
Critter: Content-Rich Traffic Trace Repository

Vinod Sharma
USC/ISI

vinodsha@usc.edu

Genevieve Bartlett
USC/ISI

bartlett@isi.edu

Jelena Mirkovic
USC/ISI

mirkovic@isi.edu

ABSTRACT
Access to current application and network data is vital to cyberse-
curity and networking research. Intrusion detection, steganography,
traffic camouflaging, traffic classification and modeling all bene-
fit from real-world data. Such data provides training, testing, and
evaluation as well as furthers efforts to reach ground truth.

Currently available network data—especially data with
application-level information—is often outdated and is either private
or customized to specific, narrow research needs. The biggest hurdle
to obtaining such content-rich data is addressing the huge privacy
risks associated with sharing such complex and open-ended data. In
this paper we present a data sharing system called Critter-at-Home
which addresses these challenges. Critter connects end-users willing
to share data with researchers and strikes a balance between privacy
risks for a data contributor and utility for a researcher.

1. INTRODUCTION
Networking and cybersecurity research critically need publicly

available, fresh and diverse application-level data, for data mining
and for validation. For example, spam filtering, intrusion detection
and traffic classification all require application data to learn trends
in legitimate network use, to establish ground truth, and for realistic
evaluation of proposed systems. Despite these needs, there are very
few publicly available network traces which contain application-
level data, The few datasets publicly available suffer from being
outdated, and from containing very specific data useful only to some
researchers.

The main reason for this lack of content-rich network data is
the enormous privacy risk that sharing such data creates. The net-
working community has long worked to solve a simpler problem—
mitigating the risks associated with sharing only content-less net-
work data—with little progress. Sharing application-level data
greatly increases privacy risks, because such data is rich with per-
sonal and private information, such as human names, social security
numbers, phone numbers, usernames, passwords, credit card num-
bers, etc. that Internet criminals can monetize. These risks increase
with the longevity of the data, as demonstrated by cases where
attackers were able to compromise privacy after a dataset release

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WISCS’14, November 3, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-3151-7/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663876.2663886.

either through direct attacks on the dataset [1] or through correlation
of one or more datasets [2, 3].

In this paper we look at the pressing needs for content-rich data,
and introduce Critter-at-home—a live content-rich repository which
addresses the immense privacy risks associated with sharing such
data.

Critter-at-home connects end-users willing to share data—called
data contributors—with researchers and aims to strike a balance be-
tween privacy risks for the contributor and utility for the researcher.
Critter protects data contributors’ privacy and control over their
contributed data in several ways:

1. No human ever looks at the raw data collected by the Critter
system. Instead, researchers query the data through a portal
and receive aggregated responses to these queries—such as
counts or distributions. Critter applies k-anonymity to main-
tain privacy and prevent researchers asking queries which
could identify an individual.

2. All data collected is encrypted via public-key before being
stored.

3. Lastly, a contributor can withdraw her data from Critter at any
time. Data can be stored locally on a contributor’s machine, or
optionally remotely. In either case, each contributor maintains
control over her data. This differs substantially from tradi-
tional network traces and other datasets, where once the data
has been collected, the longevity of the data is determined by
the dataset owner, not by the contributers.

In this paper we discuss the need for content-rich data (Sec. 2.1),
the challenges associated with collecting such data (Sec. 2.2), and
how we answer these challenges in the Critter-at-Home design
(Sec. 3). We present several demonstrations of queries and results
using our initial deployment (Sec. 4).

2. THE CASE FOR CONTENT-RICH DATA
We start by first exploring the needs of the network and systems

communities for content-rich data, and then address why such data
is not currently publicly or widely available. These needs and
challenges will define the goals Critter-at-Home must aim for in
order to provide utility.

2.1 Needs
To understand researcher needs for passive data, we survey work

published in Sigcomm 2013 and IMC 2013. We look for works
which use passive network data and explore where this data was
collected, if the data is made publicly available, what network-level
data was required, and which platform(s) data was collected on such
as an end-user machine, a middle point—such as an exchange point
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Content Perspective Platform
Conference -rich -less both client/peer server both network PC cellular other Total Can use Critter

Sigcomm 2013 3 3 1 4 1 2 0 5 2 0 7 4
IMC 2013 2 6 1 4 1 1 3 6 2 3 9 3

Table 1: A summary and break-down of papers which used passive data in their work.

or router—or at a server. A break down of this information is in
Table 1.

We first note that of the 16 works which use passively col-
lected data, only one dataset is publicly, or semi-publicly avail-
able: the Ono BitTorrent dataset. Ono relies on aggregation and
anonymization to protect contributor information and does not in-
clude application-level content beyond statistics on BitTorrent usage.
Quite possibly other datasets could be made available through work-
ing through legal agreements, but we note that this process is time
consuming and to some extent discourages reuse of datasets. The
rest of the 15 efforts using passive data use privately collected data,
collected for the specific work at hand. This custom collection
ensures the data meets the researcher needs, but we note that this
data comes from only one, or in rare cases two, environments the
researchers had access to.

Of the 16 papers we surveyed, 7—roughly half—used application-
level data—e.g. content of DNS responses. Many used both data
from a client and server perspective, but we note a large number of
works using data from the client-perspective: 11 used data collected
at a client or peer end-user machine.

In all works, the oldest dataset used was collected four years prior
to the published results. The majority of works used data collected
from the Internet, but a significant number (4) looked at passively
collected data from cellular networks.

Based on the usage, we claim there is a need for fresher, and more
diverse content-rich (and content-less) data, from both a client (or
peer) and server perspective, and from a wide variety of devices,
including cell phones. Currently such data, especially content-rich
data is not publicly accessible, and comes from only a handful of
environments. In the next section, we address why such data is not
currently readily available, and outline what challenges must be
overcome to provide such data.

2.2 Challenges
There are three main challenges in collecting content-rich data.

First, to ensure we get diverse data, we need to motivate data
providers to share such data. Second, we need to address the mas-
sive privacy risks associated with sharing content-rich data. Last,
we need to understand how to process and store this data to enable
research utility. These three main challenges are intertwined: Ap-
propriately addressing the privacy risks can alleviate the concerns
data providers have with sharing content-rich data; however, there
is a trade-off between privacy and research utility.

Motivating data providers to share data at the very least requires
any sharing be low-effort and have limited risk and cost to the sharer.
This means any system for collecting data must be cross-platform,
easy to install, consume very few system resources and be secure.

Storing and processing content-rich data is more complex than
simple network packet headers. Unlike network and transport proto-
cols, there are a near limitless number of applications and settings
which contribute to content-rich data. This open-endedness means
content-rich data does not lend itself well to a rigid database schema
and more resources are needed to process such data compared to
well-defined data. If we reduce the complexity of the data in some
manner in order to speed up processing or reduce storage, we risk
limiting the research utility of the data.

Addressing privacy risk poses the biggest set of hurdles to sharing
content-rich data. Packet payloads include an unbounded amount
of private information—such as addresses, personal conversations,
bank information, social security numbers, and so forth. To com-
pound the problem, some private information may not appear to
pose a risk—such as product and location preferences—but may
still be used by someone acquainted with the data contributor to
uniquely identify him or her. Many efforts to anonymize data with
such unbounded content have resulted in unintended information
leaks. Some examples include: (1) the de-anonymization of the
Netflix movie ratings dataset when correlated with the Internet
Move Database (IMDb) [2] (2) privacy violations by the public
release of AOL search data [1] and (3) the de-anonymization of
medical records by correlating them with a publicly available voter
database [3].

Standard methods for protecting publicly available network data
through sanitization and anonymization are not well-suited to pro-
tect content-rich network data. Currently, publicly available network
data from Internet users is sanitized—a process which removes most
or all of the application-level data and anonymizes sensitive infor-
mation such as IP and MAC addresses. Despite such mitigating
measures, sanitized data is still highly vulnerable to both active and
passive de-anonymizing attacks [4, 5, 6, 7]. Additionally, sanitiza-
tion offers poor protection against future attacks. Once a user has
downloaded the data, the provider has no control over how data is
used, and there are no mechanisms for a data provider to retract pub-
lished data once an attack has been discovered. Due to the greater
privacy risks that come with sharing content-rich data, building upon
traditional sanitization methods to protect privacy is not an option.

A data provider can maintain better control over access to their
shared data by storing shared data locally, and only allowing certain
queries on the data. While this reduces the privacy risks associated
with releasing data in its entirety, this also requires the data provider
to donate disk space and CPU processing time. If the CPU and disk
space requirements are too high, or unchecked, data providers will
likely be less willing to share.

Ultimately, the biggest challenge is picking the right trade-offs
which limit costs and risks to the data providers while providing
utility to researchers. In the next sections, we discuss how the Critter
Framework picks these trade-offs.

3. Critter-at-Home FRAMEWORK
Given the needs outlined in Section 2.1 for content-rich data and

the challenges for obtaining this data in Section 2.2, we have the
following design-goals:

1. Data is fresh, diverse and content-rich. Network service
providers have typically been a great source for passive data
(eg. [8, 9]), but these providers are not in a position to pub-
licly offer continual, content-rich data given the privacy risks,
storage costs, user dissatisfaction and liability associated with
sharing such data. Instead of reaching out to service providers,
Critter reaches out to individual users directly. Connecting
to these individual data contributors directly, and providing
mechanisms for these individuals to contribute continuously,
ensures up-to-date data from a diverse set of environments.
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Figure 1: The basic overview of Critter-at-Home.

2. Contributor identities and any personally identifying in-
formation (PII) are fully protected. Private data such as
Social Security Numbers, phone numbers and addresses can
be stolen and monetized by criminals. One of our biggest
goals is to ensure that a data contributor’s identity and PII are
never at risk due to the Critter system. We store the raw data
in an encrypted format to prevent any unauthorized access.
We further protect data contributors through a secure query
framework called Patrol which only releases aggregate and
prevalent results based on work done by J. Mirkovic [10].
Thus the privacy of a data contributor is further protected by
using a “hiding in a crowd” approach.

3. Contributors maintain full and flexible control over their
privacy risks and data. Critter gives contributors full con-
trol over their data and its usage at a fine-grain level including
mechanisms to withdraw data fully at any point, store data
remotely or locally, and contribute only what they are com-
fortable with.

4. Sharing is easy. We wish to make sharing easy to encourage
end-users to participate in Critter. This includes an easy
installation, and data collection which uses minimal resources.

5. Data utility is maximized. We minimally process data and
store data in an almost “raw” format. This allows researchers
to query data for features that interest them, rather than restrict
queries to a predefined set of features extracted from the raw
data.

In the following sections we discuss the Critter’s threat model, and
how Critter’s design guards against these threats and protects data
contributors, while maintaining high data utility. We will discuss the
components of Critter and the specifics of collecting and querying
data and anonymizing participation. Though we do not have the
full design of Critter-at-Home implemented, we present our planned
framework in its entirety, and note what has been implemented so
far in our first version of Critter-at-Home.

3.1 Threat Model
The biggest challenge Critter-at-Home addresses is the privacy

risks data contributors face. Specifically, there are three main threats
to privacy:

1. Data Stealing. Contributor data may be stolen by a third
party, not necessarily related to Critter-at-Home, e.g., a Trojan.
The raw version of contributor data contains sensitive and
private information that would not otherwise exist in one
place. Data could be stolen from disk storage, from memory
or from the network.

2. Data Query Correlation. Contributor data may be queried
by someone familiar with the contributor, or someone with
auxiliary information from other sources, for the purpose of
linking query results to a specific contributor. For example, if
query results exposed information about a contributor’s salary
range and employer, someone familiar with a contributor’s
employer would have an easier time guessing a contributor’s
salary.

3. Contribution Correlation. An observer may attempt to cor-
relate a contributor’s network behavior—such as IP address or
a pattern of connections—to responses to queries and thereby
private information about a specific contributor. Simply know-
ing a contributor is participating in sharing data increases the
chance that a contributor’s identity is linked to released infor-
mation. Additionally, if an attacker can use observed network
traffic and timing information to learn which queries a con-
tributor responds to and which ones she does not respond to,
the attacker can learn how results change with and without
the contributor’s response and have an easier time guessing
information about a contributor.

In the following sections we will refer to these three threats—data
stealing, data query correlation and contribution correlation as we
discuss how Critter’s design guards against these.

3.2 Architecture
The Critter-at-Homeframework consists of three main parts—a

Critter client which runs locally on a data contributor’s machine, a
Critter server which collects and disseminates researcher’s queries
and replies and ultimately will also include a Remote Storage System
which houses data for contributors who do not wish to store their data
locally. Currently, we have not implemented the Remote Storage
System and so all data is stored locally. Figure 1 depicts these
components for Critter-at-Home and how they interact.
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Data contributors (shown in gray in Figure 1) run the Critter
client program on their local machines. The Critter client collects the
contributor data via its Recorder module, according to the Recording
Policy. In future versions, the client will pass data through a PII
Sanitizer module to remove Personally Identifiable Information
(PII), before encrypting the data with the contributor-generated
symmetric key. Both PII-sanitization and encryption are done to
address the data stealing threat in our threat model. Collected data
is handled by the Archiver module which in future versions will
allow for data to be stored remotely, and not just locally. In these
future versions, this decision will be recorded in the Storage Policy
and honored by the Archiver.

The Query Handler module in the Critter client polls the Crit-
ter server for new queries, whenever the contributor’s machine is
connected to the Critter network. The Handler decrypts data, and
processes the query if it is permitted by the Query Policy. Currently,
this Query Policy is rudimentary, but in future versions we plan to
expand the control contributors have over the queries they wish to
participate in.

In future versions to guard against contribution correlation the
Query Handler will encrypt results and a portion of the query policy—
which must be resolved centrally during aggregation—using the
Critter server’s public key. The process is similar for data stored on
the Critter server, except the need for polling to obtain new queries
is eliminated, and the data is encrypted by the server-generated
symmetric key. To further protect against contribution correlation,
in future versions contributors will connect to the Critter server via
an anonymizing network, such as the Tor network [11, 12].

Researchers submit queries and obtain results via a community
portal, which passes these queries on to the Query System, lo-
cated on the Critter server. Queries submitted to the Critter server
through the public portal, are stored, and handed out to contributors
whenever they join the Critter network. Researchers can query on
any features which interest them but they only receive aggregate
responses (counts, histograms, etc.) to address data query correla-
tion. These responses are synthesized from contributors’ individual
responses, after applying their Query Policies to ensure “hiding in
the crowd” (Section 3.4.1). Aggregate responses may be finalized
after a configurable time-frame or after predefined response-count is
reached, or a query may be indefinite, and periodically all responses
to it are aggregated and returned to the researcher.

3.3 Collecting Data
In this section we discuss how we collect and store data from data

contributors. Figure 2 depicts that basic process for data collection
and storage. In our current implementation, data is recorded and
stored locally. Though all storage is local now, in future iterations
we plan on allowing remote storage and anticipate some contributors
will prefer this option over donating disk space to Critter-at-Home.

3.3.1 Recording Data
The data collection process takes place locally on a data contrib-

utor’s machine. Since one of Critter’s goals is easy sharing, the
program needs to be cheap to run resource-wise so as not to im-
pact a contributor’s regular computer use. The client also needs
to be portable between environments to encourage a diverse set of
contributors to participate.

Currently we support Windows, Linux and Mac OS X, but we
plan to explore expanding to smart phones and other devices. Con-
tributors can limit the memory and disk usage of the Critter Client
to tune and lessen the impact of running the client. When the disk
space limit is reached, older recorded data is overwritten by newer
data.

Application-level data could be recorded at the network layer, or
by instrumenting individual applications. Currently we have chosen
to collect data at the application-level using a local SOCKS 5 [13]
proxy. While collecting at the network-level offers more data for
analysis, we feel users may be uncomfortable with a “network snif-
fer” collecting their data. We believe users will feel more in control
with our local proxy set up since the user actively directs traffic to
the proxy. In the future, we plan to investigate user viewpoints on
collection through questionnaires.

For our first iteration of Critter, we collect only HTTP traffic. We
choose HTTP since web traffic is a major contributor to Internet
traffic today [14], but we exclude recording HTTPS since this data
is more likely to contain private data. As discussed, one of Critter-
at-Home’s design goals is to allow full and flexible control over
any data collected. To this end, users can choose which sites they
wish not to record traffic for, and users have a basic user interface to
stop and start data recording with a simple button click. For exam-
ple, contributors will be able to permit or prohibit recording at the
application level (“never record traffic from BitTorrent”), content
level (“never record movies I watch over HTTP”), domain level
(“never record traffic to/from www.reddit.com”), physical loca-
tion level (“never record when my laptop is on my home network”),
or message level (“never record HTTP POST traffic”).

In the future we plan to expand beyond HTTP. There are a large
and growing number of popular applications (web-browsers, email-
clients, instant-messengers) which support the SOCKS v5 protocol,
which makes expanding to these applications trivial. To support
any new applications, we also need to write parsers for the new
application’s data. This will be an iterative process as Critter-at-
Home grows.

3.4 Querying Data
Figure 3 illustrates Critter-at-Home’s querying process. The

Query System implements a store and poll mechanism for
queries. Queries are pulled by contributors—rather than pushed to
contributors—because contributors may only connect to the Critter-
at-Home network intermittently, even if they are running the data
recorder on a continual basis. By storing queries and collecting
responses over a period of time we can maximize the number of
contributors responding to a query. Though the current implemen-
tation of Critter-at-Home does not handle complex query features,
we anticipate supporting features such as rolling aggregation and
ongoing queries which return periodic results.

In the future, to fully guard against the contributor correla-
tion threat, query polls, queries and responses will all go through
an anonymizing network. Though routing queries and responses
through onion routing or a mix network may increase latency of
query polling and responses, this latency will not be experienced
by contributors or researchers. Response gathering is done over an
extended period of time to maximize participation and query polling
and response is handled in the background. When we implement the
Remote Storage System, data housed on this system can be queried
on a more instantaneous basis, but will otherwise be treated the
same as any locally stored data.

3.4.1 Result Aggregation
To protect from data query correlation we aggregate responses

from clients through our Secure Query System. When sharing
privacy-sensitive data via Critter-at-Home the original data always
remains under the control of its owner. The data owner releases
information through responding to queries with a numerical value.
These responses are aggregated on the Critter Server before being
returned to a researcher. Since we release only aggregate responses,
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Figure 2: Data collection and storage in Critter-at-Home.

Figure 3: An overview of the querying process in five steps:(1) A researcher submits a query via the public portal. (2) Critter clients connect and
poll for new queries via an anonymizing network. (3) The researcher’s stored query is sent to clients. (4) Patrol processes the query if the Query
Policy permits, and returns encrypted results along with information on how a contributor wants its response aggregated. (5) Aggregated results are
stored by the query system and can be retrieved by the researcher. Patrol components (shown in light blue) will come from PI Mirkovic’s NSF-funded
project on secure queries.

many active and passive attacks that work against data sets such
as sanitized network traces or sanitized logs are ineffective in our
context.

We take a “hiding in a crowd” approach for privacy protection
by enforcing k-anonymity [15] criteria before any result is returned
to the researcher. If a researcher asks for how often users visit
a particular website on a specific day, k-anonymity ensures that
the returned result is a set of grouped responses such that each
group has a single aggregated value representing at least k different
contributors’ replies. For example, if k = 5, the result might be:
“5 users visited the website around 5 times and 6 users visited the
website around 10 times”, but the result would never be: “1 user
visited the website 2 times per day” (since k-anonymity would not
be met with k = 1).

We determine the membership of each group of counts by first
ordering values and grouping responses with the same value together.
If the number of responses for a value is less than k we either drop
this value from the response or merge this group of responses with
the adjacent group. We then check this merged group to see if its
membership is at least k. If it is not, we repeat the process, otherwise
we continue on with the next group. For now, the value associated
with a merged group is the maximum value in that group, however
we plan to investigate other methods of value assignment.

For our initial deployment we have fixed k at the low values of
k = 2. In practice, this does not provide strong privacy protection.

In the future, a contributor will be able to customize this value for
their data, and researchers will be able to request desired ranges for
k. Thus, our system will either honor the highest k value requested
by a contributor or leave this contributor—and possibly others—out
of an aggregated response when a researcher has requested a lower
k value.

Understanding the freshness of data when doing result aggrega-
tion is important since older data may skew results form new data
and vise versa. The age of the data in the Critter repository will
vary from contributor to contributor, since the Critter client over-
writes older data with new data when disk space limits are reached.
Additionally, contributors who chose to store data remotely, may
also stop contributing entirely leaving data to age. To address this
variation in data age, queries are by default pulled from only the last
week of data. Researchers can optionally specify a range of dates
for the age of data included in a result.

3.5 Organizing Data
A natural and powerful way to search and store data is via a

database with a fixed schema. Databases allow for efficient searches
and there are a large number of database tools available for organiz-
ing and querying. Unfortunately, such a database schema is difficult
to predefine given the complexity of the data Critter-at-Home col-
lects. Though we focus on only HTTP data currently, as we add
support for collecting content from other applications, this data
complexity will only increase.
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To deal with this complexity, we use a very simple database
schema with only a few fields: the date and time an HTTP TCP flow
began and ended, a breakdown of HTTP headers for each message
in the flow, and the content of each message. This simple schema,
however, does not enable complex queries. To address research util-
ity, we allow restricted regular expression matching on fields such
that only numerical results from a regular expression are allowed.
This expression matching enables a wide-range of questions while
not requiring us to understand and organize collected data a priori.

4. DEMONSTRATIONS
While we have not completed our work on Critter-at-Home, we

have a working prototype of key components and currently we have a
small base of six beta-test contributors. Here we discuss the specifics
of our current implementation and present a few demonstrations of
what can be asked and answered through Critter-at-Home.

4.1 Current Implementation and Data
Our initial implementation does not fully realize the complete

Critter-at-Home plan. We have a Query System with a Result Ag-
gregator and a basic Research Portal. The clients have a rudimentary
query and recording policies in place, but we do not have a Remote
Storage System so clients store data locally. Clients are set to store
10GB of data, and when this limit is hit, the client writes over older
records with newer records.

We currently focus on HTTP traffic only. The Critter client is
implemented in Python and collects application-level (HTTP content
and headers) through a SOCKS 5 proxy [13] run from within the
Critter client program. Contributors point their web browsers at this
proxy and the Critter client handles storage, as well as polling and
running queries over the data.

The Critter Query Server, which handles storing queries and
responding to clients looking for queries is also implemented in
Python. The research portal, where queries are inputted into the
system, is via a PHP web interface.

To support multiple platforms, we implemented the Critter Client
in Python and using PyInstaller [16] we have created binaries for
Linux, MacOS X and Windows. Each binary has a platform specific
installer, so installation is straight forward and simple—an important
step to encouraging data sharing.

Since we use a SOCKS proxy to record data, we have HTML
headers and content, and have very limited network and transport
information. In our database, each TCP connection is a record, with
one or more request/responses associate with it. Currently, we do
not link related TCP connections with the original web page request
which triggered the connections. For example, if a browser uses
separate TCP connections to download images for a web page, these
images are not tagged or associated with the web page they belong
to. This currently limits the types of queries we can ask, and we
plan to address this limitation in future iterations.

In the following demonstrations, we draw from two separate
Critter repositories. The first is a repository of dummy users (Virtual
Machines that run a Critter client and browse the web as instructed).
The second is the repository with our live test users.

4.2 Demo: Counting Calories
For our first demonstration, we look at a hypothetical question

which needs HTML content to answer: If a cooking recipe site, such
as myrecipes.com, advertises lower calorie recipes, are people more
inclined to check out these recipes?

Since this is a demonstration of Critter-at-Home and not an ex-
ploration into people’s eating habits, we create dummy data using
four Virtual Machines (VMs) running the Critter client and skew the

Before Ad After Ad
<300 cal >300 cal <300 cal >300cal

VM 1 2 4 7 4
VM 2 1 1 6 1
VM 3 5 8 14 2
VM 4 1 12 15 0

Table 2: Raw (non-aggregated) responses to queries on calorie counts
before and after an ad campaign for lower calorie recipes.

data to show that a hypothetical ad campaign for the lower calorie
recipes does indeed affect user browsing habits. We first have our
VMs browse more high calorie recipes—simulating users who visit
the site before seeing advertisements for lower calorie recipes—and
then after a set date of June 1st, we have the VMs browse more
low calorie recipes—simulating users who had been exposed to a
hypothetical ad campaign starting June 1st.

HTTP responses from myrecipes.com have a meta element
(<span itemprop="calories">) which gives the calories
per serving of a recipe. We use this to define a regular expression
to count the number of recipes from myrecipes.com a VM “views”
that have less than 300 calories (low cal) and how many have more
than 300 calories (high cal). We run these two queries twice—once
specifying that we want the view count for before June 1st, and once
specifying that we want the view counts after June 1st (after the
supposed ad campaign began).

Table 2 shows the non-aggregated raw responses to these queries
run on dummy data from our VMs running the Critter client. The
aggregated responses to the four queries with k = 2 are: (1) Before
June 1st 2 users viewed 1 recipe and 2 users viewed around 5 recipes
with < 300 calories. (2) Before June 1st 2 users viewed around 4
recipes and 2 users viewed around 12 recipes with > 300 calories.
(3) After June 1st 2 users viewed around 7 recipes and 2 users
viewed around 15 recipes with < 300 calories. (4) After June 1st 2
users viewed around 1 recipe and 2 users viewed around 4 recipes
with > 300 calories. From these returned responses, a researcher
could conclude the ad campaign was effective.

4.3 Demo: Content Type
In our second demonstration, we use the data collected from

our beta-test users and look at the content type over HTML TCP
connections. Such information could be useful for modeling HTTP
traffic or for understanding how to tune traffic camouflaging for
covert communication.

We target the content type in the request field of our database,
and ask for the percent of (HTML) TCP connections which are of
a specific type—plain text, HTML, javascript, image, audio, video
and other (any content type not matching the other six types). This
requires us to ask seven queries to our system, one for each content
type.

Figure 4 shows the aggregated results across all clients. The
Critter-at-Home aggregation system for six of our queries returned
three aggregated groups and for the audio query—since many values
were the same—only two groups were returned. Figure 4 shows the
group values returned, labeled as “Min”, “Mid” and “Max”.

Not surprisingly, image content appears in a significant portion
(14–24%) of a user’s HTML connections. However, the majority of
content type in this analysis appears to be “Other”—in other words,
the regular expression used did not match any of the defined content
types we queried on. This highlights the difficulty with working
with regular expressions and restricting responses to numeric val-
ues. While regular expressions allow for very flexible queries, and
numeric responses are easily aggregated for privacy protection, we
cannot tell immediately what comprises this “Other” category. In
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Figure 4: Min and max percent of HTML TCP connections
which download a specific content type.

the future, we plan on exploring how short text responses can be
protected and aggregated.

5. RELATED WORK
There are two areas of work related to Critter-at-Home: (1) work

which addresses privacy risks inherent in data sharing and (2) frame-
works to connect researchers to data sources.

There are a multitude of endeavors to overcome the privacy risks
inherent in sharing Internet user data motivated by the great need for
this data in research. Much work has been done on network trace
sanitization, e.g. [4, 17], however as discussed in Section 2.2, these
methods are not well suited to protect content-rich data and we do
not discuss them further.

Pang and Paxson investigate the problem of parsing and sanitiz-
ing content-rich network data [18]. Their sanitization tool rewrites
packets according to human-input policy scripts and can replace
application-level header and content. While the packet transfor-
mation is flexible, human input process is tedious and error prone.
Further, in presence of auxiliary data no packet field is privacy-risk
free, thus sanitization in itself cannot be the entire answer to privacy
risk in content-rich data sharing.

Another approach to releasing content-rich data safely, is to gen-
erate synthetic traffic based on some features drawn from the real
data. The DARPA Datasets for Intrusion Detection System Evalua-
tion [19, 20] are an example of such generated traffic. The original
traffic was collected at an Air Force base, and the features that
were mined from the traffic and replicated in synthetic traffic, as
well as the synthesis approach for other traffic features, were not
publicly disclosed. Researchers thus cannot quantify how data gen-
eration artifacts may influence their research outcomes. Another
problem lies in the fixed choice of relevant traffic features to be
mined and replicated. Researchers who are interested in a different
set of features cannot utilize these datasets. In spite of these and
other deficiencies [21, 22, 23], these datasets—generated in 1998,
1999 and 2000 by MIT Lincoln Laboratory—are still in active use
today, over a decade after their release. This highlights the grave
need researchers have for content-rich datasets.

There are a large and growing number of proposed approaches to
support gathering and aggregating data from anonymous users in a
privacy-preserving way, e.g. [24, 25, 26, 10]. While our approach
to protecting privacy is based on work done by J. Mirkovic [10],
Critter-at-Home differs from these efforts in that we take a holistic

approach and address the specific challenges of storing, organizing,
and protecting unbounded content-rich network data.

Frameworks for connecting researchers to data vary in complexity
from portals providing curated data [27, 28, 29, 9, 30, 31] to systems
for the policy process of sharing data [32], to distributed infrastruc-
tures for network monitoring [33, 34]. Our approach differs from
these because our main goal is to provide a framework to collect
data directly from individuals, and not from network administrators.
This is a common goal for commercial enterprises for doing mar-
ket research and quality of service studies. We are aware of only
one other research endeavor which, like us, reaches out to a broad
audience and creates an ongoing study. The BISmark project [35]
offers users a free device which collects active measurements of link
performance from a user’s home network. We differ from BISmark
on our measurement goal to passively collect information about
network data—and specifically packet content.

6. DISCUSSION
We see a pressing need for publicly available, fresh and diverse

content-rich data which currently is not being met. There are a
large number of challenges to address with collecting such data:
motivating users to share, storing and processing such unbounded
data, and of course addressing the large privacy risks associated
with sharing content-rich data.

We have designed a complete system which addresses these chal-
lenges and connects researchers directly to end-users willing to share
information. We have a lot of work ahead of us, and many ques-
tions will need to be investigated as Critter-at-Home grows in both
contributors and in research queries: What types of self-selection
bias will we see with volunteer contributors and how do we mitigate
and understand this bias? How does aggregation affect data utility?
How does the intermittent nature of clients in the Critter-at-Home
network affect results? How do we improve research utility while
still protecting privacy? Can we extend Critter to running on other
platforms such as smart phones?

We anticipate that end-users are interested in participating in
research, and with an easy to install, low-risk system which gives
users full control over their data, we expect users are quite willing to
donate information. For contributors though, Critter-at-Home is not
just about advancing research, but also about learning more about
their systems and Internet behavior. Wide participation in projects
like Panopticlick [36]—which give information on how unique and
trackable a user’s browser is—indicate that there is a broad audience
who is interested in learning how their Internet behavior compares
to others.
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