
 1

SAVE: Source Address Validity Enforcement Protocol

Jun Li Jelena Mirkovic Mengqiu Wang Peter Reiher Lixia Zhang

ABSTRACT

Many network attacks forge the source address in their IP packets to block traceback. Recently, research activity

has focused on packet-tracing mechanisms to counter this deception. Unfortunately, these mechanisms are either

too expensive or ineffective against distributed attacks where traffic comes from multiple directions, and the

volume in each direction is small.

We believe that the fundamental solution to the problem of source address forging is to validate source

addresses throughout the network. We have developed a source address filtering protocol that establishes and

maintains valid incoming interface information on source addresses at each router, thus allowing all packets

carrying improper source addresses to be immediately identified. Our protocol works correctly in the presence of

asymmetric routing. We will describe the protocol that gathers the information to validate source addresses and use

simulation to demonstrate that it is effective and has reasonable costs.

Keywords: IP spoofing, DDoS, filtering, security

1 INTRODUCTION

Attackers commonly forge source addresses to hinder tracing of their malicious packets. Examples include DDoS

attacks [32], smurf attacks [31], and TCP SYN flooding attacks [24]. Reliably detecting the attacker is hard

because standard routers cannot verify that a packet was indeed sent by the node specified in its source address.

Periphery filtering is widely used to validate source addresses [12]. A

periphery router ensures that a packet leaving its domain has a source address

from inside the domain, and a packet entering has one from outside; but

unless periphery filtering is deployed everywhere, nearly arbitrary forgery is

still possible. For example, in Figure 1 an attacker in network SM can send

packets into network SB with source address from network SA, even though

both A and B support periphery filtering.
Figure 1: Periphery filtering

 A M

B

SA

SB

SM

: router with periphery filtering

: router without periphery filtering

 2

A router can check a packet’s incoming interface1 with forwarding-table-based filtering [1], where a packet is

expected to arrive through the same interface that is used to send packets back to the source. Unfortunately, this

does not work when asymmetry exists. If the incoming interface for an address is different from the outgoing

interface for that address, valid packets from that address will be dropped. For instance, if routing between A and B

in Figure 1 is asymmetric, packets from network SA will be dropped by router B. According to [17], a path through

the Internet in 1995 visited at different cities in each direction 50% of the time, and different autonomous systems

30% of the time. Asymmetry in the Internet is common, not exceptional, so filtering must account for it.

One approach to the problem of IP spoofing is tracing. Since source addresses are unreliable, tracing requires

expensive and complicated techniques to observe traffic as they pass through routers and reconstruct a packet’s

travel path at the end. Tracing also becomes ineffective when the volume of attack traffic is small or the attack is

distributed. Moreover, tracing is typically performed after an attack is detected, and perhaps the victim has already

been damaged. Since tracing usually already needs to add new functionalities to routers to observe or mark traffic,

we believe the most valuable functionality to add is one that will directly prevent IP spoofing.

We propose incoming-table-based filtering to filter packets that carry forged source addresses. In this

approach, a router on the Internet builds an incoming table that specifies the correct incoming interface for a given

source address, even with asymmetric routing present. When a packet arrives on an interface, a router can consult

its incoming table to determine whether this packet comes from the proper direction.

Apart from IP spoofing prevention, source address validation has many other advantages. Attack tracing tools

can use the knowledge of address validation and routers that perform it to narrow the possible sources of an attack.

Intrusion detection and network problem diagnosis can also be simplified. Services that rely on accurate source

addresses (congestion control, fair queuing, source-based traffic control schemes) also profit. Reverse path

forwarding (RPF) can be more effective; multicasting protocols that use RPF to build reverse shortest-path

multicasting trees (such as DVMRP [8], CBT [2] and PIM [9]) can thus build true shortest-path trees.

This paper describes a protocol used to build and maintain an incoming table and the philosophy underlying the

design. We call this protocol the source address validity enforcement protocol (SAVE). It can be deployed on

routers running different routing protocols with reasonable cost. The protocol is described in Section 2. Section 3

discusses advanced issues, including compatibility with legacy routers, soft state maintenance, overhead control,

1 Incoming and outgoing interfaces of a router can be physical network interfaces identified with a link-layer address, or logical network interfaces identified
with a unique IP address.

 3

and interaction of filtering with some special cases, such as mobile IP and IP multicast. Section 4 presents

simulation results on the costs of running the protocol and demonstrations of its efficacy, and Section 5 discusses

related work. Future work is discussed in Section 6, and we conclude in Section 7.

2 THE DESIGN OF THE SAVE PROTOCOL

2.1 Overview

The goal of the SAVE protocol is to build a table at each participating router that indicates the router’s proper

incoming interface for packets from all sources. The router will use packet source addresses to index the table,

dropping packets that come in on interfaces not matching the table entries.

One might think that building an incoming table is conceptually the reverse of building a forwarding table, and

thus a minor alteration to existing routing protocols, but actually the tasks prove very different. SAVE needs a

greater knowledge of other routers’ behavior than standard routing protocols require. Figure 2 shows an example.

After route calculation, router 1 knows that there are two equal-cost paths from router 6 to itself. If router 1 only

has knowledge of its neighborhood, it cannot determine the incoming interface for packets from 6 which could be

arbitrarily far away. Router 1 needs to know how 6 breaks routing ties. Assuming 6 prefers the lower address, 1

still needs to determine which path from 6 to 1 starts with a router of lower address. In Figure 2 (a), a packet from

6 to 1 arrives via 3; and in (b), due to a difference in the upstream topology, it arrives via 2.

SAVE builds the incoming table at each router in a distributed fashion,

using information in a router’s forwarding table to signal to other routers the

proper packet paths. SAVE must determine which paths other routers have

chosen to reach all destinations. Each router sends SAVE updates to all

destinations in its forwarding table, sending a new update when routing to a

destination is changed. SAVE updates traverse the same paths as normal IP

packets traverse. Each router in the path records the incoming interface used

by the SAVE update as the legitimate interface for packets from upstream routers. Once all routers have sent such

SAVE updates to all their destinations, each router will have a complete set of legitimate sources for each incoming

interface. This information can be used to build an incoming table.

(a) (b)
Figure 2: An example topology with two

equal-cost paths

1

2 3

4 5

6

7

1

2 3

5 4

6

7

 4

Merely keeping a list of interfaces and corresponding addresses is insufficient. If routing changes alter a

source/destination path at an intermediate router, the source router might not change its next hop interface, so that

router will not generate SAVE updates for its address space. Organizing SAVE’s information in an incoming tree

solves this problem. The tree structure stores the upstream router’s address space as a descendent of the

intermediate router’s address sp ace, so a change in intermediate router’s interface automatically changes the

upstream router’s interface. For example, in Figure 2 router 7 delivers packets to router 1 through router 6, so

changing the delivery path for packets from router 6 to router 1 also changes the delivery path from router 7 to

router 1, even though router 7 has not changed its routing information. By using a tree for 1’s information, where

7’s address space is the child of 6’s address spa ce, the update that changes the interface used for router 6’s address

space will also change the interface used for 7’s address space.

Since all of the Internet’s multiple routing protocols produce a forwarding table, we avoid developing multiple

versions of SAVE by working with the common forwarding table. Topology factors like node or link failure and

routing policies are automatically handled by underlying routing protocols. SAVE extracts its update information

from each router’s forwarding table, and any changes to the forwarding table trigger new SAVE updates.

Deployment of SAVE-enabled routers will be incremental, so new routers must coexist with legacy routers. A

neighboring legacy router will not help establish the incoming table of a SAVE-enabled router, except by

forwarding control messages that can be treated as IP packets. SAVE is designed with this constraint in mind.

Ultimately, this protocol must work at Internet scale. Like routing protocols, the scaling factors are related to

IP address space size and number of routers that must run the protocol. This paper analyzes the basic scaling costs

of the SAVE protocol. A future version of the protocol will further improve SAVE’s scalability through more

address space aggregation. Similarly, since the purpose of this protocol is to defeat attacks, the protocol itself must

be secure from attacks to offer any benefit. We do not discuss security issues in detail here, but touch upon them in

the future work section.

2.2 Protocol Description

In this section we describe the SAVE protocol. We illustrate the formation and adjustment of the incoming tree and

the creation of the incoming table at a router. We also describe the generation of SAVE updates at origin routers

and their handling at intermediary routers. The structure of the protocol is outlined in Figure 3.

 5

2.2.1 Assumptions

For ease of understanding and discussion, we make the

following assumptions. Assumption (a) and (b) list only the

properties of a router required by SAVE, separating each

router from the specific routing protocols that it runs.

Assumption (c), (d) and (e) are not mandatory and their

relaxation will be discussed later. (In particular, we will

address compatibility with legacy routers in Section 3.1, reliability in Section 3.2, and security in Section 6.)

(a) Each router has a forwarding table with each entry in the form <prefix, out_if> that specifies out_if as the

outgoing interface for a particular address space prefix.

(b) Each router is associated with a source address space; packets from this space reach the outside world via this

router. (Note: this router is not necessarily the first hop to reach outside; for example, the default exit border

router of an autonomous system (AS) can regard the whole AS as its source address space. We assume that

an independent procedure exists for determining source address spaces.)

(c) Every router runs the SAVE protocol.

(d) SAVE updates between routers are reliable; they are never erroneous, lost, duplicated or out of order.

(e) SAVE updates between routers are secure.

2.2.2 Generation of SAVE Updates

SAVE updates are generated when the system is

initialized and when changes in a router’s forwarding

table occur (Figure 4). A state is assigned to each

forwarding entry: a newly added or updated forwarding

entry is set to state todo and a processed one is set to

state done. A router’s SAVE updates are generated by

iterating through its forwarding table. A SAVE update

is created for each forwarding entry <S, out_if> in the

todo state and sent out along out_if towards S inside an IP datagram. (The handling of a removed forwarding entry

will be addressed in Section 3.2.)

Procedure: SAVE update generation at router R.

1 SR : the address space associated with router R

2 [Initialization]
 reset the state of each forwarding entry e: state (e)←todo

3 Iterate through the forwarding table
4 loop: for each forwarding entry e: <S, out_if>
5 if (state(e) is todo)
6 compose SAVE update F:
 F ←<S, ASV=<SR>, a=1>
7 send F out along interface out_if
8 state(e) ← done
9 goto loop

Figure 4: SAVE update generation procedure

Figure 3: The architecture of the SAVE protocol

no
final
stop?

yes

SAVE update generator

SAVE update handling at
intermediary router

SAVE
updates

SAVE
updates

forwarding table incoming table

incoming
 tree

SAVE protocol end

 6

A SAVE update contains a destination address space S, an address space vector ASV, and a flag a. The flag a

indicates whether more information should be appended to the update along its way toward the destination (to be

discussed in Section 2.2.4). When a SAVE update is initiated, its ASV only contains one elementthe source

address space associated with the origin router.

Table 1 illustrates the SAVE update generation for the topology shown in Figure 5. This topology has six

routers A through F, each having an associated address space SA through SF, respectively. iXY denotes the interface of

X that has a direct link with router Y (X or Y=A, B, C, D, E, F). SF includes SD and SE. Table 1 shows a partial

snapshot of forwarding tables that are relevant to reaching F and the corresponding SAVE updates.

2.2.3 Incoming Tree Creation and Maintenance

The incoming tree at a router maintains the information about valid interface for every source address. It has

two aspects. (1) Each node on an incoming tree represents an address space. On router R’s incoming tree, a node

for address space A will be a child of a node for address space B if packets from A must cross B to reach R; the root

of the tree is the source address space of R. For a given node on the tree, its path to the root corresponds to a

sequence of address spaces crossed to reach R. (2) Each node on the tree maps to an incoming interface. All nodes

of a sub-tree directly under the root will be associated with the same incoming interface.

An incoming table can be easily constructed from an incoming tree. Nodes with same interface may be further

aggregated. The table’s data structure can also be desi gned to achieve the best efficiency for validating source

addresses of packets.

Each SAVE update carries an ASV: <S1, S2, …, Sn>. When this update is received at router R, its ASV indicates

that packets from address space Si (i=1, 2, …, n-1) wil l cross Si+1, Si+2, …, and Sn, and perhaps other address spaces

after Sn, to reach R.

A: * iAB <* , <SA>, 1>

 B: SF iBF <SF, <SB>, 1>

 C: SF iCB <SF, <SC>, 1>

 D: * iDF <* , <SD>, 1>

E: * iEF <* , <SE>, 1>

 F: SD iFD <SD, <SF>, 1>

 SE iFE <SE, <SF>, 1>

 * iFB <* , <SF>, 1>

Table 1: A partial snapshot of forwarding tables at routers in Figure 5 and
the corresponding SAVE updates

 SD

 SE

 SC

 SA

 SB

A B

F

D
SF

E

C

Figure 5: An example topology used in
SAVE protocol description

 7

A SAVE update alters a router’s tree (Figure 6). Its

ASV is parsed in reverse. If the last ASV element Sn

does not exist in the incoming tree, it will be grafted

directly under the root; if the current interface bound

with Sn is not F’s incoming interface, the Sn sub-tree

will be remapped to the new interface and grafted under

the root. Any other element of ASV, Si (i≠n), and its

whole sub-tree is grafted under previously processed

element Si+1. Figure 7 shows the incoming tree for

router F in Figure 5.

2.2.4 Handling of SAVE updates

Upon receipt of a SAVE update, in addition to

updating its incoming tree and incoming table, a router also decides

whether to and how to forward the update to other routers. A SAVE

update may be modified before leaving the router. Figure 8 describes

the handling of a SAVE update at a router.

SAVE update forwarding

Whether or not to forward a SAVE update is determined by checking the SAVE update’s destination address

space. If a router is the last hop to reach all machines represented by the destination address space of the SAVE

update, it does not forward the update. Otherwise, the next hop is determined from the local forwarding table.

To ensure that the forwarding of the update covers all routes that IP packets use to reach the update’s

destination address space, the forwarding table is searched for related entries. There are two types of related

forwarding entries: the subset type and the superset type. A subset-type entry’s destination field is a sub -area of

the update’s destination address space (line 7 in Figure 8); a superset-type entry’s destination field is an address

space covering the whole destination address space (line 21 in Figure 8). When forwarding an IP packet toward

anywhere in the destination address space, the subset-type forwarding entry will be used first. If the all subset-type

entries combined cannot cover the whole destination address space, the smallest superset-type forwarding entry will

also be used (assuming that forwarding of IP packets uses the longest match).

Procedure: Incoming tree update at router R

1 SR : the address space associated with router R
2 U: a newly received SAVE update
 U = <S, ASV, a>, where ASV=<S1, S2, …, Sn>
3 iface: the incoming interface that U arrives on
4 subtree(X) : a sub-tree of the incoming tree rooted at X

5 [Initialization] The tree has only the root representing SR

6 for (i ← n; i > 0; i--)
7 if (Si does not exist in the incoming tree)
8 if (i = n)
9 graft Si under the root
10 associate Si with iface
11 else
12 graft Si under Si+1

13 else
14 if (i = n)
15 if (iface ≠ the current interface associated with Si)
16 graft subtree(Si) under the root
17 change association of Si to iface
18 else
19 graft subtree(Si) directly under Si+1 (if not yet)
20 end

 Figure 6: Incoming tree update with a given SAVE update

SF

SE SB

SA

iFE iFB

SD

iFD

SC

(iFB) (iFB)

Figure 7: The incoming tree of router F in Figure 5

 8

Corresponding to IP packet forwarding

behavior, the SAVE update is forwarded as

follows. For each subset-type entry, a SAVE

update is sent toward the indicated sub-area of

the destination address space (lines 17 in

Figure 8), and its destination address space is

replaced with the sub-area address space.

Furthermore, if the combination of all the first

type entries does not cover the whole

destination address space, the smallest

superset-type forwarding entry will be

useda SAVE update is sent along the

interface specified by this entry and the

original destination address space is

unchanged (line 22 in Figure 8). Thus a router

forwards one or multiple copies of a SAVE

update.

Modification of SAVE update

A router must append its own source address space to the ASV of a SAVE update whenever the appending flag

a of the update is set to 1 (line 6 in Figure 8). The ASV thus records an ordered continuous sequence of address

spaces crossed; such order determines the relative position of these address spaces on an incoming tree.

Overhead control of SAVE updates

If a router appends its source address space to a SAVE update, it is unnecessary to initiate another update

toward the same destination. Both updates would be treated the same by downstream routers.

But it is not always necessary to append a router’s source address spac e to a SAVE update. While a router’s

incoming tree should record all the address spaces that a SAVE update has crossed, the update’s ASV is allowed to

be a partial list of them, provided: (1) the rest are contained in other updates already initiated by any routers

upstream; (2) combining all these updates will still provide the full sequence of the address space crossed. So,

Procedure: SAVE update handling at intermediary router R.
 SR : the address space associated with router R
 U : a newly received SAVE update
 U = <SD, ASV, a>, where ASV=<S1, S2, …, Sk> (k≥1)

1 if (router R is the last hop to reach all the machines in SD)
2 return
3 if (SR ⊇ (S1∪S2∪…∪Sk)) /* replaceable SAVE update */
4 return

5 if (a = 1)
6 ASV ←<ASV, SR> /* append SR; now ASV=<S1, S2, …, Sk, SR> */

7 Define set E={forwarding entry ei | ei = <SDi, out_ifi> && SDi ⊂ SD }
8 Define an empty address space S

9 for every ei in E /* inform all the sub-areas */
10 if (a = 1)
11 if (state(ei) is done)
12 ai←0
13 else
14 state (ei) ← done
15 ai←1
16 Ui ← <SDi , ASV, ai>
17 forward Ui along outgoing interface out_ifi
18 S ← S ∪ SDi
19 end loop

20 if (S ≠ SD) /* we don’t entirely cover SD with sub-areas */
21 find forwarding entry e: <SD′, out_if ′> where SD′ ⊇ SD, such that,
if there is another ei : <SDi, out_ifi> where SDi ⊇ SD, then SD′ ⊂ SDi
22 if (e is found)
 forward U along outgoing interface out_if ′

Figure 8: The handling of a SAVE update

 9

when handling a newly received SAVE update, if an intermediate router has previously initiated another SAVE

update toward the same destination, the address spaces to cross after this router are already recorded in all

downstream routers. The router therefore marks the new SAVE update to be no longer appendable by downstream

routers (by zeroing its flag a as in line 11 to 12 of Figure 8).

Overhead can be further reduced by not forwarding replaceable SAVE updates. A SAVE update is replaceable

by the router if each address space in its ASV is inside the router’s source address space. The sourc e address space

in SAVE updates initiated by this router already covers the address spaces carried by the replaceable update, thus

this update should be consumed by the router (lines 3 to 4 of Figure 8).

2.2.5 Conflicting SAVE Updates

If a router forwards multiple copies of a SAVE update (see Section 2.2.4 above), another router may receive

several of them from different directions, but it must use only one of them to update its incoming tree regarding the

common address spaces carried by these copies. In Figure 9, router R forwards two copies of the update F, one

toward r, the other toward R. The latter is further forwarded from R to r. Finally, with two copies of F, r must

decide which one to use for the area crossed prior to A.

When forwarding multiple copies of a SAVE update,

a router calculates a priority for each copy, assigning a

higher priority if the update is forwarded using a more

specific forwarding entry. Router r in Figure 9 will thus

use the higher priority update from the solid path.

3 ADVANCED ISSUES

SAVE needs to handle compatibility with legacy routers, incoming tree state maintenance, and overhead control.

Mobile IP and IP multicasting also need special handling. We discuss security issues and deployment in Section 6.

3.1 Compatibility with Legacy Routers

Compatibility with legacy routers plays an important role in designing SAVE. The incoming interface information

must still be correct when legacy routers are present. This requires that a SAVE update be forwarded correctly

even across legacy routers. Furthermore, SAVE needs to account for address spaces of legacy routers.

Figure 9: Conflicting SAVE updates at router r

d r
A

A’s Forwarding:
D 1
d 2

1

2

R’s Forwarding:
d 3

F=<D, …>
F=<D, …>

F=<d, …>

F=<d, …>

D
R

3

 10

Each SAVE update is carried inside an IP packet, where the destination address of the encapsulating IP header

must belong to the destination address space of the update. When a legacy router receives a SAVE update, it will

simply treat it as an ordinary IP packet and forward it to next hop. We are investigating the case in which multiple

copies of a SAVE update are to be forwarded.

Legacy routers also complicate the maintenance of incoming trees. Since a legacy router will not send out

triggered SAVE updates when its routing path to a destination is changed, the incoming tree at downstream routers

will not be updated promptly. Periodic resending of SAVE updates from upstream SAVE-enabled routers solves

this problem. This matches the soft-state maintenance in SAVE (Section 3.2).

Finally, if the source address space of a legacy router is not included in the source address space of a SAVE-

enabled router, it is not be reported, and thus is not known to any incoming table. Thus, a SAVE-enabled router

cannot easily distinguish legacy router source addresses from forged addresses. A SAVE-enabled router can

discard non-existent IP addresses by checking against its forwarding table or by utilizing out-of-band information.

If the IP address exists, it can switch to forwarding-table-based filtering for them. This approach will drop

legitimate packets from legacy routers if the routing is asymmetric, but will properly handle many cases. We will

further investigate the issue in our future work.

3.2 Soft State Maintenance

Each node’s incoming tree is treated as soft state, and it can expire unless reinstated with repeated SAVE updates.

Use of soft state simplifies the protocol design by automatically discarding obsolete information without the need

for specific notification. When a forwarding entry is removed, it is not necessary to explicitly repair the incoming

tree. Similarly it smoothly handles SAVE updates caused by transient routing behavior and asynchronous delivery

of SAVE updates. Soft state also solves the problem of handling routing changes when SAVE updates cross legacy

routers (see Section 3.1).

Overhead control of soft state refreshing messages is not particular to this research and has been studied

elsewhere. Scalable timers [25] and a new proposal for RSVP refreshes [30] both address this problem.

Finally, soft state handles reliability issues. It has been shown that a probabilistic delivery model with relaxed

reliability is suitable for soft-state-based communication, where judicious use of feedback from receivers greatly

improves state consistency [20].

 11

3.3 Overhead Control With Two-Level Routing Infrastructure

The SAVE protocol has three types of overhead: bandwidth cost, processing overhead, and storage. The number of

SAVE updates sent by a router is proportional to the size of its forwarding table. Controlling SAVE update

overhead was discussed in Section 2.2.4. The design there matches the two-level routing infrastructure of the

Internet. Since all packets from an AS to the outside must cross a border router, and the whole AS space is the

source address space of the border router, those SAVE updates from within an AS are all replaceable and will not

leak to the outside through this border router. In the other direction, the SAVE updates from outside an AS need to

be distributed into the AS. We are investigating the aggregation of these updates.

3.4 Special Case Handling

3.4.1 Mobile IP

Mobile IP often relies on maintaining the home address of a given mobile host regardless of its location [18].

A packet from a mobile host will always carry its home IP address. With source address filtering enforced,

however, such packets would be rejected whenever the mobile host is outside of its home network, since generally

they use different path to the destination from the remainder of that home network.

Reverse tunneling for Mobile IPv4 has been proposed [16], by which a packet from a mobile host in a foreign

network will be tunneled back to its home agent first, which then forwards the packet to the destination. In IPv6, a

packet from a mobile host in a foreign network will be stamped with a care-of address, an address belonging to the

foreign network. Both approaches resolve the potential conflicts between address filtering and mobile IP.

3.4.2 IP Multicast routing

IP multicast can benefit from the SAVE protocol. Multicast routing protocols such as DVMRP [8], PIM [9], or

CBT [2] use a reverse-path-forwarding technique to build a reverse shortest-path tree. When building a

multicasting tree, a SAVE-enabled router can take advantage of having an incoming table. It can determine the

previous hop of the truly shortest path from the root to itself, not the reverse shortest path using RPF.

Upon receipt of a multicast packet, a router can be in one of the two phases regarding the packet: the packet is

being sent towards the root where it will be further propagated towards the whole multicast group, or the packet is

being propagated from the root. In the former situation, the router should validate whether the multicast packet is

from the sender. In the latter situation, the source address of the root should be validated, the same way as it does

 12

for unicast packets. In DVMRP, the root is the sender; in CBT, the root is the core router of the multicast group; in

PIM, it is the rendezvous point of a multicast group when a shared tree is used, and the sender otherwise.

4 SIMULATION

4.1 Simulation Goals

The SAVE protocol has been implemented and tested in a simulation environment. We have performed extensive

simulation runs to obtain the following information: (1) whether all bad packets (i.e. packets with forged source

addresses) can be successfully detected and dropped; (2) whether good packets (i.e. packets with authentic source

addresses) are dropped erroneously; and (3) the cost of the SAVE protocol.

4.2 Simulation Design

In our simulation we assume that all routers run the incoming-table-based filtering. Corresponding to the two-level

routing infrastructure of the Internet, we simulated BGP [21] for inter-domain routing and RIP [15] for intra-

domain routing. Our BGP simulation implements the following policy as recommended by Cisco [14]:

• Each router in a transit domain runs BGP. A border router in a stub domain runs both BGP and RIP.

• Stub domains are non-transit domains, whether single-homed or multi-homed.

• In each stub domain, there is one preferred exit BGP router for outgoing traffic. All outgoing traffic will use this

router even if alternative routes have lower link cost to some destinations.

• In a transit domain, the router prefers the routes with the shortest AS path attribute for each destination.

We used the transit-stub model from GT-ITM software to generate domain-level connectivity and intra-domain

connectivity [6]. We also used the AT&T Worldnet IP backbone topology for a transit domain in some scenarios

[11]. Data traffic in our simulation is UDP and generated according to Poisson traffic models.

4.3 SIMULATION RESULTS AND ANALYSIS

4.3.1 Effectiveness Verification

To verify the effectiveness of the SAVE protocol, we set up a traffic model for data packet senders. Each

sender sends out both good packets and bad packets controlled by two independent Poisson processes with different

rates. If the incoming-table-based filtering is effective, we expect that the distribution pattern of filtered packets

over time will match the traffic model of sending bad packets. Since the asymmetric case is common in Internet-

 13

scale routing, we also include some asymmetric routes in our simulations. Asymmetric

routes could be introduced by link failure, or already exist in the initial topologies as in

Figure 10.

The following two experiments illustrates the behavior of SAVE:

Experiment1: We evaluated the behavior of incoming-

based-filtering for the topology shown in Figure 10. All

packets are sent from node 6 to 5, with bad packets

spoofing a source address in router 1’s address space.

There is an asymmetric route between node 5 and 6. When

the link between 1 and 4 fails, node 0 discovers the

alternate path to 5 via 2. Thus an asymmetric route is

changed to a symmetric one. On recovery, routing

becomes asymmetric again.

The result is shown in Figure 11. Incoming-table-based filtering detects and drops all bad packets. Good

packets that arrive on asymmetric links are not dropped while the routing is stable. When a link has failed or

recovered, transient changes in routing tables result in inconsistency of incoming tables. Some good packets are

dropped during that period (67 to 72 seconds).

Experiment 2: In this experiment we evaluate the

behavior of the filtering mechanism for the topology shown

in Figure 12 without link failures. The topology consists of

one transit domain and 12 stub domains. All packets are

sent from nodes 62, 66 and 70 to node 72, where bad

packets spoof source addresses from the address space of

router 1. An asymmetric route is formed between node 70

and 72 since 56 is the default exit router for domain 12.

The result is shown in Figure 13. It demonstrates that

incoming-table-based filtering detects and drops all bad

packets, even though they are generated from multiple sources. No good packets are dropped.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

time (sec)

pa
ck

et
 s

eq
ue

nc
e

nu
m

be
r

link failure link recovery

Vertical bars below the graph mark bad packets that are detected
and dropped; vertical bars above the graph mark good packets that
are incorrectly dropped.

Figure 11: Filtering behavior in Experiment1

A topology generated using transit-stub model, except domain 0 in
the middle borrows from the AT&T Worldnet IP backbone
topology

BGP/RIP router RIP router a domain

 1

 0

 2

17

18

69

27

11
21

 4

 6

15

19

 3

 5
 9

12

35

16

 7

24

23

22

 8

20

10

26

14

13

64

65

32 34 33 36

38

39

37

71

56 57

59 60

58 61

66

72

63

52 55

53 54

62

51 48 50

49

70

45 46 47 44

40 43

42
41

67 25
29

28 30

31

68

0

4

1

3

6 7
12

5 8

9

11

2
10

Figure 12: Topology in Experiment2

 0

 1

 4

 2

 3

 5

 6

Figure 10: Topology in
Experiment 1

 14

Bad packets from router 62

0

20

40

60

80

100

0 100 200
packet sequence number

tim
e

(s
ec

)

Bad packets from router 66

0

20

40

60

80

100

0 100 200
packet sequence number

tim
e

(s
ec

)

Bad packets from router 70

0

20

40

60

80

100

0 100 200
packet sequence number

tim
e

(s
ec

)

Dropped spam packets

0

20

40

60

80

100

0 100 200
packet sequence number

tim
e

(s
ec

)
Figure 13: Filtering behavior in Experiment2

Every packet has a global unique sequence number. (Here, good
packets are not shown.)

4.3.2 The Cost of the SAVE Protocol

SAVE updates are analogous to routing updates in that the

former are used for building incoming tables and the latter for

forwarding tables. In this section, we measure the bandwidth and

storage cost of the SAVE protocol and compare them to routing

protocol costs. For a fair comparison, we compare RIP with

SAVE using the same broadcast interval, and we compare BGP

with SAVE using infinite refreshing time. Theoretical analysis of

these relative costs is given in Appendix A and B.

We have measured the following costs of both SAVE and

routing protocols (RIP and BGP): (1) bandwidththe total

overhead exchanged by protocol messages in the whole network.

The overhead of each message is counted every time it crosses a

link; and (2) storagethe average cost per node for the incoming

table and tree in SAVE and the routing table in routing protocols.

The total bandwidth cost of the protocol has two parts: (1) static overhead for initial setup; and (2) dynamic

overhead for updating the incoming table and tree in SAVE and the routing table in routing protocols.

Figure 14 shows the static bandwidth cost in single-domain topologies for SAVE and RIP. Figure 15 shows the

static bandwidth cost for multiple-domain topologies, where we measured the inter-domain bandwidth cost of

SAVE and compared it with that of BGP. Ten different topologies were tested for each topology size.

Both graphs show that the cost of the SAVE protocol is a power function of the number of nodes, proportional

to Num_Nodesk

 where 2<k<3. Bandwidth cost within a single domain is comparable to the RIP cost, while the cost

of running the SAVE protocol in multiple-domain networks is approximately three times greater than BGP cost.

To measure dynamic overhead, we introduced link failures in the same topologies used to measure the static

cost. We observed that the incurred bandwidth cost by SAVE varies depending on the topology and location of

failed links. In some scenarios SAVE has lower cost than BGP, while in others it is at most three times larger.

Figure 16 and Figure 17 show the size of the incoming table and tree for single-domain and multiple-domain

topologies, respectively. Figure 16 shows the cost of SAVE incurred for storing intra-domain information. Figure

 15

17 shows only the cost incurred for storing domain-level information. These costs are compared with the size of

the routing tables of RIP and BGP. The storage cost of SAVE for single-domain topologies is at most three times

larger than RIP’s. The storage cost of SAVE for multiple -domain topologies is significantly lower than BGP’s.

5 RELATED WORK

Research on network security has focused on end-to-end approaches, typically through authentication and

encryption (IPsec is one representative at the IP layer [13]). To guarantee a packet’s authenticity, it can be signed

or encrypted. The high computation overhead of cryptographic operations prevents such approaches from being

widely employed per packet. These operations also require key establishment for every pair of communicating

nodes on the Internet. Finally, this approach still cannot prevent a site from being flooded by DDoS-style attacks.

IP spoofing has been addressed in other research through both preventive approaches and reactive approaches.

Filtering is a preventive approach. Tracing is mostly reactive.

Filtering as a general approach has been proposed in [1], where many fields, including but not limited to source

address, can be used for filtering. Martian address filtering is required to discard packets if their source addresses

are special addresses (loopback address, broadcast address, etc.) or are not unicast addresses. For validation of

y = 8x
RIP

y = 21.003x - 20.746
SAVE

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120

number of nodes

st
or

ag
e

co
st

 (
by

te
s)

Figure 16: Storage cost for single-domain topologies

y = 0.0123x + 113.19
SAVE

y = 47.212x - 641.59
BGP

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120

number of nodes

st
or

ag
e

co
st

 (
by

te
s)

Figure 17: Storage cost for multiple-domain topologies

y = 229.83x2.0862

RIP

y = 137.94x2.2367

SAVE

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

0 20 40 60 80 100 120

Number of nodes

S
ta

tic
 b

an
dw

id
th

 c
os

t (
by

te
s)

Figure 14: Static bandwidth cost comparison between SAVE and RIP

y = 20.968x2.5039

SAVE

y = 14.459x2.343

BGP

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

1.80E+06

2.00E+06

0 20 40 60 80 100

Number of nodes

S
ta

tic
 b

an
dw

id
th

 c
os

t (
by

te
s)

Figure 15: Static bandwidth cost comparison between SAVE and BGP

 16

source address in general, the forwarding table is used to validate the incoming interface of packets. This feature is

often disabled by default, because it leads to erroneous packet dropping when asymmetric paths are used.

A popular filtering approach is periphery filtering that can be deployed on a firewall as well as an edge router

[12]. But unless it is deployed everywhere, an attacker can still easily forge source addresses, as shown in Figure 1.

Packet tracing has been widely studied. The various approaches have their own strengths and weaknesses. In

Bellovin’s approach, each router samples packets with low probability and sends the sampled router adjacency

information to the destination via ICMP traceback messages, allowing the destination to reconstruct the path [3].

Probabilistic packet marking encodes the path information in the ID field of an IP header [23]. This approach is

incompatible with IPsec, which disallows modification of the ID field. Logging and link testing can also be used

for tracing [5][26]. As pointed out in the introduction section, tracing is either expensive or ineffective. On the

other hand, our filtering approach and tracing techniques are complementary. Source address filtering eases

tracing, while tracing is also necessary when only partial deployment of filtering is possible.

Network intrusion detection has also studied how to localize an attacker. For instance, DECIDUOUS

dynamically builds IPsec security associations to reveal the location of attacking sources [7]. However, to do this a

victim running DECIDUOUS must detect the intrusion first; network topology information is also required.

6 FUTURE WORK

Open issues for the SAVE protocol include its security, aggregating SAVE updates, incremental deployment of

new filtering-based routers, and incorporating this filtering mechanism with other networking techniques.

 The SAVE protocol itself must be secured or attackers will merely compromise it first before taking other

steps to perform their attacks. In particular, the process of building the incoming tree at each router must be

protected. SAVE updates must be protected while crossing a chain of routers. End-to-end encryption provides

secrecy and integrity of SAVE updates, but it inhibits intermediary routers from accessing, modifying, and using

transient SAVE updates. An alternative is to use a series of signaturesdigitally signing a SAVE update and re-

signing its subsequent versionsto allow a destination router to verify a SAVE update’s authenticity, as has been

suggested by active network researchers for their own purposes [29]. Any authentication-based approach must

address the fact that there is no ubiquitous authentication mechanism for the whole Internet. Since a SAVE update

may traverse different autonomous domains, something must be done to provide inter-domain authentication.

 17

Overhead control deserves further study. The aggregation of SAVE updates arriving at a router is one potential

solution. The address space vector in a SAVE update, for instance, may be further aggregated. The storage of the

incoming tree and incoming table can also be saved with address space aggregation.

Incremental deployment of SAVE is another open issue. One interesting problem is how to assess the benefit

with partial deployment. For instance, in contrast to random deployment, if all backbone routers employ filtering,

the efficacy appears more promising.

A new network protocol will be more successful if it can be smoothly incorporated with other networking

techniques. We have shown SAVE’s compatibility with mobile IP and IP multicasting, but there are still other

arenas to consider. For instance, IP tunneling complicates source address validation in two ways. First, the true

source address of a packet is buried inside a wrapping IP header that contains the source address of the ingress of a

tunnel. Source address filtering could verify that the IP address of the ingress is legitimate, but could not generally

determine if the true internal source address was legitimate. Second, legitimate packets that emerge from a tunnel

may be dropped due to deviation from a normal path caused by tunneling. IP source routing is similar to IP

tunneling in that a packet may also reach its destination via a different path than normal [10] [19]. SAVE also

seeks to work with new developments in packet routing research, such as the per-hop behavior in differentiated

services [4], multipath routing [27], and multi-protocol label switching (MPLS) [22].

7 CONCLUSION

Network attacks pose an increasing danger to the Internet community. The source addresses of malicious packets

are often forged to hinder discovery of the attacker. Existing methods of overcoming this problem (periphery

filtering, filtering based on forwarding tables, or various tracing techniques that discover the physical path of

malicious packets) all have limitations in their cost or effectiveness. In this paper we present a practical and

effective approach to detect improperly addressed packets.

We developed the SAVE protocol to enable routers to check source address validity. This protocol handles

cases of asymmetric routing correctly. We demonstrated through simulation that the incoming table built by the

protocol properly detects forged IP addresses, except during transient periods following routing changes. The

incoming table produced by the SAVE protocol can be used for purposes other than filtering. Valid incoming

 18

interface information is also beneficial for many techniques (such as RPF) that currently assume symmetric routing

and forward packets on non-optimal routes.

The SAVE protocol' s operation is independent of the underlying routing protocol. Simulation results show that

the bandwidth cost of the SAVE protocol is comparable with that of routing protocols, and its storage cost is quite

small . Known optimizations could reduce this overhead in the future.

We have addressed many difficult issues for this kind of protocol, such as handling mobile IP, reliability, and

some aspects of aggregation and scaling. Other hard issues will be addressed in future work, including partial

deployment, security of the protocol, and more aggressive aggregation to provide better scaling properties.

REFERENCES

[1] F. Baker. “Requirements for IP Version 4 Routers,” RFC 1812, June 1995.
[2] A Ballardie, P. Francis, and J. Crowcroft. “Core Based Trees (CBT): An Architecture for Scalable Inter-Domain

Multicast Routing,” Proceedings of ACM SIGCOMM 1993.
[3] S. M. Bellovin. “ ICMP Traceback Messages,” Internet Draft: draft-bellovin-itrace-00.txt, March, 2000.
[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. “An Architecture for Differentiated Services,”

RFC 2475, December 1998.
[5] H. Burch and W. Cheswick. “Tracing Anonymous Packets to Their Approximate Source,” Proceedings of 2000

Systems Administration Conference, December 2000.
[6] K. L. Calvert, M. B. Doar, and E. W. Zegura. “Modeling Internet Topology.” IEEE Communications Magazine 35, 6

June 1997. 160-163.
[7] H. Y. Chang, R. Narayan, S. F. Wu, B. M. Vetter, X. Wang, M. Brown, J. J. Yuill , C. Sargor, F. Jou, and F.

Gong. “ DECIDUOUS: decentralized source identification for network-based intrusions,” Proceedings of the Sixth
IFIP/IEEE International Symposium on Integrated Network Management, May 1999.

[8] S. E. Deering and D. R. Cheriton. “Multicast Routing in Datagram Internetworks and Extended LANs,” ACM
Transactions On Computer Systems, Vol. 8, No. 2, May 1990.

[9] S. E. Deering, D. L. Estrin, D. Farinacci, V. Jacobson, C. –G. Liu, and L. Wei. “The PIM Architecture for Wide-Area
Multicast Routing,” IEEE/ACM Transactions on Networking, Vol. 4 No. 2. April 1996.

[10] S. Deering and R. Hinden. “ Internet Protocol, Version 6 (IPv6) Specification,” RFC 1883, December 1995.
[11] N. G. Duff ield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan and J. E. van der Merive. “A flexible model

for resource management in virtual private networks,” Proceedings of SIGCOMM’ 99, pp. 95-108, September 1999.
[12] P. Ferguson and D. Senie. “Network Ingress Filtering: Defeating Denial of Service Attacks Which Employ IP Source

Address Spoofing,” RFC 2827, May 2000.
[13] S. Kent and R. Atkinson. “Security architecture for the Internet protocol,” RFC 2401, November 1998.
[14] Bassam Halabi. Internet Routing Architectures, Cisco Press, 1997.
[15] G. Mlakin. “RIP Version 2,” RFC 2453, November 1998.
[16] G. Montenegro. “Reverse Tunneling for Mobile IP,” RFC 2344, May 1998.
[17] V. Paxson. “End-to-End Routing Behavior in the Internet.” Proceedings of ACM Sigcomm, 1996.
[18] C. Perkins. “ IP Mobilit y Support,” RFC 2002, October 1996.
[19] J. Postel. “ Internet Protocol,” RFC 791, September 1981.
[20] S. Raman and S. McCanne. “A Model, Analysis, and Protocol Framework for Soft State-based Communication,”

Proceedings of ACM Sigcomm, 1999.
[21] Y. Rekhter and T. Li. “A Border Gateway Protocol 4 (BGP-4),” RFC 1771, July 1994.
[22] E. C. Rosen, A. Viswanathan, and R. Callon. “Multiprotocol Label Switching Architecture,” Internet Draft: draft-ietf-

mpls-arch-07.txt, July 2000.
[23] S. Savage, D. Wetherall , A. Karlin, and T. Anderson. “Practical Network Support for IP Traceback,” Proceedings of

ACM SIGCOMM 2000, August, 1988.
[24] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and D. Zamboni. “Analysis of a denial of

service attack on TCP,” Proceedings of IEEE Symposium on Security and Privacy, 1997.
[25] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson. “Scalable timers for soft state protocols,” Proc. IEEE Infocom 1997.
[26] R. Stone. “CenterTrack: An IP Overlay Network for Tracking DoS Floods,” 9th USENIX Security Symposium, August 2000.

 19

[27] D. Thaler and C. Hopps. “Multipath Issues in Unicast and Multicast Next -Hop Selection,” RFC 2991, November 2000.
[28] P. Traina. “BGP -4 Protocol Analysis,” RFC 1774, March 1995 .
[29] V. Varadharajan, R. Shankaran, and M. Hitchens, “Active networks and security,” Proceedings 22nd National

Information Systems Security Conference, Vol.1, Arlington, VA, October 1999.
[30] L. Wang, A. Terzis, and L. Zhang. “A New Proposal for RSVP Refreshes,” Proceedings of the 7th International

Conference on Network Protocols (ICNP' 99), October 1999.
[31] Computer Emergency Response Team. “CERT Advisory CA -1998-01 Smurf IP Denial-of-Service Attacks,”

http://www.cert.org/advisories/CA-1998-01.html, January 2000.
[32] Computer Emergency Response Team. “CERT Advisory CA -2000-01 Denial-of-Service Developments,”

http://www.cert.org/advisories/CA-2000-01.html, January 2000.

APPENDIX A: COST COMPARISON BETWEEN SAVE AND RIP

Consider a network of N routers where every router has k neighbors. Let ESRIP be the entry size of a routing table.

Every RIP router periodically broadcasts updates to all k neighbors. The size of every update is proportional to N.

Total bandwidth cost per broadcast per router is
RIP

RIP
Broadcast ESNkBWC **= . We assume that for every topology

change there is a probability pe that it will affect a given entry in a routing table. The change of this routing entry

triggers updates to all k neighbors. Total bandwidth consumed by all triggered updates per topology change is

RIPe
RIP

Trigger ESNkpBWC ***= . The storage cost per router is
RIP

RIP ESNSC *= .

In SAVE, each router generates a SAVE update for every forwarding table entry and sends it towards the

destination. Let UA denote the size of address space information within a SAVE update, and d be the mean

diameter of the network. Every SAVE update is forwarded d hops on the average, and every router on the path

appends its address space to the update. Total bandwidth consumed per router is .
2

*)3(** NddU
BWC ASAVE

Broadcast

+= We

assume that every routing table change affects the corresponding entry in the forwarding table and triggers SAVE

updates. The total incurred bandwidth per router is thus
2

*)3(*** NddUp
BWC AeSAVE

Trigger

+= . Let ESSAVE and ESTREE

denote the size of an entry in an incoming table and tree. The storage cost per router is).(* TREESAVE
SAVE ESESNSC +=

The ratio of bandwidth cost of the SAVE protocol vs. bandwidth cost of RIP for both broadcast and triggered

updates is)(
**2

)3(2

k

d
O

ESk

Udd
RBWC

RIP

A =+= . The storage cost ratio of SAVE vs. RIP is
RIP

TREESAVE

ES

ESES
RSC

)(+= .

APPENDIX B: COST COMPARISON BETWEEN SAVE AND BGP

Let A denote the total number of ASs on the Internet, M the mean AS distance (in terms of the number of ASs), and

NW the total number of networks. We assume that the networks are uniformly distributed among the ASs, and every

BGP router peers with k other BGP routers.

 20

For BGP cost evaluation, we use the discussion in [28]. After the initial BGP connection setup, the peers

exchange a complete set of routing information, and each BGP update groups NW/A NLRI entries for every AS.

Each BGP router sends routing information about all NW networks. Denote ESNLRI the size of a NLRI entry in a BGP

routing table, and ESAS the size of the AS-PATH attribute. The average size of a BGP update is thus

ASNLRIW
BGP ESMESANBWC **)/(+= . The complete routing information consists of A such updates. The total bandwidth

used during the setup phase per router is)***(* ASNLRIW
BGP
Setup ESAMESNkBWC += . We assume that for every topology

change there is a probability pe that it will affect a given entry in a routing table. The average bandwidth cost per

topology change for each router is)*(*** ASNLRIWe
BGP
Change ESMESkNpBWC += . The storage cost for each BGP router is

)*(** ASNLRIW
BGP ESMESNkSC += .

We compare the bandwidth cost of inter-domain SAVE updates with the cost of BGP updates. Let D denote

the mean inter-domain distance in terms of the number of hops. At initialization, every border router sends a SAVE

update to each destination network in its forwarding table. Let UA denote the size of address space information in a

SAVE update. Every update, on the average, travels D hops before it reaches the destination network2, and every

router on the path appends its address space information to the update. The total bandwidth used by a router for the

initial setup is therefore
2

)3(*** += DDUN
BWC AWSAVE

Setup
. If every routing change leads to a change in the forwarding

table, the bandwidth of trigged SAVE updates per topology change is
2

*)3(*** AWeSAVE
Change

UDDNp
BWC

+= . Since a

SAVE router stores the incoming table and tree at the AS level, the storage cost of SAVE is)(* TREESAVE
SAVE ESESASC += .

The bandwidth cost during setup of SAVE relative to BGP is
).

)*(*

*
(

)***(**2

)3(*** 2

AMNk

DN
O

ESAMESNk

DDUN
RCBW

W

W

ASNLRIW

AW
Setup +

=
+

+= The

bandwidth cost in the change phase of SAVE relative to BGP is
)

*
(

)*(**

*)3(** 2

Mk

D
O

ESMESkN

UDDN
RCBW

ASNLRIW

AW
Change =

+
+= . The

storage cost of SAVE relative to BGP is
)

**
(

)*(**

)(*

MNk

A
O

ESMESNk

ESESA
RSC

WASNLRIW

TREESAVE =
+

+= .

2 Note that once the update reaches the destination network it still needs to be distributed to all interior routers. This incurs some bandwidth cost. Let n be the
number of interior routers and d the average distance from them to the border router, then there will be additional UA*n*d*(d+3)/2 bandwidth consumed for
each SAVE update that reaches the border router. Since we are calculating pure inter-domain cost of SAVE, we do not include this additional cost here.

