major U.S-based CDN
(aggregate monitors) and three network traces, each a week
long, capturing traffic at the edge of three US universities (real
monitors at Known Networks). We know of no other available,
non-anonymized sources of packet data. In §V-C, we also use
an active source, the union of ISI Internet censuses [12] from
Los Angeles, Colorado, and Japan (it60all) that overlaps our
measurement period. We use our university networks as both
targets (§V-B), to explore interest sparsity through inverted
analysis, and as monitors (§V-C), to generalize our results. The
CDN dataset is used only as a monitor because it contains
information only about the client addresses accessing this CDN,
but not about the CDN’s addresses. CDNloc summarizes all
log entries from all servers at the Los Angeles and Chicago
PoPs, continuously over one week. CDNglob, covers all PoPs
(more than 30) but only for 1 peak hour per day, for a week.

Tab. I summarizes our datasets. Four of our datasets cover
the same week in June 2014, allowing for comparison of
what each sees of the Internet (§V-C). Jointly, our passive
datasets see 5.1 M blocks and 700 M addresses, and are thus
comparable to sources in other recent work [12], [19], [8], [23],
[20]. Because our sources predominantly have IPv4 traffic, our
analysis focuses only on this traffic, but our methodology could
easily be applied to IPv6.

Anonymization. All addresses in our sources have their
lowest 8 bits scrambled with CryptoPAN [22]. Anonymization
is consistent within each dataset but not across sources. This
allows for comparison of counts in /24 blocks across datasets,
but not of individual addresses. We compare address visibility
across N datasets D1, ..., DN in the following manner. For
each block b visible by a subset of datasets Di, ..., Dj , we adopt
the highest address count a = max(aDi

, aDj
) as the ground

truth for b. We obtain the total address count for a network
as the sum of address counts in all its blocks. This method
underestimates the actual address counts, but it is necessary
because of inconsistent anonymization.

Our three universities all have around 30,000 students, and
collect Argus-format flow data. Our UGA dataset does not

capture ICMP traffic, and many local addresses are NATted
within UGA. We exclude NATted traffic from our analysis.

Filtering Spoofing. Our university datasets may contain
spoofed traffic with external addresses, which would skew
our analysis in §V-C. We filter spoofed traffic using statistical
filtering as proposed in [23].

Limitations. Our data sources have some limitations. Sources
of our edge network traffic all come from university networks
of moderate sizes (65k addresses, with 5–30k active addresses).
Thus our observations about how well others see our edge
networks and how well our edge networks observe the world
may be biased if our visibility is specific to some property of
universities. We find, however, that most of the visibility in our
edge datasets comes through traffic that local clients exchange
with popular Web servers. We believe this pattern generalizes
to client-heavy networks and is not specific to universities, so
our conclusions should hold for other networks of similar size
and activity, provided they are client-heavy.

Visibility of our edge networks may be skewed if they were
more responsive to scanners (they would then appear more
visible than typical). However, our three networks are diverse:
USC is responsive to scanners, while CSU and UGA are mostly
closed (details are in our technical report [15]). This diversity
of our Known Networks supports robust conclusions from
our data about edge network visibility. Our university datasets
further include a mix of clients and servers, allowing us to
study the bipartite nature of traffic and visibility.

Finally, although “only” a week long, our time-synchronized
datasets suffice to study what different observers see of the
same targets at the same time, and why.

Validation. For the large networks we study, there is no
complete ground truth about which addresses are active over
time. (Our discussions with network operators of USC suggest
that allocation and activity is decentralized and so even they do
not have ground truth.) Thus, we cannot independently validate
our findings about what fraction of a network is observable
by a remote passive monitor. However, our findings pertain
more to the relationship between visibility available to different
monitors, based on the monitor popularity and monitor and
target type. These findings will hold regardless of the ground
truth for the target’s liveness. Further our real monitors in our
three Known Networks see all the traffic between selected
address ranges (Tab. I) and the Internet. Thus we are confident
that our passive observations of liveness for these networks
are very close to the ground truth.

III-C Labeling Flows, Addresses, and Networks
When studying visibility of our Known Networks by virtual

monitors, we also seek to understand why those virtual monitors
see our Known Networks, and what types of hosts they see.
We now explain labeling of flows, addresses and ultimately
networks, which helps us understand causes of visibility.

Labeling flows. We start by classifying each flow by the
role of the address from a Known Network and the flow’s
purpose. We summarize here only relevant classification rules.



# Monitor location Observation Known Net size
org prefixes format start duration all flows addrs blocks

Aggregate Monitors
1 CDNloc LAX and ORD POPs logs 2014-06-17 7 days 266 B — —
2 CDNglob all POPs logs 2014-06-17 7 days 200 B — —

Known Networks
3 CSU 129.82/16 Argus 2014-06-17 7 days 2.2 B 17,732 186
4 USC 128.125/16, 68.181/16 Argus 2014-06-17 7 days 461 M 31,997 492
5 UGA 128.192/16 Argus 2016-02-06 13 days* 682 M 5,243 198

Active Sources
6 it60all [21] census 2014-06-19 32 days — — —

(* UGA source captures traffic every second day.)

TABLE I: Datasets used in this paper.

A TCP or a UDP flow is labeled as a client flow if an address
from a Known Network sends traffic from a non-service port
to a service port (as defined by IANA [13]), and we define
a server flow in a similar manner. We label TCP/UDP flows
that exchange payload in both directions as payload, and we
label TCP flows that do not go past the 3-way handshake as
scans. Flows that contain scan or ICMP Echo responses from
a Known Network are labeled as responder.

Labeling addresses. We label each address by aggregating
address-role labels of its flows. Addresses that only have client
(but not server) flows are labeled as client, those with only
server (but not client) flows are servers and those with both
are client-servers. Addresses that only have responder (but not
client or server) flows are labeled as responders.

Labeling networks. We manually label autonomous sys-
tems (ASes) as client- or server-heavy using the following
methodology. We first select a random subset of ASes that
appear in our dataset. Our labeling starts by using WHOIS
information to identify the owner of an AS. We then examine
the owner’s web pages, and any information about the owner on
Bloomberg [3] and PeeringDB [18]. Server-heavy organizations
primarily host content, and the majority of their addresses are
servers. We label ASes as server-heavy if they are owned by
hosting providers (e.g, Fastly), CDNs (e.g., Akamai), content
providers (e.g., Facebook), or enterprises (e.g., banks). Client-
heavy organizations primarily provide connectivity to users, and
thus the majority of addresses in these networks are clients. We
label ASes as client-heavy if they are owned by connectivity-
providers (e.g., T-Mobile), research networks (e.g., CENIC)
or universities. When classification is unclear we follow the
primary service presented on the owner’s web page.

We could not fully automate inference of an AS’s label as
either a connectivity (client-heavy) or a content provider (server-
heavy). The loose structure of several tasks requires human
intelligence: (1) there is no consistent way to infer the primary
Web page for the AS’s owner from the AS’s name or number,
(2) information about an AS’s purpose is often distributed over
several Web pages and often must be translated from another
language, (3) for ASes that offer multiple services, manual
inspection is needed to establish a primary service. Our list of
labeled ASes is available at https://ant.isi.edu/datasets/sparsity/.

IV. INTEREST SPARSITY

We now show that interest sparsity significantly influences
visibility of our Known Networks by virtual monitors, and
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(b) From AS monitors

Fig. 2: Visibility of addresses and blocks from all possible virtual
monitors at the level of /24 blocks, and entire ASes.

that visibility is heavy-tailed. We explore the causes of interest
sparsity in §V.

Visibility is Heavy-Tailed. We place a virtual monitor at
each /24 block that receives traffic from our three university
targets (Known Networks), and evaluate the percentage of the
target’s addresses and blocks that the monitor sees. Fig. 2(a)
shows the log-log complementary CDF of address and block
visibility. Both graphs show an inflection point, where a handful
of monitors see half of each target, then a near linear region
where visibility falls off as a heavy tail over about three orders
of magnitude. Also, many Internet blocks see nothing of our
targets and are not shown on graphs. There is no interaction
between 93% of routable blocks and UGA, 58% and CSU, and
41% and USC.



Whole ASes improve visibility. When we look at monitors
placed at /24 blocks, visibility is heavy-tailed. Many organi-
zations run networks that are larger than 256 addresses, and
many CDN-blocks may not see our targets due to geographical
content distribution. We next consider monitors that cover an
entire AS. We evaluate this as a thought experiment, since
some ASes may be large and difficult to fully monitor.

We map blocks that see our targets into ASes using
MaxMind, and identify other blocks that belong to the same
AS using WHOIS. Fig. 2(b) shows the CCDF of visibility of
our targets from AS-sized monitors. Visibility of both addresses
and blocks improves when compared to that of block-sized
monitors, but the heavy tail remains: only 0.5% of organization-
level monitors see more than 10% of our target addresses.

Visibility weakly correlates with content popularity. Next
we investigate if visibility of our targets by AS-sized monitors
depends on the popularity of an AS’s content, and find
significant but weak correlation. We measure content popularity
by using the Alexa’s top 1M list. We look up addresses
associated with domains from the Alexa list, and map each
address into an AS. The rank of an AS will be the lowest rank
(i.e., the highest popularity) that any of its addresses has. We
then run a Spearman correlation test between the rank and the
AS’s visibility of our targets. There is negative correlation for
all three targets, which is significant (p < 2.2 · e16) but weak:
−0.23 ≤ r ≤ −0.19. We believe that this low correlation
occurs because local popularity of content (as measured by
visits from our target) does not match global popularity (as
measured by Alexa). For example, Akamai ranks as number 1
by USC visibility, but its hosted content (large retailers, Fox
news, Hulu) has an Alexa rank >256.

Popularity’s influence on measurement. We next explore
how many monitors would be needed, and how popular they
need to be to achieve a certain visibility goal. Since visibility is
a property both of a monitor and its relationship with a target,
we cannot provide a general estimate, but we can calculate
specific estimates for our Known Networks as targets.

To obtain these estimates we observe monitors as belonging
to four popularity classes by their Alexa rank: top 100, top
1K, top 10K and top 1M. Fig. 3 shows median and error
bars for address visibility in our Known Networks, where
each data point is obtained by 1,000 random draws of 2–20
monitors from a given popularity class. We see that popularity
has a very strong influence on the number of monitors that
are required. Given a visibility of at least 10% of a Known
Network’s addresses as a goal, each decrease in monitor
popularity by a factor of 10 roughly doubles the number of
monitors: 2 top-100 monitors, 3–4 top-1K monitors, 7–10
top-10K monitors or 12–16 top-1M monitors are all roughly
equivalent in visibility. In addition, the variance increases
greatly as monitor popularity declines, as measured by larger
error quartiles shown with error bars. We see similar trends
across all three Known Networks. These examples show the
importance of having popular monitors, and having multiple
monitors, for completeness.
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(c) UGA

Fig. 3: Visibility of addresses given a number of sources drawn
from a certain Alexa rank.

V. BIPARTITE TRAFFIC AND INTEREST SPARSITY

We next show that most addresses in our Known Networks
are clients or client-servers. This leads to mostly bipartite
traffic patterns, with server-heavy monitors seeing our targets
much better than client-heavy monitors. We then use all of
our datasets to explore what our client-heavy (universities)
and server-heavy (our CDN) monitors see of the world. This
confirms bipartite structure: client-heavy networks see server-
heavy networks well and vice versa, but neither has good
visibility within its own type.

V-A What is Seen in Our Known Networks
Looking at address labels in our Known Networks (targets)

there are many clients (55–71% of addresses), with a smaller
number of servers (4–14%), client-servers (10–22%) and
responders (1–13%). Looking at the compositions of /24 blocks,
addresses that are clients and servers are spread over many
blocks. This diversity in location makes it likely that all classes



of remote monitors will see many blocks, even if they see only
a few addresses in each block.

V-B Who Sees Us
We next investigate who sees our targets well and why. The

top ten AS monitors by address visibility each see around
60–70% of each target and belong to: (1) academic networks
hosting caches for Google, Netflix and Akamai (confirmed via
reverse DNS), (2) large content providers, hosting companies
and CDNs, e.g., SoftLayer, Akamai, Google, (3) a handful
of aggressive scanners. Further, most monitors in high and
moderate visibility regions (Vm,t > 1%) see our targets because
these targets send client payload-flows to the monitor network,
i.e. due to user interest. Content providers among the top ten
AS monitors see clients and client-servers well, but they miss
servers and responders—entire classes of addresses that may
have unique features and behaviors. Scanners exist among the
top ten AS monitors only for USC as our other two targets filter
aggressive scanners. The scanners see not just USC clients
and client-servers, but also servers and responders. While their
visibility is smaller than that of content providers number-wise
(<60%), it is more diverse.

To generalize this relationship between visibility and the
nature of the monitor network (server-heavy or client-heavy)
we formed an unbiased set of block-monitors with different
powers. For each Known Network (USC, CSU and UGA) we
randomly select 300 block-monitors, 100 from each of the
low, medium and high visibility range. This results in 900
blocks (875 unique blocks) forming the Random Far Monitors
set. We then manually label the AS of each Random Far
Monitor as client- or server-heavy, using the approach from
§III-C, resulting in 313 labeled ASes. Next, we calculate the
representation of server-heavy and client-heavy Random Far
Monitors in monitor groups that have high, medium and low
visibility into each of our targets. All three targets are seen
in similar ways. Client-heavy monitors make 80–90% of the
low-visibility monitors, but only 10–20% of medium- and high-
visibility monitors. The rest of the monitors are server-heavy.
This analysis generalizes our observations that mostly servers
have good visibility of our client-heavy targets.

V-C What We See of Others
Our analysis of who sees us (§V-B) shows that visibility

of client-heavy targets is bipartite. To get a more diverse set
of targets, we next investigate what liveness information can
be gleaned by our three client-heavy and two server-heavy
monitors about different targets around the Internet. This anal-
ysis is regular (forward, not inverted) analysis of microscopic
Internet-wide liveness as estimated by our monitors.

Methodology. We normalize our datasets for this study in
two ways. First, we retain the four datasets that are collected
at the same time, omitting the later UGA dataset. Second, we
remove spoofed blocks using statistical filtering (§III-B). The
original datasets see many non-routable blocks with apparent
traffic (16% of USC and 0.04% in CSU), but after filtering we
are left with a negligible 0.1% (USC) and 0.000004% (CSU),
showing spoofing removal is successful.

We include an active source in our investigation, because
recent studies of Internet liveness [8], [23], [20] used a
combination of active and passive to achieve macroscopic
completeness. We focus on understanding how well active
sources achieve microscopic completeness, and compare them
with our passive sources.

Our active source is the union of all ISI Internet censuses
(called here it60all). Further, the CSU dataset contains signifi-
cant number of active probes as CSU was hosting of one of
our probers for it60all. We thus break the CSU dataset into an
active source, which includes all ICMP traffic (CSUI ), and a
passive source, which includes TCP and UDP traffic (CSUUT ).

Tab. II shows the number of total ASes, blocks and addresses
seen by each of our sources. Our set of targets contains ASes
that host Random Far Monitor blocks from §V-B. This includes
313 ASes—43 server-heavy and 170 client-heavy ASes. We
call this set Random Far Targets and study how much of each
target is seen by our monitors. Since we do not have ground
truth about live blocks or addresses in any of these targets we
use joint observations from our six datasets as the ground truth.
We take the union of all blocks seen as block-ground-truth
for a target. Again, because of how our data is anonymized,
we cannot use the union of addresses for address-ground-truth.
Instead we use the lower-bound estimates (maximum seen by
any one source) of the number of addresses per block, and
sum these over all blocks in a target, as described in §III-B.

Macroscopic Visibility. Several prior studies have reported
that the combination of passive and active sources increase
coverage, with each contributing unique addresses and blocks.
For completeness, we compare our macroscopic visibility with
two prior studies that list specific contributions of active and
passive sources, shown in Tab. III.

The contribution of passive is much lower in our study (11%
blocks, 7% addr.) than in Richter et al. [20] (20% blocks, 40%
addr.), even though both include a CDN source. The difference
in discovery occurs because their passive observation is longer
than ours (16 weeks vs. our 1), allowing for discovery of more
dynamic addresses (25% [20]). Our shorter passive collection
approaches instantaneous liveness (for example, from a one-
shot census), while their longer observation accumulates more
addresses, reflecting cumulative liveness.

To get a deeper understanding of unique contributions, we
show the visibility into the total of our Random Far Targets
(broken into client-heavy and server-heavy) by our sources in
the Client and Server columns in Tab. II.

Microscopic Visibility. Because macroscopic measures may
be biased by ASes with large address/block occupancy, we
also show cumulative distributions of the fraction of ground-
truth addresses and blocks that our sources see in each client-
and server-heavy target in Fig. 4, i.e., microscopic visibility.
Assuming that near-complete microscopic visibility is the
desired goal (as defined in §III-A), we report percentages of
client- and server-heavy targets for which a source achieves
this goal in the Near-complete column in Tab. II.

We see that active sources are powerful, especially in



Total Client Server Near-complete vis.
Source ASes blk addrs blk addrs blk addrs srv-blk srv-addrs cl-blk cl-addrs

pa
ss

iv
e

CDNloc 20 k 2.2 M 202 M 52% 40% 16% 3% 14% 0% 30% 16%
CDNglob 41 k 46 M 573 M 84% 77% 55% 13% 47% 6% 87% 66%
CSUUT 28 k 1 M 2 M 18% 0.2% 32% 1.7% 44% 2% 5% 0%
USC 30 k 1.8 M 13 M 33% 1.3% 51% 9.6% 56% 2% 19% 0%
passive 42 k 4.8 M 614 M 86% 86% 78% 20%

ac
tiv

e Census 44 k 5 M 486 M 92% 72% 83% 92% 90% 94% 95% 75%
CSUI 38 k 4 M 421 M 76% 65% 62% 76% 82% 74% 83% 60%
active 45 k 5 M 510 M 93% 75% 83% 93%

pass & act. 45 k 5.7 M 741 M

TABLE II: Contributions of sources, in blocks (blk) and addresses (addrs).

TABLE III: Comparison of numbers of
blocks (and addresses) found by recent eval-
uations of Internet liveness.

unique blocks (addrs)
source passive active
CAIDA [7] 10% 19%
Large CDN [20] 20% (40%) 10% (10%)
us 11% (7%) 15% (6%)

TABLE IV: Recommendations for
source selection to get good coverage
of desired target.

Target Recommended Sources
Server block active or passive client-heavy
Server addr. active
Client block active or passive server-heavy
Client addr. active and passive server-heavy
All blocks active or passive cl+srv-heavy
All addr active and passive srv-heavy

finding servers. Active sources (Census and CSUI , red lines in
Fig. 4) have near-complete macroscopic visibility into all four
categories of targets (65–92% in Tab. II), and CDFs that place
many blocks near 100% visibility. However, their microscopic
visibility into client-heavy addresses is lower than client-heavy
blocks, server-heavy blocks, and server-heavy addresses (75%
near-complete, vs. 90-95%; see Fig. 4(d) vs. others in Fig. 4).

We next show that passive CDN observations underrepresent
server-heavy networks. Not surprisingly, our CDN source (a
server-heavy observer) sees client blocks and addresses well
(Figures 4(b) and 4(d)), and global observation is much better
than local (compare the solid and dotted lines). CDNglob
has good visibility of client-heavy addresses and blocks
(macroscopic 77–84%, microscopic 66–87% near-complete),
but its visibility into server-heavy blocks is often lower than that
of university networks (yellow solid line above blue in Fig. 4(a),
macroscopic 55%, microscopic 47% near-complete), and its
visibility into server-heavy addresses is very low (macroscopic
13%, microscopic 6% near-complete).

Finally, passive data from client-heavy networks provides
limited visibility of addresses and client-heavy blocks. Our uni-
versity networks (client-heavy observers) have good visibility
of server-heavy blocks (macroscopic 32–51%, microscopic 44-
56% near-complete) and lower visibility of client-heavy blocks
(macroscopic 18–33%, microscopic 5–19% near-complete).
Their visibility of server-heavy addresses is very low (macro-
scopic 1.7–9.6%, microscopic 2% near-complete) and that of
client-heavy addresses is even lower (macroscopic 0.2–1.3%,
microscopic <1% near-complete).

Overall, 99% of server-heavy monitors outperform client
monitors when observing client addresses, and 82% of client-
heavy monitors outperform server-heavy monitors when ob-
serving server addresses, confirming strong bipartite visibility.

V-D Implications for Measurement Studies
An important implication of our findings is that measurement

studies using passive data from only one source (clients or

servers) will systematically miss parts of the Internet—they
will have poor microscopic visibility into entire classes of
networks.

Tab. IV suggests selection methods for sources that will
provide near-complete visibility of a desired measurement target
(client- or server-heavy), summarizing §V-C. The key factor is
a researcher must use either active probing, or passive data of
the opposite type than the target, for good visibility of blocks.
Further passive and active discover complementary addresses
in all targets. Active probing outperforms passive observation
for 99% of server addresses, and passive observation at popular
servers outperforms active probing for almost 100% of client
addresses. Visibility of server-heavy addresses thus requires
active probing, and visibility of client-heavy addresses requires
passive observation at popular servers.

Our findings can also help interpret prior measurement
studies. For example, works on traffic policing [11] and DHCP
churn [20] are based on data from large CDNs. While they
hold macroscopically, neither is completely “Internet-wide”,
since we show CDNs have poor visibility into server-heavy
networks. While it is unlikely that servers are policed or change
DHCP, generalization requires care.

VI. TEMPORAL AND COVERAGE SPARSITY

Although ultimately visibility is driven by interest, observa-
tion duration (temporal sparsity) and sampling (one kind of
coverage sparsity) may also affect visibility. In this section we
seek to quantify these effects. Due to space limitations, we
report findings only for USC and only for addresses, but we
see similar results for our other two targets and for blocks [16].

Temporal Sparsity reflects the importance of listening
“long enough”. Prior work demonstrates visibility increases
logarithmically with time, with 70–90% of the addresses being
discovered within 3-days [2], [7], but they quantify duration
effects only on their monitors. Inverted analysis allows study
of how temporal sparsity impacts different types of monitors.
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(a) server-heavy /24 blocks

��
����
����
����
����
����
����
����
����
����

��

�� ���� ���� ���� ���� ��

�
�
�
�
��
���
�

�
�
��
��
��
�
���
�

��������������������������������������������������

������
�������

������
����

�����
���

(b) client-heavy /24 blocks
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(c) server-heavy addresses
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(d) client-heavy addresses

Fig. 4: Visibility of /24 blocks and addresses in server- and client-heavy targets, in each of our sources.

We look at how visibility changes as we vary the duration of
passive observation and compare this with a monitor’s visibility
of each of our targets. We consider only monitors that see our
given target in at least ten one-hours periods over the full trace.

Fig. 5(a) shows the distribution of visibility across monitors
as a function of time, compared to the baseline of evaluation
over the full duration. 54% of monitors have seen at least
70% of their full visibility within three days. The lowest
visibility monitors, reach their full coverage quickly—5% of
monitors only need one day and for these monitors longer
duration does not improve coverage. For higher visibility
monitors, their coverage exhibits logarithmic growth, with
longer observations bringing reduced benefit. Those monitors
that have high visibility all reach 60–80% of their full visibility
within a day, and reach more than 90% of full visibility
within three days. Very low-visibility and medium to high-
visibility monitors converge within days to at least 70% of
their visibility. Low-visibility monitors experience linear growth
in their visibility and need longer observations to converge.

Coverage Sparsity includes down-sampling of monitored
traffic and view-point omissions such as missing traffic on
specific links. The effects of view-point omissions are highly
site-specific, but down-sampling during measurement is com-
mon and generalizable, so here we consider sampling effects.

To investigate down-sampling, we artificially discard packets
from flows with a given probability. If all packets are discarded,
we remove that flow. We then perform inverted analysis on
the remaining flows, and compare visibility on non-sampled
vs. sampled flows.

�

���

���

���

���

�

� ��� ��� ��� ��� �

���

����

�����

������

������

��
�
�
���
�

�
�
��
�
�
�
�
���
�

�
�
��
��
���
��

��������������������

(a) Address visibility after one hour, twelve hours, one day
and three days as a fraction of 6-day visibility. Block visibility
is similar.
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(b) Reduction in visibility of addresses when packets are
sampled.

Fig. 5: Effects of duration and down-sampling.



Fig. 5(b) shows the percentage of monitors in several ranges
of remaining visibility—more than 90%, 50-90%, 10-50%
and <10% of the baseline visibility over non-sampled data.
Monitors are grouped into low, medium and high visibility
groups based on their baseline visibility. Each group of bars
shows a different sampling rate: 1-in-2, -10, -100, or -1,000.

We find that resiliency of monitors to sampling depends on
their baseline visibility. High- and medium-visibility monitors
are barely affected by 1-in-2 sampling and at 1-in-10 sampling,
most achieve well above 50% of their baseline visibility. Even at
1-in-100 sampling rate, these monitors achieve 10–50% of their
baseline visibility. On the other hand, low-visibility monitors
are severely affected by sampling. At just 1-in-2 sampling, 60%
of low-visibility monitors lose half of their baseline visibility.
At 1-in-10, half of the low-visibility monitors retain just 10%
or less of their baseline visibility. We also find block visibility
is much more robust to sampling than address visibility.

VII. RELATED WORK

Our work is motivated by studies of network services [2]
and address liveness [8], [7], [23] with passive sources.

Early work compared passive and active techniques for
discovering services in a campus network [2] and showed
that popular servers are discovered quickly, that scanners help
discover many otherwise inactive addresses, and that continuous
estimation of liveness is necessary due to dynamic addressing.

Dainotti et al. were the first to apply passive discovery to
study Internet-wide liveness, complementing and expanding
on active probing [8], [7]. They recognize the importance of
filtering spoofing, and the importance of multiple data sources.
Similarly, Richter et al [20] use passive observations from a
large CDN and active probing to study dynamic addressing in
the Internet. Our work builds on these prior works to explore
the root causes in the visibility provided by different monitors
and the role of clients and servers.

Zander et al. apply the capture-recapture framework from
biology to extend prior passive and active estimates of Internet
liveness [23]. They validate their approach on six chosen
networks and use many data sources, but do not explore reasons
why their sources provide different information, while we do.

VIII. CONCLUSION

This paper investigated what passive observers can learn
about address liveness and why. We proposed inverted analysis
to study many virtual passive monitors using a small number
of real monitors at edge networks. We also identified interest
sparsity as a key factor for limitations of passive sources.

Our key result is that the type and popularity of passive
observers matter. While prior studies often gathered as many
sources as possible [7], [23], [20], in §V-D we summarize
our guidance to selecting sources and our understanding of
their limitations for microscopic observations of different
populations.
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