
LDplayer: DNS Experimentation at Scale (abstract with poster)
USC/ISI Technical Report ISI-TR-721, August 2017∗

Liang Zhu
USC/Information Sciences Institute

John Heidemann
USC/Information Sciences Institute

1 INTRODUCTION

The Domain Name System (DNS) has grown to play various
of broader roles in the Internet, beyond name-to-address
mapping. It provides query engine for anti-spam [3] and
replica selection for content delivery networks (CDNs) [4].
DANE [2] provides additional source of trust by leveraging
the integrity verification of DNSSEC [1]. The wide use and
critical role of DNS prompt its continuous evolution.

However, DNS protocol evolution and expansion of its
use have been slow because advances must consider a huge
and diverse installed base: a complex ecosystem of many
implementations, archaic deployments, and interfering mid-
dleboxes.

DNS performance issues are also a concern, both for choices
about protocol changes, and for managing inevitable changes
in use. There are a number of important open questions: How
does current server operate under the stress of a Denial-of-
Service (DoS) attack? What is the server and client perfor-
mance when protocol or architecture changes?

We believe accurate, high-speed trace replay is essential
to study many open questions in DNS, because DNS perfor-
mance can be very sensitive to query timing and caching, and
interactions across levels of the DNS hierarchy and multiple
servers. These interactions seem impossible to model, and
difficult to capture with a naive set of servers.

In this poster we will describe LDplayer, a configurable,
general-purpose DNS testbed that enables DNS experiments
at scale in several dimensions: many zones, numerous levels of
DNS hierarchy, large query rates, and diverse query sources.
To meet these requirements while providing high fidelity
experiments, LDplayer includes a distributed DNS query
replay system and methods to rebuild the relevant DNS
hierarchy from traces. We show that a single DNS server
can correctly emulate multiple independent levels of the
DNS hierarchy while providing correct responses as if they
were independent. We show the importance of our system to
evaluate pressing DNS design questions, using it to evaluate
changes in DNSSEC key size.

2 LDPLAYER: DNS TRACE PLAYER

We next list the high-level design requirements for our system
(§2.1) and the architecture to meet these requirements (§2.2).

2.1 Design Requirements

The goal of LDplayer is to provide a controlled testbed for
repeatable experiments upon realistic evaluation of DNS

∗This poster abstract was published as part of SIGCOMM 2017 [6].
This technical report adds a copy of the poster.

performance. To meet this goal, we must achieve the following
important requirements.

Emulate complete DNS hierarchy efficiently: LD-
player must emulate multiple independent levels of the DNS
hierarchy and provide correct responses using minimal com-
modity hardware. It is not scalable to use separated servers
or virtual machines to host each zone because of hardware
limits and many different zones in a network trace. A sin-
gle server providing many zones of DNS hierarchy does not
work directly, because the server gives the final DNS answer
straightly and skips the round trip of DNS referral replies.

No replayed traffic leakage to the Internet: Experi-
mental traffic must stay inside the testbed, without polluting
the Internet. Otherwise each experiment could leak bursts of
requests to the real Internet, and simulations of high rates
or parallel experiments might stress real-world servers.

Repeatability of experiments: LDplayer needs to sup-
port repeatable and controlled experiments. For different
experiment trials, the replies to the same set of query replay
should stay the same. This reproducibility is very important
for experiments that require fixed query-response content to
evaluate new transform in DNS, such as protocol changes
and new server implementations.

Enable experiments with traffic variations: Replay
must be able to manipulate traces to answer “what if” ques-
tions with variations of real traffic. Since input is normally bi-
nary network trace files, the main challenge is how to provide
a flexible and user-friendly mechanism for query modification.
We must minimize the delay by query manipulation, so that
input processing is fast enough to keep up with real time.

Accurate timing at high query rates: LDplayer must
be capable of replaying queries at fast rates while preserving
correct timing, and reproduce real-world traffic patterns for
both regular and under attack. However, both using a single
host and many hosts have challenges. Due to resource con-
straints on CPU and the number of ports, a single host may
not be capable to replay fast query stream or emulate diverse
sources. A potential solution is to distribute input to different
hosts, however, it brings another challenge in ensuring the
correct timing and ordering of individual queries.

Support multiple protocols effectively: LDplayer needs
to support both connectionless (UDP) and connection-oriented
(TCP and TLS) protocols, given increasing interest in DNS
over connections [7]. However, connection-oriented protocols
bring challenges in trace replay: emulating connection reuse
and round-trip time (RTT). The query replay system of LD-
player is the first system that can emulate connection reuse

for DNS over TCP; Other tools, such as Bit-Twist and Tcpre-
play, replay each packet in the trace mechanically. We expect
to emulate RTT based on real-world distributions.

2.2 Architecture

We next describe LDplayer’s architecture (Figure 1). With
captured network traces of DNS queries (required) and re-
sponses (optional), a researcher can use the Zone Constructor
to generate required zones. LDplayer uses a single authorita-
tive DNS server with proxies to emulate entire DNS hierarchy
(Hierarchy Emulation). The single DNS server provides all
the generated zones. The proxies manipulate packet addresses
to make the authoritative server provide correct answers. As
a distributed query system, the Query Engine replays queries
in the captured traces. Optionally, the researcher can use
Query Mutator to change the original queries arbitrarily.

Each component in LDplayer addresses a specific design
requirement from §2.1. In LDplayer’s zone constructor, we
synthesize data for responses and generate required zone
files by performing one-time fetch of missing records. We
run a real DNS server that hosts these reusable zone files
and provides answers to replayed queries, to have repeatable
experiments without disturbing the Internet. By default,
our system provides consistent replies. Simulating dynamic
address mapping like CDN is future work.

With generated zone files, we need to emulate DNS hier-
archy to provide correct answers. Logically, we want many
server hosts, one per each zone, like the real world. However,
we compress those down to a single server process with single
network interface using split-horizon DNS [5], so that the
system is scalable to many different zones. We redirect the
replayed experimental traffic to proxies, which manipulate
packet addresses to discriminate queries for different zones
to get correct responses. We could run multiple instances of
the server to support large query rate and massive zones.

In LDplayer’s query mutator, we pre-process the query
trace, so that query manipulation does not limit replay times.
We convert network traces to human-readable plain text
for flexible and user-friendly manipulation. We then convert
changed query text to a customized binary stream of internal
messages for fast query replay. In principle, at lower query
rates, we could manipulate a live query stream in near real
time.

In LDplayer’s query engine, we use a central controller to
coordinate queries from many hosts and synchronize the time
among different hosts, so that LDplayer can replay large query
rates accurately. The query engine can replay queries via
different protocols (TCP or UDP) effectively. We distribute
queries from the same source addresses in the original trace to
the same end queriers for replay, in order to emulate queries
from the same sources which is critical for connection reuse.
LDplayer replays queries based on the timing in the original
trace without preserving query dependencies.

The software of our system will be publicly available at:
https://ant.isi.edu/software/ldplayer/index.html.

Query
Mutator

Zone
Constructor

Recursive
Server

Authoritative
Server

Pre-captured
Network trace

P
ro

xy P
ro

xy

recursive
replay

Query
Engine Hierarchy

Emulation
Root, TLD,

SLD ...

Figure 1: LDplayer architecture

3 APPLICATIONS

Our system enables applications of answering important re-
search questions. We next present example applications.

Impact of Change in DNSSEC Key Size: Longer
Zone Signing Key (ZSK) and more queries DNSSEC enabled
(DO bit set) will increase reply traffic. By using LDplayer to
replay B-Root query traffic, we evaluate scenarios with differ-
ent key sizes, and different mixes (up to 100%) of DNSSEC-
enabled traffic. Our experiment shows that going from 72%
DO (today) to 100%, root response traffic becomes 225Mb/s
(median) with 1024-bit ZSK, and 296Mb/s (median) with
2048-bit ZSK in steady state. Compared to 170Mb/s with
current 72% DO and 1024-bit ZSK, root response traffic
could increase by 74% in the future.

Performance of DNS over TCP and TLS: The use
of TCP and TLS improves the security and privacy of DNS.
While studies have suggested increased use of TCP and
TLS has only modest cost [7], trace replay can provide a
more complete evaluation. Important open questions include
evaluation of connection-based DNS across multiple levels
of the DNS hierarchy. As a future work, we can study end-
to-end client latency of DNS over TCP and TLS with RTT
emulated by real-world distribution, and evaluate memory
requirements on actual server implementations.

REFERENCES
[1] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. 2005.

DNS Security Introduction and Requirements. RFC 4033. (March
2005).

[2] P. Hoffman and J. Schlyter. 2012. The DNS-Based Authentica-
tion of Named Entities (DANE) Transport Layer Security (TLS)
Protocol: TLSA. RFC 6698. (Aug. 2012).

[3] C. Lewis and M. Sergeant. 2012. Overview of Best Email DNS-
Based List (DNSBL) Operational Practices. RFC 6471. (Jan.
2012).

[4] Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and
Fabián E. Bustamante. 2006. Drafting Behind Akamai
(Travelocity-based Detouring) (SIGCOMM ’06).

[5] Wikipedia. 2017. Split-horizon DNS. (2017). https://en.wikipedia.
org/wiki/Split-horizon DNS [Online; accessed 13-July-2017].

[6] L. Zhu and J. Heidemann. 2017. LDplayer: DNS Experimentation
at Scale. In Proceedings of the SIGCOMM Posters and Demos
(SIGCOMM Posters and Demos ’17).

[7] L. Zhu, Z. Hu, J. Heidemann, D. Wessels, A. Mankin, and N.
Somaiya. 2015. Connection-Oriented DNS to Improve Privacy
and Security. In 2015 IEEE Symposium on Security and Privacy.

2

https://ant.isi.edu/software/ldplayer/index.html
https://en.wikipedia.org/wiki/Split-horizon_DNS
https://en.wikipedia.org/wiki/Split-horizon_DNS

LDplayer architecture

 Goal: validate the accuracy of our query replay system

 Can our system reproduce the correct query timing and traffic pattern?

 Approach:

 Replay different DNS traces in controlled testbed environment

 Compare the time difference for each query and overall query rate

 one-hour trace of a root DNS server and synthetic traces with different fixed

query inter-arrival time (1 s to 0.1 ms)

 Result:

Multi-level query distribution

Server proxies manipulate addresses

DNS Experimentation at Scale
Liang Zhu, John Heidemann

USC/Information Sciences Institute

{liangzhu, johnh}@isi.edu

 Explore “What If” scenarios to facilitate DNS evolution

 Protocol and architecture changes

 What if all DNS requests were made over TCP or TLS?

 How does server operate under stress of a DDoS attack?

 Hard to get definitive answers to these questions with modeling

 interactions of caching and implementation optimizations

 many levels of the DNS hierarchy

 Evolving DNS is challenging by itself

 Complex ecosystem

 many implementations, deployments, and interfering middle-boxes.

We built a configurable DNS testbed that enables DNS experiments at scale, providing a

basis for DNS experimentation that can further lead to DNS evolution.

We showed that our system can correctly emulates multiple independent levels of DNS

hierarchy on a single DNS server instance.

We validated that our query replay system can replay queries with correct timing and

reproduce the traffic pattern.

We demonstrated the power of controlled replay of traces by exploring DNS root response

traffic with different DNSSEC key sizes and all queries with DNSSEC.

 Software will be available: https://ant.isi.edu/software/ldplayer

Introduction
In the last 20 years, the Domain Name System (DNS) has grown to play various of broader roles in

the Internet, beyond name-to-address mapping, such as query engine for anti-spam and replica

selection for content delivery networks. However, DNS protocol evolution and expansion of its use

has been slow. First, the advances of DNS must consider a huge and diverse installed base. Second,

DNS performance issues are also a concern, both for choices about protocol changes, and for

managing inevitable changes in use. Finally, although ideally models would guide these questions,

DNS is extraordinarily difficult to model because of interactions of caching and implementation

optimizations across levels of the DNS hierarchy. These motivate our work.

We suggest DNS experimentation at scale can fill this gap. We present LDplayer, a configurable,

general-purpose DNS testbed. LDplayer enables DNS experiments at scale in several dimensions:

many zones, multiple levels of DNS hierarchy, high query rates, and diverse query sources. To meet

these requirements while providing high fidelity experiments, our approach includes a distributed

DNS query replay system and methods to rebuild the relevant DNS hierarchy from traces. We show

that a single DNS server can correctly emulate multiple independent DNS hierarchy while providing

correct responses. We validate our system can replay DNS queries with correct timing, reproducing

the DNS traffic pattern. We show the importance of our system to evaluate pressing DNS design

questions, using it to evaluate changes in DESSEC key size.

Construct Zone to Allow Replay Without Leakage

 Goal: repeatable experiment without leakage

 Approach

 Discover answers by replaying queries to a recursive server

 Build zone files using captured responses

Emulate Whole Hierarchy Efficiently

 Goal: correctly answer all the replayed queries

 Challenge: scale to 100s of zones with few computers

 one server does not work directly

 dump all the zones into the same server

 queries to different zones are the same

 responses from different zones are different

 server does not know which zone to use

 many servers do not work either

 one server per zone like real world

 run out of hardware, not scalable

 Approach: one server with proxy

 Single server, single address with many zones

 Use split-horizon DNS

 Match queries by source addresses

 The public IP addresses of zone’s

nameservers as matching criteria

 Proxies capture requests and responses

 swap src and dst address

 change dst address to the other server’s

Support Experimental Changes of Queries

 Goal: flexibility in various experiments with the ability to do “What-If” evaluation

 Approach:

 Convert binary trace to plain text for easy manipulation

 Convert modified text to the binary of internal messages for fast processing

Fast Replay of Many Queries

 Goal:

 provide fast query rates

 emulate diverse sources

 correct timing for replayed queries

 Challenge:

 Resource limit in a single host:

 CPU, memory and the number of ports

 Approach: distribute query stream to different hosts

 A central Controller managing a team of Distributor

 Distributor further controls several Queriers

Approach

Motivation

Conclusion

 Emulate complete DNS hierarchy efficiently

 Emulate multiple independent levels of the DNS hierarchy and provides correct response,

using minimal commodity hardware in a lab environment.

 No experimental replay leakage

 Experimental traffic must stay inside the testbed without polluting the Internet

 Otherwise each experiment could leak bursts of requests stressing real-world servers

 Repeatability of experiments

 Experimental results should stay the same for same set of input traces

 DNS response may change if re-looked up at experiment time

 Flexible experiments with query mutate

 Replay must be able to manipulate traces to answer “what if” questions with variations of

real traffic

Accurate timing at high query rates

 Replay queries at fast rates, while preserving correct timing to reproduce interesting real-

world traffic patterns for both regular and under attack.

 Support multiple protocols effectively

 Support both connectionless (UDP) and connection-oriented (TCP, TLS) protocol given

increasing interest in DNS over connections

Design Requirements

tiny (0.1%) difference in

query rate for almost all

(4 trials with 98%-99% and

1 trial with 95%) of 3.6K

data points (1-hour period)

tiny error

(mostly ±2.5ms

quartiles) of

query time in

most cases

Preliminary Validation

Example Applications
 One example: Understand the traffic change when all queries with DNSSEC and larger key sizes

 Approach:

 Replay root DNS query traffic with different DNSSEC key sizes

 mutate the queries with all DO (DNSSEC OK) bit set

accurate, high-speed trace replay

is essential to study many open questions

overall the

error peek is

reasonably

small

(±17ms)

One case with

slightly larger,

but still small

errors (±8ms

quartiles)

Root response traffic could

increase by 74% in the

future, compared to 170Mb/s

with current 72% DO and

1024-bit ZSK

With 100% DO root response

traffic becomes 225Mb/s

(median) with 1024-bit ZSK,

and 296Mb/s (median) with

2048-bit ZSK

ACM SIGCOMM 2017, 2017-08-22
 Other applications include evaluating the performance of DNS over TCP and TLS in practice

