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ABSTRACT 

Many network attacks forge the source address in their IP packets to block traceback.  Recently, research activity 

has focused on packet-tracing mechanisms to counter this deception.  Unfortunately, these mechanisms are either 

too expensive or ineffective against distributed attacks where traffic comes from multiple directions, and the 

volume in each direction is small. 

We believe that the fundamental solution to the problem of source address forging is to validate source 

addresses throughout the network.  We have developed a source address filtering protocol that establishes and 

maintains valid incoming interface information on source addresses at each router, thus allowing all packets 

carrying improper source addresses to be immediately identified. Our protocol works correctly in the presence of 

asymmetric routing. We will describe the protocol that gathers the information to validate source addresses and use 

simulation to demonstrate that it is effective and has reasonable costs. 

Keywords: IP spoofing, DDoS, filtering, security 

1 INTRODUCTION 

Attackers commonly forge source addresses to hinder tracing of their malicious packets.  Examples include DDoS 

attacks [32], smurf attacks [31], and TCP SYN flooding attacks [24].   Reliably detecting the attacker is hard 

because standard routers cannot verify that a packet was indeed sent by the node specified in its source address. 

Periphery filtering is widely used to validate source addresses [12].  A 

periphery router ensures that a packet leaving its domain has a source address 

from inside the domain, and a packet entering has one from outside; but 

unless periphery filtering is deployed everywhere, nearly arbitrary forgery is 

still possible.  For example, in Figure 1 an attacker in network SM can send 

packets into network SB with source address from network SA, even though 

both A and B support periphery filtering.   
Figure 1: Periphery filtering 
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A router can check a packet’s incoming interface1 with forwarding-table-based filtering [1], where a packet is 

expected to arrive through the same interface that is used to send packets back to the source.  Unfortunately, this 

does not work when asymmetry exists.  If the incoming interface for an address is different from the outgoing 

interface for that address, valid packets from that address will be dropped.  For instance, if routing between A and B 

in Figure 1 is asymmetric, packets from network SA will be dropped by router B.  According to [17], a path through 

the Internet in 1995 visited at different cities in each direction 50% of the time, and different autonomous systems 

30% of the time.  Asymmetry in the Internet is common, not exceptional, so filtering must account for it. 

One approach to the problem of IP spoofing is tracing.  Since source addresses are unreliable, tracing requires 

expensive and complicated techniques to observe traffic as they pass through routers and reconstruct a packet’s 

travel path at the end.   Tracing also becomes ineffective when the volume of attack traffic is small or the attack is 

distributed.  Moreover, tracing is typically performed after an attack is detected, and perhaps the victim has already 

been damaged.  Since tracing usually already needs to add new functionalities to routers to observe or mark traffic, 

we believe the most valuable functionality to add is one that will directly prevent IP spoofing.   

We propose incoming-table-based filtering to filter packets that carry forged source addresses.  In this 

approach, a router on the Internet builds an incoming table that specifies the correct incoming interface for a given 

source address, even with asymmetric routing present.  When a packet arrives on an interface, a router can consult 

its incoming table to determine whether this packet comes from the proper direction.     

Apart from IP spoofing prevention, source address validation has many other advantages.  Attack tracing tools 

can use the knowledge of address validation and routers that perform it to narrow the possible sources of an attack.  

Intrusion detection and network problem diagnosis can also be simplified.  Services that rely on accurate source 

addresses (congestion control, fair queuing, source-based traffic control schemes) also profit.  Reverse path 

forwarding (RPF) can be more effective; multicasting protocols that use RPF to build reverse shortest-path 

multicasting trees (such as DVMRP [8], CBT [2] and PIM [9]) can thus build true shortest-path trees. 

This paper describes a protocol used to build and maintain an incoming table and the philosophy underlying the 

design.  We call this protocol the source address validity enforcement protocol (SAVE).  It can be deployed on 

routers running different routing protocols with reasonable cost.  The protocol is described in Section 2.  Section 3 

discusses advanced issues, including compatibility with legacy routers, soft state maintenance, overhead control, 

                                                           
1 Incoming and outgoing interfaces of a router can be physical network interfaces identified with a link-layer address, or logical network interfaces identified 
with a unique IP address. 
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and interaction of filtering with some special cases, such as mobile IP and IP multicast.  Section 4 presents 

simulation results on the costs of running the protocol and demonstrations of its efficacy, and Section 5 discusses 

related work.  Future work is discussed in Section 6, and we conclude in Section 7. 

2 THE DESIGN OF THE SAVE PROTOCOL 

2.1 Overview 

The goal of the SAVE protocol is to build a table at each participating router that indicates the router’s proper 

incoming interface for packets from all sources.  The router will use packet source addresses to index the table, 

dropping packets that come in on interfaces not matching the table entries. 

One might think that building an incoming table is conceptually the reverse of building a forwarding table, and 

thus a minor alteration to existing routing protocols, but actually the tasks prove very different.  SAVE needs a 

greater knowledge of other routers’ behavior than standard routing protocols require.  Figure 2 shows an example.  

After route calculation, router 1 knows that there are two equal-cost paths from router 6 to itself.  If router 1 only 

has knowledge of its neighborhood, it cannot determine the incoming interface for packets from 6 which could be 

arbitrarily far away.  Router 1 needs to know how 6 breaks routing ties.  Assuming 6 prefers the lower address, 1 

still needs to determine which path from 6 to 1 starts with a router of lower address.  In Figure 2 (a), a packet from 

6 to 1 arrives via 3; and in (b), due to a difference in the upstream topology, it arrives via 2. 

SAVE builds the incoming table at each router in a distributed fashion, 

using information in a router’s forwarding table to signal to other routers the 

proper packet paths.  SAVE must determine which paths other routers have 

chosen to reach all destinations. Each router sends SAVE updates to all 

destinations in its forwarding table, sending a new update when routing to a 

destination is changed.  SAVE updates traverse the same paths as normal IP 

packets traverse.  Each router in the path records the incoming interface used 

by the SAVE update as the legitimate interface for packets from upstream routers.  Once all routers have sent such 

SAVE updates to all their destinations, each router will have a complete set of legitimate sources for each incoming 

interface.  This information can be used to build an incoming table. 

(a) (b) 
Figure 2: An example topology with two 
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Merely keeping a list of interfaces and corresponding addresses is insufficient.  If routing changes alter a 

source/destination path at an intermediate router, the source router might not change its next hop interface, so that 

router will not generate SAVE updates for its address space.  Organizing SAVE’s information in an incoming tree 

solves this problem.  The tree structure stores the upstream router’s address space as a descendent of the 

intermediate router’s address sp ace, so a change in intermediate router’s interface automatically changes the 

upstream router’s interface.  For example, in Figure 2 router 7 delivers packets to router 1 through router 6, so 

changing the delivery path for packets from router 6 to router 1 also changes the delivery path from router 7 to 

router 1, even though router 7 has not changed its routing information.  By using a tree for 1’s information, where 

7’s address space is the child of 6’s address spa ce, the update that changes the interface used for router 6’s address 

space will also change the interface used for 7’s address space.  

Since all of the Internet’s multiple routing protocols produce a forwarding table, we avoid developing multiple 

versions of SAVE by working with the common forwarding table.  Topology factors like node or link failure and 

routing policies are automatically handled by underlying routing protocols.  SAVE extracts its update information 

from each router’s forwarding table, and any changes to the forwarding table trigger new SAVE updates.  

Deployment of SAVE-enabled routers will be incremental,  so new routers must coexist with legacy routers.  A 

neighboring legacy router will not help establish the incoming table of a SAVE-enabled router, except by 

forwarding control messages that can be treated as IP packets.  SAVE is designed with this constraint in mind. 

Ultimately, this protocol must work at Internet scale.  Like routing protocols, the scaling factors are related to 

IP address space size and number of routers that must run the protocol.  This paper analyzes the basic scaling costs 

of the SAVE protocol. A future version of the protocol will further improve SAVE’s scalability through more 

address space aggregation.  Similarly, since the purpose of this protocol is to defeat attacks, the protocol itself must 

be secure from attacks to offer any benefit.  We do not discuss security issues in detail here, but touch upon them in 

the future work section. 

2.2 Protocol Description 

In this section we describe the SAVE protocol.  We illustrate the formation and adjustment of the incoming tree and 

the creation of the incoming table at a router.  We also describe the generation of SAVE updates at origin routers 

and their handling at intermediary routers.  The structure of the protocol is outlined in Figure 3. 
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2.2.1 Assumptions 

For ease of understanding and discussion, we make the 

following assumptions.  Assumption (a) and (b) list only the 

properties of a router required by SAVE, separating each 

router from the specific routing protocols that it runs.  

Assumption (c), (d) and (e) are not mandatory and their 

relaxation will be discussed later.  (In particular, we will 

address compatibility with legacy routers in Section 3.1, reliability in Section 3.2, and security in Section 6.)   

(a) Each router has a forwarding table with each entry in the form <prefix, out_if> that specifies out_if as the 

outgoing interface for a particular address space prefix.   

(b) Each router is associated with a source address space; packets from this space reach the outside world via this 

router.  (Note: this router is not necessarily the first hop to reach outside; for example, the default exit border 

router of an autonomous system (AS) can regard the whole AS as its source address space.  We assume that 

an independent procedure exists for determining source address spaces.) 

(c) Every router runs the SAVE protocol. 

(d) SAVE updates between routers are reliable; they are never erroneous, lost, duplicated or out of order. 

(e) SAVE updates between routers are secure. 

2.2.2 Generation of SAVE Updates 

SAVE updates are generated when the system is 

initialized and when changes in a router’s forwarding 

table occur (Figure 4).  A state is assigned to each 

forwarding entry: a newly added or updated forwarding 

entry is set to state todo and a processed one is set to 

state done.  A router’s SAVE updates are generated by 

iterating through its forwarding table.  A SAVE update 

is created for each forwarding entry <S, out_if> in the 

todo state and sent out along out_if towards S inside an IP datagram.  (The handling of a removed forwarding entry 

will be addressed in Section 3.2.)   

Procedure: SAVE update generation at router R. 
 
1 SR :   the address space associated with router R 
 
2 [Initialization] 
 reset the state of each forwarding entry e: state (e)←todo 
 
3  Iterate through the forwarding table 
4  loop: for each forwarding entry e: <S, out_if> 
5      if (state(e) is todo)   
6       compose SAVE update F: 
        F ←<S, ASV=<SR>, a=1> 
7       send F out along interface out_if 
8       state(e) ← done 
9  goto loop 

 
Figure 4: SAVE update generation procedure 

Figure 3:  The architecture of the SAVE protocol 
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A SAVE update contains a destination address space S, an address space vector ASV, and a flag a.  The flag a 

indicates whether more information should be appended to the update along its way toward the destination (to be 

discussed in Section 2.2.4).  When a SAVE update is initiated, its ASV only contains one elementthe source 

address space associated with the origin router.  

Table 1 illustrates the SAVE update generation for the topology shown in Figure 5.  This topology has six 

routers A through F, each having an associated address space SA through SF, respectively. iXY denotes the interface of 

X that has a direct link with router Y (X or Y=A, B, C, D, E, F).  SF includes SD  and SE.  Table 1 shows a partial 

snapshot of forwarding tables that are relevant to reaching F and the corresponding SAVE updates. 

2.2.3 Incoming Tree Creation and Maintenance 

The incoming tree at a router maintains the information about valid interface for every source address.  It has 

two aspects.  (1) Each node on an incoming tree represents an address space.  On router R’s incoming tree, a node 

for address space A will be a child of a node for address space B if packets from A must cross B to reach R; the root 

of the tree is the source address space of R.  For a given node on the tree, its path to the root corresponds to a 

sequence of address spaces crossed to reach R.  (2) Each node on the tree maps to an incoming interface.  All nodes 

of a sub-tree directly under the root will be associated with the same incoming interface.   

An incoming table can be easily constructed from an incoming tree.  Nodes with same interface may be further 

aggregated.  The table’s data structure can also be desi gned to achieve the best efficiency for validating source 

addresses of packets.  

Each SAVE update carries an ASV: <S1, S2, …, Sn>.  When this update is received at router R, its ASV indicates 

that packets from address space Si (i=1, 2, …, n-1) wil l cross Si+1, Si+2, …, and Sn, and perhaps other address spaces 

after Sn, to reach R. 

A: *  iAB  <* ,  <SA>, 1> 

     B: SF iBF  <SF, <SB>, 1> 

     C: SF iCB  <SF, <SC>, 1> 

     D: *  iDF  <* ,  <SD>, 1> 

     
E: *  iEF  <* ,  <SE>, 1> 

     F: SD iFD  <SD, <SF>, 1> 

 SE iFE  <SE, <SF>, 1> 

 *  iFB  <* ,  <SF>, 1> 

 

Table 1: A partial snapshot of forwarding tables at routers in Figure 5 and 
the corresponding SAVE updates 
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A SAVE update alters a router’s tree ( Figure 6).  Its 

ASV is parsed in reverse.  If the last ASV element Sn 

does not exist in the incoming tree, it will be grafted 

directly under the root; if the current interface bound 

with Sn is not F’s incoming interface, the Sn sub-tree 

will be remapped to the new interface and grafted under 

the root.  Any other element of ASV, Si (i≠n), and its 

whole sub-tree is grafted under previously processed 

element Si+1.  Figure 7 shows the incoming tree for 

router F in Figure 5.   

2.2.4 Handling of SAVE updates 

Upon receipt of a SAVE update, in addition to 

updating its incoming tree and incoming table, a router also decides 

whether to and how to forward the update to other routers.  A SAVE 

update may be modified before leaving the router.  Figure 8 describes 

the handling of a SAVE update at a router. 

SAVE update forwarding 

Whether or not to forward a SAVE update is determined by checking the SAVE update’s destination address 

space.  If a router is the last hop to reach all machines represented by the destination address space of the SAVE 

update, it does not forward the update.  Otherwise, the next hop is determined from the local forwarding table.   

To ensure that the forwarding of the update covers all routes that IP packets use to reach the update’s 

destination address space, the forwarding table is searched for related entries.   There are two types of related 

forwarding entries:  the subset type and the superset type.  A subset-type entry’s destination field is a sub -area of 

the update’s destination address space (line 7 in Figure 8); a superset-type entry’s destination field is an address 

space covering the whole destination address space (line 21 in Figure 8).  When forwarding an IP packet toward 

anywhere in the destination address space, the subset-type forwarding entry will be used first.  If the all subset-type 

entries combined cannot cover the whole destination address space, the smallest superset-type forwarding entry will 

also be used (assuming that forwarding of IP packets uses the longest match).   

Procedure: Incoming tree update at router R 
 
1 SR : the address space associated with router R 
2 U: a newly received SAVE update 
      U = <S, ASV, a>, where ASV=<S1, S2, …, Sn> 
3 iface: the incoming interface that U arrives on 
4 subtree(X) : a sub-tree of the incoming tree rooted at X 
 
5 [Initialization] The tree has only the root representing SR 

6 for (i ← n; i > 0; i-- ) 
7  if (Si does not exist in the incoming tree) 
8   if ( i = n )  
9    graft Si under the root  
10    associate Si with iface 
11   else 
12    graft Si under Si+1 

13  else 
14    if ( i = n )    
15     if (iface ≠ the current interface associated with Si) 
16      graft subtree(Si) under the root 
17      change association of Si to iface 
18    else  
19      graft subtree(Si) directly under Si+1 (if not yet) 
20      end  

 Figure 6:  Incoming tree update with a given SAVE update 
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Corresponding to IP packet forwarding 

behavior, the SAVE update is forwarded as 

follows.  For each subset-type entry, a SAVE 

update is sent toward the indicated sub-area of 

the destination address space (lines 17 in 

Figure 8), and its destination address space is 

replaced with the sub-area address space.  

Furthermore, if the combination of all the first 

type entries does not cover the whole 

destination address space, the smallest 

superset-type forwarding entry will be 

useda SAVE update is sent along the 

interface specified by this entry and the 

original destination address space is 

unchanged (line 22 in Figure 8).  Thus a router 

forwards one or multiple copies of a SAVE 

update. 

Modification of SAVE update 

A router must append its own source address space to the ASV of a SAVE update whenever the appending flag 

a of the update is set to 1 (line 6 in Figure 8).  The ASV thus records an ordered continuous sequence of address 

spaces crossed; such order determines the relative position of these address spaces on an incoming tree. 

Overhead control of SAVE updates 

If a router appends its source address space to a SAVE update, it is unnecessary to initiate another update 

toward the same destination.  Both updates would be treated the same by downstream routers. 

But it is not always necessary to append a router’s source address spac e to a SAVE update.  While a router’s 

incoming tree should record all the address spaces that a SAVE update has crossed, the update’s ASV is allowed to 

be a partial list of them, provided: (1) the rest are contained in other updates already initiated by any routers 

upstream; (2) combining all these updates will still provide the full sequence of the address space crossed.  So, 

Procedure: SAVE update handling at intermediary router R.   
 SR : the address space associated with router R 
 U : a newly received SAVE update 
  U = <SD, ASV, a>, where ASV=<S1, S2, …, Sk> (k≥1) 
 
1 if (router R is the last hop to reach all the machines in SD) 
2  return 
3 if ( SR ⊇ (S1∪S2∪…∪Sk) ) /* replaceable SAVE update */ 
4  return 
  
5 if ( a = 1) 
6  ASV ←<ASV, SR> /* append SR; now ASV=<S1, S2, …, Sk, SR> */ 

 

7 Define set E={forwarding entry ei | ei = <SDi, out_ifi> && SDi ⊂ SD }  
8 Define an empty address space S 

9 for every ei in E /* inform all the sub-areas */ 
10  if (a = 1)   
11    if ( state(ei) is done ) 
12     ai←0 
13    else 
14     state (ei)  ← done 
15     ai←1 
16  Ui ← <SDi , ASV, ai> 
17  forward Ui along outgoing interface out_ifi 
18  S ← S ∪ SDi   
19 end loop 

 
20 if ( S ≠ SD) /* we don’t entirely cover SD with sub-areas */ 
21   find forwarding entry e: <SD′, out_if ′> where SD′ ⊇ SD, such that, 
if there is another ei : <SDi, out_ifi> where SDi ⊇ SD, then SD′ ⊂ SDi 
22   if (e is found) 
     forward U along outgoing interface out_if ′ 

 
Figure 8: The handling of a SAVE update 
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when handling a newly received SAVE update, if an intermediate router has previously initiated another SAVE 

update toward the same destination, the address spaces to cross after this router are already recorded in all 

downstream routers.  The router therefore marks the new SAVE update to be no longer appendable by downstream 

routers (by zeroing its flag a as in line 11 to 12 of Figure 8).   

Overhead can be further reduced by not forwarding replaceable SAVE updates.  A SAVE update is replaceable 

by the router if each address space in its ASV is inside the router’s source address space.  The sourc e address space 

in SAVE updates initiated by this router already covers the address spaces carried by the replaceable update, thus 

this update should be consumed by the router (lines 3 to 4 of Figure 8).     

2.2.5 Conflicting SAVE Updates 

If a router forwards multiple copies of a SAVE update (see Section 2.2.4 above), another router may receive 

several of them from different directions, but it must use only one of them to update its incoming tree regarding the 

common address spaces carried by these copies.  In Figure 9, router R forwards two copies of the update F, one 

toward r, the other toward R.  The latter is further forwarded from R to r.  Finally, with two copies of F, r must 

decide which one to use for the area crossed prior to A. 

When forwarding multiple copies of a SAVE update, 

a router calculates a priority for each copy, assigning a 

higher priority if the update is forwarded using a more 

specific forwarding entry.  Router r in Figure 9 will thus 

use the higher priority update from the solid path.   

3 ADVANCED ISSUES 

SAVE needs to handle compatibility with legacy routers, incoming tree state maintenance, and overhead control.  

Mobile IP and IP multicasting also need special handling.  We discuss security issues and deployment in Section 6.  

3.1 Compatibility with Legacy Routers 

Compatibility with legacy routers plays an important role in designing SAVE.  The incoming interface information 

must still be correct when legacy routers are present.  This requires that a SAVE update be forwarded correctly 

even across legacy routers.  Furthermore, SAVE needs to account for address spaces of legacy routers. 

Figure 9: Conflicting SAVE updates at router r 
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Each SAVE update is carried inside an IP packet, where the destination address of the encapsulating IP header 

must belong to the destination address space of the update.  When a legacy router receives a SAVE update, it will 

simply treat it as an ordinary IP packet and forward it to next hop.  We are investigating the case in which multiple 

copies of a SAVE update are to be forwarded. 

Legacy routers also complicate the maintenance of incoming trees.  Since a legacy router will not send out 

triggered SAVE updates when its routing path to a destination is changed, the incoming tree at downstream routers 

will not be updated promptly.  Periodic resending of SAVE updates from upstream SAVE-enabled routers solves 

this problem.  This matches the soft-state maintenance in SAVE (Section 3.2). 

Finally, if the source address space of a legacy router is not included in the source address space of a SAVE-

enabled router, it is not be reported, and thus is not known to any incoming table.  Thus, a SAVE-enabled router 

cannot easily distinguish legacy router source addresses from forged addresses.  A SAVE-enabled router can 

discard non-existent IP addresses by checking against its forwarding table or by utilizing out-of-band information.   

If the IP address exists, it can switch to forwarding-table-based filtering for them.  This approach will drop 

legitimate packets from legacy routers if the routing is asymmetric, but will properly handle many cases.  We will 

further investigate the issue in our future work. 

3.2 Soft State Maintenance 

Each node’s incoming tree is treated as soft state, and it can expire unless reinstated with repeated SAVE updates.  

Use of soft state simplifies the protocol design by automatically discarding obsolete information without the need 

for specific notification.  When a forwarding entry is removed, it is not necessary to explicitly repair the incoming 

tree.  Similarly it smoothly handles SAVE updates caused by transient routing behavior and asynchronous delivery 

of SAVE updates.  Soft state also solves the problem of handling routing changes when SAVE updates cross legacy 

routers (see Section 3.1). 

Overhead control of soft state refreshing messages is not particular to this research and has been studied 

elsewhere.  Scalable timers [25] and a new proposal for RSVP refreshes [30] both address this problem. 

Finally, soft state handles reliability issues.  It has been shown that a probabilistic delivery model with relaxed 

reliability is suitable for soft-state-based communication, where judicious use of feedback from receivers greatly 

improves state consistency [20]. 
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3.3 Overhead Control With Two-Level Routing Infrastructure  

The SAVE protocol has three types of overhead: bandwidth cost, processing overhead, and storage.  The number of 

SAVE updates sent by a router is proportional to the size of its forwarding table.  Controlling SAVE update 

overhead was discussed in Section 2.2.4.  The design there matches the two-level routing infrastructure of the 

Internet.  Since all packets from an AS to the outside must cross a border router, and the whole AS space is the 

source address space of the border router, those SAVE updates from within an AS are all replaceable and will not 

leak to the outside through this border router.  In the other direction, the SAVE updates from outside an AS need to 

be distributed into the AS.  We are investigating the aggregation of these updates.  

3.4 Special Case Handling 

3.4.1 Mobile IP 

Mobile IP often relies on maintaining the home address of a given mobile host regardless of its location [18].  

A packet from a mobile host will always carry its home IP address. With source address filtering enforced, 

however, such packets would be rejected whenever the mobile host is outside of its home network, since generally 

they use different path to the destination from the remainder of that home network. 

Reverse tunneling for Mobile IPv4 has been proposed [16], by which a packet from a mobile host in a foreign 

network will be tunneled back to its home agent first, which then forwards the packet to the destination.  In IPv6, a 

packet from a mobile host in a foreign network will be stamped with a care-of address, an address belonging to the 

foreign network.  Both approaches resolve the potential conflicts between address filtering and mobile IP. 

3.4.2 IP Multicast routing 

IP multicast can benefit from the SAVE protocol.  Multicast routing protocols such as DVMRP [8], PIM [9], or 

CBT [2] use a reverse-path-forwarding technique to build a reverse shortest-path tree.  When building a 

multicasting tree, a SAVE-enabled router can take advantage of having an incoming table.  It can determine the 

previous hop of the truly shortest path from the root to itself, not the reverse shortest path using RPF.   

Upon receipt of a multicast packet, a router can be in one of the two phases regarding the packet: the packet is 

being sent towards the root where it will be further propagated towards the whole multicast group, or the packet is 

being propagated from the root.  In the former situation, the router should validate whether the multicast packet is 

from the sender.  In the latter situation, the source address of the root should be validated, the same way as it does 
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for unicast packets.  In DVMRP, the root is the sender; in CBT, the root is the core router of the multicast group; in 

PIM, it is the rendezvous point of a multicast group when a shared tree is used, and the sender otherwise.   

4 SIMULATION 

4.1 Simulation Goals 

The SAVE protocol has been implemented and tested in a simulation environment. We have performed extensive 

simulation runs to obtain the following information: (1) whether all bad packets (i.e. packets with forged source 

addresses) can be successfully detected and dropped; (2) whether good packets (i.e. packets with authentic source 

addresses) are dropped erroneously; and (3) the cost of the SAVE protocol. 

4.2 Simulation Design 

In our simulation we assume that all routers run the incoming-table-based filtering.  Corresponding to the two-level 

routing infrastructure of the Internet, we simulated BGP [21] for inter-domain routing and RIP [15] for intra-

domain routing.  Our BGP simulation implements the following policy as recommended by Cisco [14]: 

• Each router in a transit domain runs BGP. A border router in a stub domain runs both BGP and RIP. 

• Stub domains are non-transit domains, whether single-homed or multi-homed. 

• In each stub domain, there is one preferred exit BGP router for outgoing traffic. All outgoing traffic will use this 

router even if alternative routes have lower link cost to some destinations. 

• In a transit domain, the router prefers the routes with the shortest AS path attribute for each destination.  

We used the transit-stub model from GT-ITM software to generate domain-level connectivity and intra-domain 

connectivity [6].  We also used the AT&T Worldnet IP backbone topology for a transit domain in some scenarios 

[11].  Data traffic in our simulation is UDP and generated according to Poisson traffic models.  

4.3 SIMULATION RESULTS AND ANALYSIS 

4.3.1 Effectiveness Verification 

To verify the effectiveness of the SAVE protocol, we set up a traffic model for data packet senders.   Each 

sender sends out both good packets and bad packets controlled by two independent Poisson processes with different 

rates.  If the incoming-table-based filtering is effective, we expect that the distribution pattern of filtered packets 

over time will match the traffic model of sending bad packets.  Since the asymmetric case is common in Internet-
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scale routing, we also include some asymmetric routes in our simulations.  Asymmetric 

routes could be introduced by link failure, or already exist in the initial topologies as in 

Figure 10.  

The following two experiments illustrates the behavior of SAVE: 

Experiment1: We evaluated the behavior of incoming-

based-filtering for the topology shown in Figure 10.  All 

packets are sent from node 6 to 5, with bad packets 

spoofing a source address in router 1’s address space.  

There is an asymmetric route between node 5 and 6.  When 

the link between 1 and 4 fails, node 0 discovers the 

alternate path to 5 via 2.  Thus an asymmetric route is 

changed to a symmetric one.  On recovery, routing 

becomes asymmetric again.  

The result is shown in Figure 11.  Incoming-table-based filtering detects and drops all bad packets.  Good 

packets that arrive on asymmetric links are not dropped while the routing is stable. When a link has failed or 

recovered, transient changes in routing tables result in inconsistency of incoming tables. Some good packets are 

dropped during that period (67 to 72 seconds). 

Experiment 2: In this experiment we evaluate the 

behavior of the filtering mechanism for the topology shown 

in Figure 12 without link failures.  The topology consists of 

one transit domain and 12 stub domains.  All packets are 

sent from nodes 62, 66 and 70 to node 72, where bad 

packets spoof source addresses from the address space of 

router 1.  An asymmetric route is formed between node 70 

and 72 since 56 is the default exit router for domain 12.  

The result is shown in Figure 13. It demonstrates that 

incoming-table-based filtering detects and drops all bad 

packets, even though they are generated from multiple sources. No good packets are dropped.  
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Vertical bars below the graph mark bad packets that are detected 
and dropped; vertical bars above the graph mark good packets that 
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Figure 11: Filtering behavior in Experiment1 
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Figure 13: Filtering behavior in Experiment2  

Every packet has a global unique sequence number.  (Here, good 
packets are not shown.) 

4.3.2 The Cost of the SAVE Protocol 

SAVE updates are analogous to routing updates in that the 

former are used for building incoming tables and the latter for 

forwarding tables.  In this section, we measure the bandwidth and 

storage cost of the SAVE protocol and compare them to routing 

protocol costs.  For a fair comparison, we compare RIP with 

SAVE using the same broadcast interval, and we compare BGP 

with SAVE using infinite refreshing time.  Theoretical analysis of 

these relative costs is given in Appendix A and B. 

We have measured the following costs of both SAVE and 

routing protocols (RIP and BGP): (1) bandwidththe total 

overhead exchanged by protocol messages in the whole network. 

The overhead of each message is counted every time it crosses a 

link; and (2) storagethe average cost per node for the incoming 

table and tree in SAVE and the routing table in routing protocols. 

The total bandwidth cost of the protocol has two parts: (1) static overhead for initial setup; and (2) dynamic 

overhead for updating the incoming table and tree in SAVE and the routing table in routing protocols. 

Figure 14 shows the static bandwidth cost in single-domain topologies for SAVE and RIP.  Figure 15 shows the 

static bandwidth cost for multiple-domain topologies, where we measured the inter-domain bandwidth cost of 

SAVE and compared it with that of BGP.  Ten different topologies were tested for each topology size.   

Both graphs show that the cost of the SAVE protocol is a power function of the number of nodes, proportional 

to Num_Nodesk

 where 2<k<3. Bandwidth cost within a single domain is comparable to the RIP cost, while the cost 

of running the SAVE protocol in multiple-domain networks is approximately three times greater than BGP cost. 

To measure dynamic overhead, we introduced link failures in the same topologies used to measure the static 

cost.  We observed that the incurred bandwidth cost by SAVE varies depending on the topology and location of 

failed links.  In some scenarios SAVE has lower cost than BGP, while in others it is at most three times larger. 

Figure 16 and Figure 17 show the size of the incoming table and tree for single-domain and multiple-domain 

topologies, respectively.  Figure 16 shows the cost of SAVE incurred for storing intra-domain information.  Figure 
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17 shows only the cost incurred for storing domain-level information.  These costs are compared with the size of 

the routing tables of RIP and BGP.  The storage cost of SAVE for single-domain topologies is at most three times 

larger than RIP’s.  The storage cost of SAVE for multiple -domain topologies is significantly lower than BGP’s.  

5 RELATED WORK 

Research on network security has focused on end-to-end approaches, typically through authentication and 

encryption (IPsec is one representative at the IP layer [13]).  To guarantee a packet’s authenticity, it can be signed 

or encrypted.  The high computation overhead of cryptographic operations prevents such approaches from being 

widely employed per packet.  These operations also require key establishment for every pair of communicating 

nodes on the Internet.  Finally, this approach still cannot prevent a site from being flooded by DDoS-style attacks. 

IP spoofing has been addressed in other research through both preventive approaches and reactive approaches.  

Filtering is a preventive approach.  Tracing is mostly reactive. 

Filtering as a general approach has been proposed in [1], where many fields, including but not limited to source 

address, can be used for filtering.  Martian address filtering is required to discard packets if their source addresses 

are special addresses (loopback address, broadcast address, etc.) or are not unicast addresses.  For validation of 
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Figure 16: Storage cost for single-domain topologies 
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Figure 17: Storage cost for multiple-domain topologies 

y = 229.83x2.0862

RIP

y = 137.94x2.2367

SAVE

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

0 20 40 60 80 100 120

Number of nodes

S
ta

tic
 b

an
dw

id
th

 c
os

t (
by

te
s)

 
Figure 14: Static bandwidth cost comparison between SAVE and RIP 
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Figure 15: Static bandwidth cost comparison between SAVE and BGP 
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source address in general, the forwarding table is used to validate the incoming interface of packets.  This feature is 

often disabled by default, because it leads to erroneous packet dropping when asymmetric paths are used.  

A popular filtering approach is periphery filtering that can be deployed on a firewall as well as an edge router 

[12].  But unless it is deployed everywhere, an attacker can still easily forge source addresses, as shown in Figure 1.  

Packet tracing has been widely studied.  The various approaches have their own strengths and weaknesses.  In 

Bellovin’s approach, each router samples packets with low probability and sends the sampled router adjacency 

information to the destination via ICMP traceback messages, allowing the destination to reconstruct the path [3].  

Probabilistic packet marking encodes the path information in the ID field of an IP header [23].  This approach is 

incompatible with IPsec, which disallows modification of the ID field.  Logging and link testing can also be used 

for tracing [5][26].  As pointed out in the introduction section, tracing is either expensive or ineffective.  On the 

other hand, our filtering approach and tracing techniques are complementary.  Source address filtering eases 

tracing, while tracing is also necessary when only partial deployment of filtering is possible. 

Network intrusion detection has also studied how to localize an attacker.  For instance, DECIDUOUS 

dynamically builds IPsec security associations to reveal the location of attacking sources [7].  However, to do this a 

victim running DECIDUOUS must detect the intrusion first; network topology information is also required. 

6 FUTURE WORK 

Open issues for the SAVE protocol include its security, aggregating SAVE updates, incremental deployment of 

new filtering-based routers, and incorporating this filtering mechanism with other networking techniques. 

 The SAVE protocol itself must be secured or attackers will merely compromise it first before taking other 

steps to perform their attacks.  In particular, the process of building the incoming tree at each router must be 

protected.  SAVE updates must be protected while crossing a chain of routers.  End-to-end encryption provides 

secrecy and integrity of SAVE updates, but it inhibits intermediary routers from accessing, modifying, and using 

transient SAVE updates.  An alternative is to use a series of signaturesdigitally signing a SAVE update and re-

signing its subsequent versionsto allow a destination router to verify a SAVE update’s authenticity,  as has been 

suggested by active network researchers for their own purposes [29].  Any authentication-based approach must 

address the fact that there is no ubiquitous authentication mechanism for the whole Internet.  Since a SAVE update 

may traverse different autonomous domains, something must be done to provide inter-domain authentication. 
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Overhead control deserves further study.  The aggregation of SAVE updates arriving at a router is one potential 

solution.  The address space vector in a SAVE update, for instance, may be further aggregated.  The storage of the 

incoming tree and incoming table can also be saved with address space aggregation.  

Incremental deployment of SAVE is another open issue.  One interesting problem is how to assess the benefit 

with partial deployment.  For instance, in contrast to random deployment, if all backbone routers employ filtering, 

the efficacy appears more promising.   

A new network protocol will be more successful if it can be smoothly incorporated with other networking 

techniques.  We have shown SAVE’s compatibility with mobile IP and IP multicasting, but there are still other 

arenas to consider.  For instance, IP tunneling complicates source address validation in two ways.  First, the true 

source address of a packet is buried inside a wrapping IP header that contains the source address of the ingress of a 

tunnel.  Source address filtering could verify that the IP address of the ingress is legitimate, but could not generally 

determine if the true internal source address was legitimate.  Second, legitimate packets that emerge from a tunnel 

may be dropped due to deviation from a normal path caused by tunneling.  IP source routing is similar to IP 

tunneling in that a packet may also reach its destination via a different path than normal [10] [19].  SAVE also 

seeks to work with new developments in packet routing research, such as the per-hop behavior in differentiated 

services [4], multipath routing [27], and multi-protocol label switching (MPLS) [22]. 

7 CONCLUSION 

Network attacks pose an increasing danger to the Internet community.  The source addresses of malicious packets 

are often forged to hinder discovery of the attacker. Existing methods of overcoming this problem (periphery 

filtering, filtering based on forwarding tables, or various tracing techniques that discover the physical path of 

malicious packets) all have limitations in their cost or effectiveness.  In this paper we present a practical and 

effective approach to detect improperly addressed packets. 

We developed the SAVE protocol to enable routers to check source address validity.  This protocol handles 

cases of asymmetric routing correctly. We demonstrated through simulation that the incoming table built by the 

protocol properly detects forged IP addresses, except during transient periods following routing changes.  The 

incoming table produced by the SAVE protocol can be used for purposes other than filtering. Valid incoming 



 18 

interface information is also beneficial for many techniques (such as RPF) that currently assume symmetric routing 

and forward packets on non-optimal routes. 

The SAVE protocol' s operation is independent of the underlying routing protocol.  Simulation results show that 

the bandwidth cost of the SAVE protocol is comparable with that of routing protocols, and its storage cost is quite 

small .  Known optimizations could reduce this overhead in the future. 

We have addressed many difficult issues for this kind of protocol, such as handling mobile IP, reliability, and 

some aspects of aggregation and scaling.  Other hard issues will be addressed in future work, including partial 

deployment, security of the protocol, and more aggressive aggregation to provide better scaling properties. 
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APPENDIX A: COST COMPARISON BETWEEN SAVE AND RIP  

Consider a network of N routers where every router has k neighbors.  Let ESRIP be the entry size of a routing table.  

Every RIP router periodically broadcasts updates to all k neighbors.  The size of every update is proportional to N. 

Total bandwidth cost per broadcast per router is 
RIP

RIP
Broadcast ESNkBWC **= .  We assume that for every topology 

change there is a probability pe that it will affect a given entry in a routing table. The change of this routing entry 

triggers updates to all k neighbors.  Total bandwidth consumed by all triggered updates per topology change is 

RIPe
RIP

Trigger ESNkpBWC ***= .  The storage cost per router is 
RIP

RIP ESNSC *= .   

In SAVE, each router generates a SAVE update for every forwarding table entry and sends it towards the 

destination.  Let UA denote the size of address space information within a SAVE update, and d be the mean 

diameter of the network.  Every SAVE update is forwarded d hops on the average, and every router on the path 

appends its address space to the update.  Total bandwidth consumed per router is .
2

*)3(** NddU
BWC ASAVE

Broadcast

+=   We 

assume that every routing table change affects the corresponding entry in the forwarding table and triggers SAVE 

updates.  The total incurred bandwidth per router is thus 
2

*)3(*** NddUp
BWC AeSAVE

Trigger

+= .  Let ESSAVE and ESTREE 

denote the size of an entry in an incoming table and tree.  The storage cost per router is ).(* TREESAVE
SAVE ESESNSC +=   

The ratio of bandwidth cost of the SAVE protocol vs. bandwidth cost of RIP for both broadcast and triggered 

updates is )(
**2

*)3(* 2

k

d
O

ESk

Udd
RBWC

RIP

A =+= .  The storage cost ratio of SAVE vs. RIP is 
RIP

TREESAVE

ES

ESES
RSC

)( += .   

APPENDIX B: COST COMPARISON BETWEEN SAVE AND BGP 

Let A denote the total number of ASs on the Internet, M the mean AS distance (in terms of the number of ASs), and 

NW the total number of networks.  We assume that the networks are uniformly distributed among the ASs, and every 

BGP router peers with k other BGP routers.   
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For BGP cost evaluation, we use the discussion in [28].  After the initial BGP connection setup, the peers 

exchange a complete set of routing information, and each BGP update groups NW/A NLRI entries for every AS. 

Each BGP router sends routing information about all NW networks.  Denote ESNLRI the size of a NLRI entry in a BGP 

routing table, and ESAS the size of the AS-PATH attribute.  The average size of a BGP update is thus 

ASNLRIW
BGP ESMESANBWC **)/( += .  The complete routing information consists of A such updates.  The total bandwidth 

used during the setup phase per router is )***(* ASNLRIW
BGP
Setup ESAMESNkBWC += .  We assume that for every topology 

change there is a probability pe that it will affect a given entry in a routing table.  The average bandwidth cost per 

topology change for each router is )*(*** ASNLRIWe
BGP
Change ESMESkNpBWC += .  The storage cost for each BGP router is 

)*(** ASNLRIW
BGP ESMESNkSC += .  

We compare the bandwidth cost of inter-domain SAVE updates with the cost of BGP updates.  Let D denote 

the mean inter-domain distance in terms of the number of hops.  At initialization, every border router sends a SAVE 

update to each destination network in its forwarding table.  Let UA denote the size of address space information in a 

SAVE update. Every update, on the average, travels D hops before it reaches the destination network2, and every 

router on the path appends its address space information to the update. The total bandwidth used by a router for the 

initial setup is therefore 
2

)3(*** += DDUN
BWC AWSAVE

Setup
.  If every routing change leads to a change in the forwarding 

table, the bandwidth of trigged SAVE updates per topology change is 
2

*)3(*** AWeSAVE
Change

UDDNp
BWC

+= .  Since a 

SAVE router stores the incoming table and tree at the AS level, the storage cost of SAVE is )(* TREESAVE
SAVE ESESASC += .  

The bandwidth cost during setup of SAVE relative to BGP is 
).
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*
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bandwidth cost in the change phase of SAVE relative to BGP is 
)

*
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storage cost of SAVE relative to BGP is 
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2 Note that once the update reaches the destination network it still needs to be distributed to all interior routers. This incurs some bandwidth cost. Let n be the 
number of interior routers and d the average distance from them to the border router, then there will be additional UA*n*d*(d+3)/2  bandwidth consumed for 
each SAVE update that reaches the border router. Since we are calculating pure inter-domain cost of SAVE, we do not include this additional cost here.  


