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ABSTRACT
DNS depends on extensive caching for good performance,
and every DNS zone owner must set Time-to-Live (TTL)
values to control their DNS caching. Today there is rela-
tively little guidance backed by research about how to set
TTLs, and operators must balance conflicting demands of
caching against agility of configuration. Exactly how TTL
value choices affect operational networks is quite challeng-
ing to understand for several reasons: DNS is a distributed
service, DNS resolution is security-sensitive, and resolvers
require multiple types of information as they traverse the
DNS hierarchy. These complications mean there are mul-
tiple frequently interacting, places TTLs can be specified.
This paper provides the first careful evaluation of how these
factors affect the effective cache lifetimes of DNS records,
and provides recommendations for how to configure DNS
TTLs based on our findings. We provide recommendations in
TTL choice for different situations, and for where they must
be configured. We show that longer TTLs have significant
promise, reducing median latency from 183ms to 28.7ms for
one country-code TLD.

KEYWORDS
DNS, recursive DNS servers, caching

1 INTRODUCTION
The Domain Name System (DNS) [29] is a core component
of the Internet. Every web page and e-mail message requires
DNS information, and a complex web page can easily require
information from a dozen or more DNS lookups. The DNS
provides a low-latency, distributed database that is used to
map domain names to IP addresses, perform service location
lookups, link distributed potions of the DNS together, includ-
ing in-protocol integrity protection using in-protocol DNS
key storage, linking and verification algorithms.

With this central position, often serving as the initial trans-
action for every network connection, it is not surprising that
DNS performance and reliability is critical. For example,

DNS performance is seen as a component of web browsing
that must be optimized (for example, [48]), and DNS ser-
vice providers compete to provide consistent, low latency
service around the world. Even in less-latency sensitive ser-
vices, such as the authoritative service for the Root DNS,
reducing latency is still a desired goal [46]. DNS must al-
ways work, and failures of major DNS resolution systems
frequently makes public newspaper headlines. In 2016, when
a Distributed Denial-of-Service (DDoS) attack led to prob-
lems at a DNS provider, it resulted in disruptions to multiple
popular public services (including Github, Twitter, Netflix,
and the New York Times) [39].
DNS is also often used to associate clients with near-

by servers by large content providers [9] and in Content-
Delivery Networks (CDNs) [10]. In this role, DNS helps both
performance and reliability, associating clients to nearby
sites [46, 51], and implementing load balancing, both to re-
duce latency, and to control traffic to support site mainte-
nance and react to DDoS attacks [33].

It is not surprising that DNS has developed a complex in-
frastructure, with client software (the stub resolver, provided
by OS libraries) that contacts recursive resolvers (a type of
DNS server that can iterate through the DNS tree for an-
swers), which in turn contact authoritative servers (which
hold the answers being sought). Recursive and authorita-
tive resolvers are often carefully engineered, with pools of
servers operating behind load balancers, sometimes in mul-
tiple layers [47], often employing IP anycast [1].

Caching is the cornerstone of good DNS performance and
reliability. A 15ms response to a new DNS query is fast,
but a 1ms cache hit to a repeat query is far faster. Caching
also protects users from short outages and can mute even
significant DDoS attacks [33].
DNS record TTLs (time-to-live values) directly control

cache durations [30, 31] and, therefore, affect latency, re-
silience, and the role of DNS in CDN server selection. While
caching DNS servers and anycast have all been extensively
studied, surprisingly, to date there has been little evaluation of
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TTLs. Some early work modeled caches as a function of their
time-to-live values (the TTL) [22], and recent work examined
their interaction with DNS [33], but no research provides
recommendations about what TTL values are good.

Determining good TTL values for DNS is surprisingly chal-
lenging. A fundamental tension exists between short and
longer TTL values. Short TTLs allow operators to change
services quickly, as part of regular operation for load balanc-
ing in CDNs, or perhaps to redirect traffic through a DDoS
scrubber. Yet, long TTLs reduce latency seen by clients, re-
duce server load, and provide resilience against longer DDoS
attacks.

But not only is there no “easy” optimal setting, but perfor-
mance of modern DNS is affected by many TTLs, since full
resolution of a DNS name may require dozens of lookups
across several organizations, all potentially using different
TTLs. As a distributed database, TTLs are given in both the
parent and child at a delegation boundary, and these may
differ. In addition, responses come in different flavors, with
some values labeled as authoritative, and others labeled as
hints (“additional”). Finally, DNS records sometimes depend
on the freshness of other records, which can be used as the
basis of multiple points of attack. These concerns have been
exploited as part of sophisticated DNS hijacking to open user
accounts [24].
With only limited academic study, differing operational

requirements, and effects that emerge from different com-
ponents run by multiple parties, it is not surprising that, to
our knowledge, there is no operational consensus for what
TTL values are reasonable.With this lack of consensus and
understanding, and a general operational attitude of “if it
ain’t broke, don’t fix it”, we see a large range of values in
practice (§5), and new deployments have little consistent
expertise to rely upon when making TTL choices.
The goal of this paper is to fill this gap, exploring how

these many factors influence TTL effectiveness (§2), and pro-
vide a recommendation about good TTL values for different
scenarios. We use both controlled experiments and analysis
of real-world data to make informed recommendations to
operators.
Our first contribution shows what the effective TTL is

as a result of TTLs stored in different places (§3) of across
multiple, cooperating records (§4). Second, we examine real-
world DNS traffic and deployments to see how current use
compares to our evaluation, and how operators choose TTL
values and how their choices between short and long TTLs
affect latency and operator flexibility (§5).

Finally, we show that DNS TTLs matter, since longer TTLs
allow caching, reducing latency and traffic (§6.2). We outline
the trade-offs and provide recommendations (§6): those us-
ing CDNs, load balancers may require short TTLs (5 or 15

minutes), but most others should prefer longer TTLs (a few
hours).
Discussion of our early results with operators prompted

increase in their TTLs, and we show that the median latency
drops from 183ms with their earlier short TTLs, to only
28.7ms now that longer TTLs enable better caching.
We will make the majority of datasets available at no

charge. The DITL data is held by DNS-OARC for semi-public
use, and the RipeAtlas datasets are public. Only data from .nl

cannot be released. Our measurements are all about public
network infrastructure and pose no ethical or privacy issues.

2 OUR QUESTION: WHICH TTLS
MATTER?

While DNS caching seems simple on its face, with each record
cached up to a given time-to-live, the reality is more com-
plex: DNS records come from several places and resolution
requires traversing multiple names and types. We next look
systematically at each source of information and determine
which, in practice, takes priority.

First, records are duplicated in multiple places, sometimes
with different TTLs. Specifically, DNS records that cross del-
egation boundaries are in both the parent and the child zone
and can have different TTLs. In §3 we examine if recursives
in the wild prefer TTL values provided by the parent or child.

Second, resolution of a fully qualified domain name (FQDN)
requires identifying authoritative servers (NS records) and
their IP addresses (A or AAAA records) for each part of the
FQDN . FQDN traversal raises two factors. First, communi-
cating with an authoritative server requires knowing its
IP address(es), but the NS and A/AAAA records for it may
also have different TTLs. Second, records for it may be in
bailiwick (when they are under the domain being served,
so ns.example.org is in bailiwick of example.org [20]) or
out of bailiwick (ns.example.com would not be in bailiwick
of example.org). These factors interact: some recursive re-
solvers discard in-bailiwick A/AAAA records when the NS
record expires, as we show in §4.
The answer to these questions should be given in the

DNS specifications. Unfortunately early specifications were
somewhat informal, and implementations varied in prac-
tice. The original DNS specifications give the child’s TTL
precedence [29, 32], and later clarifications explicitly ranked
Authoritative Answers over glue [14]. DNSSEC [7, 8] con-
firms that authoritative TTL values must be enclosed in and
verified by the signature record, which must come from the
child zone. Thus our question is:Do wild resolvers follow these
specifications for TTL priorities?

Answering these questions is also important to understand
who ultimately controls a zone’s caching?



Cache me if you can (extended) ISI-TR-734, May 2018, Marina del Rey, California, USA

Q / Type Server Response TTL Sec.
.cl / NS k.root-servers.net a.nic.cl/NS 172800 Auth.

a.nic.cl/A 172800 Add.
a.nic.cl/AAAA 172800 Add.

.cl/NS a.nic.cl a.nic.cl/NS 3600⋆ Ans.
a.nic.cl/A 43200 Add.
a.nic.cl/AAAA 43200 Add.

a.nic.cl/A a.nic.cl 190.124.27.10/A 43200⋆ Ans.
Table 1: a.nic.cl. TTL values in parent and child (⋆
indicates an authoritative answer), on 2019-02-12.

3 ARE RESOLVERS PARENT- OR
CHILD-CENTRIC?

We first examine how DNS handles records that are served
from multiple places. The DNS is a distributed database with
portions of the hierarchy (zones) managed by different orga-
nizations through delegation. Glue records duplicate content
from a child zone in the parent, either for convenience or
out of necessity, if the authoritative server for the child zone
is named only in that zone (in bailiwick).

We examine this question with a case-study and wild traf-
fic observed from the edge and from authoritative servers for
a country code TLD. We reach two key results of cross-zone
TTLs: first, most recursive resolvers are child-centric,
trusting the TTL in the child zone’s authoritative server
over the glue in the parent zone. Depending on the measure-
ment technique, just 52% to 90% of queries are child-centric.
However, our second finding is that enough queries are
parent-centric that they cannot be ignored. The other
queries are are parent-centric, and although they are not the
majority, there are enough (10 to 48%) that onemust set TTLs
the same in both parent and child to get consistent results.
In cases where operator is without control of the parent zone’s
TTL, resolvers will see a mix of TTLs for that zone.

3.1 Case Study: Chile’s .cl

To explore this question of whether the parent or child’s
TTL in the hierarchy is “believed more frequently”, we first
look at Chile’s country-code TLD, .cl. Resolving this name
involves three authoritative servers as shown in Table 1.

We see three different TTLs: 172800 s at the root, 3600 and
43200 s at the .cl authoritative servers, and 43200 s when we
explicitly ask for the address record for the name server’s IP
address. Which TTL is used depends implementation choices
of the recursive resolver, which may prefer either the parent
or child’s TTL.

A second factor is that response components are returned
in different DNS message sections [29], and may be treated
differently by different implementations. Records are marked
authoritative (.cl’s NS record at the root), as answer (.cl’s

NS record at .cl), or additional (A records attached to the
NS response at .cl).
Though answers from the child, when the AA flag is set,

have higher priority, when it resolves the domain example.cl,
it may choose to never contact the child, and simply relies on
the authority and additional records returned by the parent.
(For example, to resolve example.cl, a resolver can use the A
record of a.nic.cl as provided by the Roots in Table 1.) This
question has been previously defined as resolvers’ centric-
ity [6, 11, 16, 40]: resolvers using the TTL provided by the
parent authoritative (such as the Roots for .cl) servers are
defined as parent-centric, while child-centric resolvers will
use the child authoritative.
Resolvers employing in-resolver authoritative mirroring

technologies, such as RFC7706 [25] or LocalRoot [18], or serv-
ing stale content [26] (i.e., answering queries past TTL expi-
ration only when the NS records for the given domain are un-
responsive) will exhibit different perceived TTL caching be-
haviors. In the former case, resolvers implementing RFC7706
or LocalRoot, entire zones will be transferred into an author-
itative server that runs in parallel with a recursive resolver;
no queries to these zones will likely be seen exiting the re-
cursive resolver ([18]), though questions to their children
will still be sent. For the latter case, resolvers serving stale
content, outgoing requests will likely continue to be seen on
the wire, but even when unanswered, resolvers will continue
serving (expired) answers to clients.
This example illustrates the complexity of what TTLs

implementations use. We next look at how these rules work
in practice.

3.2 Uruguay’s .uy as Seen in the Wild
Wenext consider Uruguay’s country-code TLD .uy.We select
Uruguay because it’s ccTLD has two very different TTL
values its NS record: 172800 s at the root, and only 300 s in
their own authoritative server (as of 2019-02-14), and 120 s
for that server’s A record.
These large differences allow us to study their effects on

caching from “the wild”. We use RIPE Atlas [42, 43], mea-
suring each unique resolver as seen from their ∼10k probes
physically distributed around the world. Atlas Probes are
distributed across 3.3k ASes, with about one third hosting
multiple vantage points (VPs). Atlas software causes each
probe to issue queries to each of its local recursive resolvers,
so our VPs are the tuple of probe and recursive. Due to that,
we end up with more than 15k VPs.

We make queries first for the NS record of .uy, then the
A records of its authoritative server a.nic.uy. In each case,
we query from each VP every 10 minutes (twice the shortest
TTL of the NS records), for either two or three hours (for
the NS or A records). For each query, we look for the TTL
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.uy-NS a.nic.uy-A google.co-NS .uy-NS-new
Frequency 600s 600s 600s 600
Duration 2h 3h 1h 2h
Query NS .uy A a.nic.uy NS google.co NS .uy

TTL Parent 172800 s 172800 s 900 s 172800 s
TTL Child 300 s 120 s 345600 s 86,400
Date 20190214 20190215 20190304 20190304
Probes 8963 8974 9127 8682
valid 8863 8882 9034 8536
disc 100 92 93 96

VPs 15722 15845 16078 15325
Queries 189506 285555 97213 184243
Responses 188307 282001 96602 184243

valid 188225 281931 96589 184209
disc. 82 70 3 34

Table 2: Resolver’s centricity experiments. Datasets
available at [41].
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Figure 1: Observed TTLs from RIPE Atlas VPs for .uy-
NS and a.nic.uy-A queries.

as seen in the answer section of the DNS response, obtain-
ing about 190k and 280k valid responses from .uy-NS and
a.nic.uy-A experiments, respectively. Table 2 summarizes
the experiments.
Figure 1 shows the CDF of the valid TTLs from all VPs.

The vast majority of responses follow the child’s value, not
the parent’s: 90% of .uy-NS are less than 300 s, and 88% of
a.nic.uy-A are less than 120 s. We conclude that most re-
solvers are child-centric, preferring the TTL of the authorita-
tive server (following §5.4.1 of RFC2181 [14]).
Roughly 10% of resolvers appear to be parent-centric, fol-

lowing the 2-day TTL of the root zone (or these resolvers are
manipulating TTLs [17, 33]). In fact, about 2.9% of .uy-NS
and 2.2% of a.nic.uy-A show the full 172800 s TTL. Among
those resolvers, we found that some probes used OpenDNS
public resolvers [37]. We later sent queries to it and con-
firmed that they are indeed parent-centric, but only for the
Root zone (probably implementing RFC7706).
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Figure 2: Observed TTLs from RIPE Atlas VPs for
.google.co-NS queries.

3.3 A Second-level Domain in the Wild
To confirm our observations that client-centric TTL pref-
erences extend past top-level domains, we repeat the ex-
periment from §3.2 for google.co, a popular second-level
domain. The domain google.co has two TTL values for its
NS records: 900 s from the parent servers (.co), and 345600
from the actual authoritative servers ns[1-4].google.com (as
of 2019-03-05). We query every 600 s, for one hour (Table 2).

Figure 2 shows the CDF of observed TTLs for this second-
level domain, for 16k VPs. About 70% of all answers have
TTLs longer than 900 s—results that must come from the
child authoritative server. About 15% of all answers, many
using Google public DNS, have TTLs of 21,599 s, suggesting
TTL capping. About 9% of all answers have a TTL of exactly
900 s, suggesting a fresh value from the parent authoritative
server.

This experiment shows that second-level domains are also
most often child-centric in selecting TTLs.

3.4 Confirming Broadly with Passive
Observations of a Country’s TLD

Prior sections showed that specific domains are mostly client-
centric, observing from the authoritative side, looking at
who is querying and what strategy they use (parent- or child-
centric). Here we study passive data for the the Netherlands
zone, .nl.

At the time of this experiment (2019-03-06 to -07), the .nl
ccTLD had four authoritative servers (sns-pb.isc.org and
ns[1-3].dns.nl), each with multiple IP anycast sites [2]. We
gather DNS data from ns[1,3].dns.nl servers using (anonymized
for review), which saw more than 6.5M queries for the two-
day period. The A records for ns[1,3].dns.nl are listed in
the parent zone (the root zone) with glue records containing
TTL values of 172800 s (2 days). The children’s authoritative
servers, however, contain only a 3600 s (1 hour) TTL.
We examine query interarrivals for each resolver to clas-

sify that resolver as parent- or child centric. We find about
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Figure 4: CDF of interarrival time from each
resolver/query-name for .nl.

205k unique resolver IP addresses, providing 13× more VPs
than our experiment using RIPE Atlas (§3.2 and §3.3).

We see 368k groups of resolver, query-name pairs, in which
query-name is one of the four NS records for .nl pairs, and
we compute the interarrival time between queries for each
group.

Figure 3 shows the CDF of the number of queries for each
group for the aggregate queries (the solid blue “all” line), and
for those queries where the interarrival time is more than
2 s (the red “filtered” line). This filtering aims at removing
duplicate queries that are retransmissions, but we see that
the curves are essentially identical.
More than half of the groups appear to be child-centric,

since 52% send more than one query over the two days, sug-
gesting they are following the shorter child TTL. Another
possible explanation is that some recursive resolvers cap
TTLs to less than 2 days (some versions of BIND [21], how-
ever, use one week as the default maximum caching time).

Just less than half (about 48%) send only one query during
observation. Since we only observe two of the four author-
itative servers, it is possible these clients made queries to
non-observed authoritative servers. (It is known that clients
tend to rotate betweens servers [34]). Another possibility is

that these clients did not need to handle multiple queries for
names under .nl.

To investigate if these resolvers, which sent only one query
per query-name, are indeed parent-centric, we extract the
unique source IPs from the groups that sent only one query;
which gives us 122562 unique IP addresses. Around 14% of
these IPs are also present in groups that sent more than
one query for other names. For example, an IP that queries
once for ns1.dns.nl, but queries 3 times for ns2.dns.nl. This
suggests that at least 14% of the resolvers in this group behave
as child centric as well.

We gain greater confidence how many resolvers are child-
centric by looking at the median interarrival time for re-
solvers that send multiple queries for the same name in
Figure 4. Even observing only two of the four authoratives,
we can conclude that most resolvers use the child TTL. We
also see “bumps” around multiples of one hour. We believe
that these bumps are resolvers returning to the same server
after the TTL expires. Finally, the small bump at 24 hours
suggests resolvers that cap caches at 1 day.
We conclude that, even when observed from the authori-

tatives, at least half recursive resolvers are child-centric.

4 THE MANY TTLS IN RESOLVING A
FULLY-QUALIFIED DOMAIN-NAME

We next turn to the second problem from §2: how do the
different parts of a FQDN, different records (NS and A or
AAAA), different answer types (authoritative answer, au-
thority, and additional), and different server configurations
(in and out-of-bailiwick) change the effective TTL lifetime
of the originating request? We answer these questions with
two controlled experiments: one with an in-bailiwick server,
ns1cachetest.net, and the other with an out-of-bailiwick
server.
The key results of this section are to show that it does

matter where the authoritative server is located in the DNS
hierarchy. For in-bailiwick authoritative servers glue
records drive cache lifetimes, and the TTLs of the IP ad-
dress and authoritative server are frequently linked (a still
valid A record will still expire when its covering NS record ex-
pires). By contrast, out-of-bailiwick servers use cached
information about authroritative server for the full
TTL lifetime.

4.1 Experimental Setup
Our experiments use a test domain (cachetest.net from [33])
over which we have complete control. This domain has two
authoritative servers: ns[12]cachetest.net, as can be seen
in Figure 5, both running Debian and BIND 9.1 on EC2 in
Frankfurt, Germany.
We add this domain to the parent .net zone, which re-

quires adding both NS records in .net for our domain and
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.net
NS cachetest.net 172800

A ns[1,2]cachetest.net: 172800

cachetest.net
NS cachetest.net 3600

A ns[1,2]cachetest.net: 3600
NS subcachetest.net: 3600

A ns3.subcachetest.net: 7200

clients
e.g.: Atlas Probes

subcachetest.net

t = 9min: redirect
to new ns3.sub

VP

ns1.sub ns1.subNS subcachetest.net: 3600
A ns3.subcachetest.net: 7200

ns1 ns2

A ... M

Figure 5: TTLs and domains for in-bailiwick experi-
ment [41]. Italics indicate glue records.

glue records for the addresses of our authoritative servers
(italic in Figure 5). By default, records in .net have a TTL of
172800 s, or 2 days.

Our cachetest.net one is run on authoritative servers
running in EC2 VMs. (We run our own DNS servers in our
own VMs and do not use Amazon’s Route53 [4] hosted DNS.)
We set the TTLs for the NS and A records in our zone to
3600 s.
As can be seen in Figure 5, recursives resolvers ill find

two different TTLs for the same record (at both parent and
child). Even thought most resolvers are expected to be child-
centric (§3), for sake of precision, we decided to rule out
this influence by creating the subcachetest.net zone. We
configure this subzone in two different experiments using a
third dedicated EC2 VM also in Frankfurt.

4.2 Effective TTLs for Servers Inside the
Served Zone

We first look at how resolvers handle authoritative servers
with names in the served zone—those that are in-bailiwick.
We show that most recursives require both fresh NS and A
records, and they re-fetch even valid A records when the NS
record expires.
For this experiment, we configure ns1.subcachetest.net

as an authoritative server for our subzone (subcachetest.net).
We set the TTL of its NS record to 3600 s and its A record TTL
to 7200 s. These TTLs are consistent in both the parent and
child zones, so recursives will have the same cache duration
regardless of which they prefer.

At t = 9min, we renumber ns3.subcachetest.net, chang-
ing its IP address to a different EC2 VM. This new VM also
serves this zone, but with some changes to the records, so
we can determine if the old or new authoritative server is
used and thus determine how caching works.

We test this potential dependency by querying the AAAA
record of PROBEID.subcachetest.net from all RIPE Atlas VPs
every 600 s, watching for the returned answer to change.

in-bailiwick out-of-bailiwick
Frequency 600 s 600 s
Duration 4h 4h
Query AAAA probeid.sub.cachetest.net
Date 20190315 20190314
Probes 9131 9150

Probes (val.) 8864 9053
Probes (disc.) 267 97

VPs 15618 16103
Queries 367060 387037

Queries (timeout) 39471 10436
Responses 341707 368478

Responses (val.) 340522 366853
Responses (disc.) 1185 1625

Table 3: Bailiwick experiments [41].

Since the authoritative’s NS and A records have different
TTLs, the time at which the response changes reveals the
caching behavior of the recursive resolver. We are looking
to see if the NS and A records are independent, or if they are
linked, causing the A record to expire earlier than it needs to,
when the NS record times out. To ensure the test answer is
not cached, PROBEID is inserted as a unique identifier for the
quering RIPE Atlas Probe [44] (see Table 3), and the AAAA
records have a TTL of 60 s, one tenth our probe interval,
which is record type used in our queries.

Table 3 shows the results of about 340k valid responses
from 15.6k RIPE Atlas VPs. (We discard responses that in-
cluded NS records, SERVFAIL, and others that did not include
the answer we expected.)
Figure 6 is a timeseries chart of the AAAA answers re-

ceived by our vantage points. We count howmany responses
were sent by each authoritative server (original and new),
aggregated to 10-minute bins. In this figure, the first arrow
down shows the time when we renumber the IP address of
the authoritative server (after 9 minutes).

This figure shows that before renumbering (at 9 minutes),
all queries are answered by the original server. From 9 to
60 minutes we see that some resolvers (the dark blue bars)
continue to use the original server, showing they have cached
and trust its A and NS records. Other resolvers (light yellow
bars) switch to the new server, suggesting they refetched the
new A record. We see that most resolvers trust their cache
up to the 1-hour TTL.
After one hour the NS records begin to expire. Over the

next hour we can test if the recursive resolver trusts its
already-cached, yet-still-valid TTL for the A record, or if it
drops it and refreshes it anyway and discovers the new server.
We see that with an in-domain server, very few recursives
continue to trust the cached A record—in-domain servers
have tied NS and A record cache times in practice. Specifically,
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Figure 6: Timeseries of answers for in-bailiwick experiment
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Figure 7: Timeseries of answers for out-of-bailiwick experiment

about 90% of the resolvers that queried on the first round
(blue on t = 0) refresh both the NS and A records at t = 60,
switching to the new server. We confirm this result from the
authoritative side in §4.4.
After two hours, both the NS and A should expire, so we

expect all recursives to switch to the new server.
We see that 305-390 VPs (about 2.25% of the total) con-

tinue with the old resolver, a phenomena known as “sticky
resolvers” [34].

4.3 Effective TTLs for Servers Outside the
Served Zone

We now move to what effective TTLs are seen when the
authoritative servers are outside the served zone (out-of-
bailiwick servers). In this case, the server’s IP addressed is
trusted even when the NS record is expired.

For this experiment, we replace both in-bailiwick authori-
tative servers with ns1.zurrundeddu.com. Since it is not with
the cachetest.net domain, it is an out-of-bailiwick server.
As before, the NS records in the glue has a TTL of 3600 s, and
the A glue record has a TTL of 7200 s. As before, we renum-
ber the A record of ns1.zurrundeddu.com after 9 minutes.
(The .com zone supports dynamic updates and we verify this
change is visible in seconds.) Finally, we query the AAAA
record from 16k RIPE Atlas VPs, every 600 s and watch for
changes (Table 3).

Figure 7 shows how VPs react to the changed records, and
Table 3 provides details about the experiment. Comparing
the in- and out-of-bailiwick cases (Figure 6 and Figure 7),
we see that VPs trust the A record for the old authoritative
server for nearly its full cache lifetime, out to 120minutes,
not just 60minutes. This result shows that most recursive
resolvers trust cached A records when served from different
zones (out-of-bailiwick), but not in-bailiwick servers.

4.4 Confirmation from the Authoritive
Side

We investigate in this section why results from in-bailiwick
and out-of-bailiwick differ that much. We analyze traffic
obtained at the authoritative servers.

First, we compare the responses for the queries issued by
RIPE Atlas VPs. The responses send to RIPE Atlas for the
in-bailiwick scenario had, besides the AAAA records in the
answers section and NS record in the authority section, an A
record (glue) of the NS records found in the additional. In
comparison, the out-of-bailiwick scenario had no additional
section, as the zone had no glue.
For out-of-bailiwick servers, the resolver must explicitly

fetch the address of the authoritative servers. This differ-
ence affects who provides that information: for in-bailiwick,
it comes from the parent based on the glue records, while
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for out-of-bailiwick it is from NS’s authoritative server. Re-
solvers therefore get different TTLs because parent and child
provide different TTLs.

5 TTLS IN THEWILD
While there is limited guidance for setting TTLs, we can look
at how TTLs are set in the wild to see if there is consensus.
We look both at top-level and popular second-level domains,
and report on our discussion of these results with operators.

5.1 Crawling TLDs and Popular Domains
To evaluate how TTL values are used in the wild, we study
five data sources; the root zone, the country-level domain of
the Netherlands, and “top” lists from Alexa [3], Majestic [28],
and Umbrella [50]. We use root data from 2019-02-13, and
all other data from 2019-02-06. While it is know that top
lists show considerable churn [45], our results provide a
snapshot of one instant, and the diversity of sources allow
us to evaluate trends.
Methodology: For each list, we retrieve TTLs of several

DNS records (NS, A, AAAA, MX, and DNSKEY) directly from
both the parent and child authoritative servers, measuring
from Amazon EC2 in Frankfurt. Here we report results only
for the child zone, since that reflects the operator’s intent,
and most recursives are child-centric (§3). (A full comparison
of parent and child is future work, but we know that the TTL
of .nl are 1 hour, so we know that about 40% of .nl children
have shorter TTLs, as can be seen in Figure 8a.)
Results: Table 4 shows the sizes of each crawl, and how

many replies we see each record and list. Most lists have
high response rates, with Umbrella as an exception with only
78% responding. The Umbrella list includes many transient
names that point to CDNs or cloud instances (for example,
wp-0f21050000000000.id.cdn.upcbroadband.com). We report
the number of unique records, and higher ratios of unique
records show greater levels of shared hosting. (The top lists
reflect diverse users and diverse hosting, while .nl reflects a
large number of static domains with relatively little use that
use low-cost shared hosting.)

Figure 8 shows the CDFs of TTLs of authoritative answers
for each record type. There are no A or AAAA records for
TLDs in root zone, so there we report the A and AAAA
records of their respective NS servers. For other lists of SLDs
or full names, we do not do this indirection and report only
A records for the given name. Our first observation is that
TTLs show a large variation in values, from 1 minute to 48
hours, for all lists and record types.
Second, we see some trends in different lists. In general,

the times reflect human-chosen values (10 minutes and 1, 24,
or 48 hours). In the root, about 80% of records have TTLs
of 1 or 2 days. For Umbrella, on the other hand, 25% of its
domains with NS records under 1 minute. This difference
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Figure 8: CDF of TTLs per record type, for each list.

wp-0f21050000000000.id.cdn.upcbroadband.com
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Alexa Majestic Umbre. .nl Root
format 2LD 2LD FQDN 2LD TLD
domains 1000000 1000000 1000000 5582431 1562

responsive 988654 928299 783343 5454833 1535
discarded 11346 71701 216657 345479 27

ratio 0.99 0.93 0.78 0.94 0.97
Date 2019-02-06 2019-02-13
NS 2479257 2430773 855147 14184460 7289

unique 269896 234356 106475 74619 4169
ratio 9.19 10.37 8.03 190.09

A 1247139 1069314 1126842 5389560 4145
unique 572689 539301 451220 274920 3188

ratio 2.18 1.98 2.50 19.60
AAAA 282818 215935 287069 2127664 3740

unique 106235 97545 139456 134751 2951
ratio 2.66 2.21 2.06 15.79

MX 1697001 1532026 522089 7494383 88
unique 480787 435455 130751 2157676 35

ratio 3.53 3.52 3.99 3.47
DNSKEY 42950 38262 11731 3800612 –

unique 26274 25275 6838 3597613 –
ratio 1.63 1.51 1.72 1.06

CNAME 45228 2493 344500 10666 –
unique 3592 1512 166230 3509 –
ratio 12.59 1.65 2.07 3.04

Table 4: Datasets and RR counts (child authoritative)

Alexa Majestic Umbrella .nl Root
NS 4524 4187 1365 3414 0
A 896 575 529 673 0
AAAA 244 1549 116 45 0
MX 506 374 211 266 0
DNSKEY 0 2 12 15 0
unique 5385 6202 1955 4047 0

Table 5: Domains with TTL=0 s, per Record Type

reflects the list populations—the root is slowly changing,
and changes are carefully monitored and managed. Umbrella
instead reflects many cloud and CDN names, that are often
transient and changing as load comes and goes and cloud
instances are created and discarded.

We also see variation across record type. NS and DNSKEY
records tend to be the longest-lived (Figure 8a), while IP
addressees are the shortest (Figure 8b and Figure 8c). These
reflect service dynamics: changing authoritative servers is
an administrative action with careful planning, while server
addresses are often dynamic with automated creation in
clouds and CDNs.
This diversity in TTL choices of major domains suggests

some combination of differing needs and lack of consensus
in TTL choice.

Alexa Majestic Umbre. .nl Root
responsive 988654 928299 783343 5454833 1535

CNAME 50981 7017 452711 9436 0
SOA 12741 8352 59083 12268 0
responsive NS 924932 912930 271549 5433129 1535

Out only 878402 873447 244656 5417599 748
ratio 95.0% 95.7% 90.1 99.7% 48.7%

In only 37552 28577 20070 12586 654
Mixed 8978 10906 6823 2941 133
Table 6: Bailiwick distribution in the wild.

5.1.1 TTL 0 s. TTL valuesmay range from 0 s to∼68 years
(231 − 1 s) [32], but in practice most TTLs, in the wild, are
under two days (Figure 8).
While not an error per se, a TTL of 0 s effectively under-

mines caching at the resolvers. We show in Table 5 the counts
of domains with TTL equal zero. We see that few domains
are configured this way – which is not recommended, given
that by undermining caching, it automatically increases la-
tency to users and provides little resilience in case of DDoS
attacks [33].
5.1.2 Bailiwick configuration in the wild. We have seen

in §4 how bailiwick affects the choice of TTLs for a given
record. We now investigate how domains are configured in
the wild with regards bailiwick.

Table 6 summarizes the results. We start with the respon-
sive domains (obtained from Table 4), which are domains
that responded to at least one of our queries (in regardless
of query type). To evaluate how domains are configured, we
consider only NS queries that had NS records in the answers
(we disregard domains that either returned a CNAME or SOA
records to NS queries). We see that the majority of domain
names (responsive NS row) remain, with exception of Um-
brella list, given it uses long FQDNs also from clouds and
CDNs.

Then, we proceed to analyze how these domains are con-
figured with regardless their bailiwick setup. For the popular
lists, we see that the far majority (>90%) are configured with
out-of-bailiwick NSes only. The exception to that is the list
of TLDs (Roots), which roughly half are out-of-bailiwick and
the other half are either only in-bailiwick or mixed.

5.2 Discussions with Operators
Our crawl of the root zone (§5.1) showed 34 TLDs (including
8 country-code) with NS TTLs less than 30minutes, and 122
TLDs with NS TTLs under 120minutes. These short TTLs are
only partially effective because of parent-centric resolvers
(§3), and they prevent caching that can help latency (§6.2),
and increase DDoS vulnerability [33].
We reached out to operators of of the eight ccTLDs, ask-

ing them why they chose such short TTLs. Five of them
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Figure 9: RTT from RIPE Atlas VPs for NS .uy queries
before and after changing TTL NS records.

responded, with three stating that they had not considered
the implications of such short TTLs. Later three increased
their NS records TTL to 1 day (from 30 s 300 s, and 480 s) .
Two said the short TTLs were intentional to account for
planned infrastructure changes. The final reply was from a
large operator who stated they kept the TTL values in place
when they took over service.

One should be cautious in drawing conclusions from such
a small sample but while some operators intentionally use
small TTLs, many appear to have not carefully considered
the implications and are interested in considering longer
TTLs.

5.3 Early Feedback from Uruguay’s .uy

One operator we approached was Uruguay’s .uy ccTLD. Our
study of Uruguay’s ccTLD showed that in early 2019 they
had very different TTLs between their parent and child, with
authoritative TTLs of only 5 minutes while the root zone
defaults to 2 days (300 s vs. 172800 s!), having, during the
time of our analysis, 8 NS records (5 in-bailiwick, 3 out).
After sharing our early results with them, on 2019-03-04
they changed their authoritative TTLs to one day (86400 s).
Uruguay’s .uy change provides a natural experiment to

test the effects of different TTLs on DNS latency. Our studies
had measurements from RIPE Atlas VPs both before and
after this change (see uy-NS and uy-NS-new in Table 2). We
measure the response time for a .uy/NS query from around
15k VPs, querying for two hours every 600 s. Since .uy is a
country-level TLD, it may be cached, so this study reflects a
dynamic snapshot remaining TTL.
Results: Figure 9 shows the CDF of query response times

for .uy before, with a short TTL (the top, red line), and after,
with long TTLs (the bottom, blue line). With short TTLs,
.uy often falls out of the cache, and the median response
time is 28.7ms. With long TTLs .uy remains in the cache
and so many queries are handled directly by the recursive,
providing an 8ms response time.

Differences in tail latency are even larger: at the 75%ile,
longer RTTs have median of 21ms compared to 183ms with
short RTTs; at the 95%ile, longer RTTs have a median of
200ms compared to 450ms, and, at 99%ile, these values raise
to 1375ms and 678ms, respectively.

This natural experiment shows the large benefit to user la-
tency from increased caching and long TTLs. We do not have
access to authoritative traffic at .uy, so we cannot evaluate
traffic reduction, but it too is likely substantial (we evaluate
traffic reduction due to longer TTLs in §6.2) .

6 RECOMMENDATIONS FOR DNS
OPERATORS

We next consider recommendations for DNS operators and
domain owners, about TTL durations and the other opera-
tional issues.

6.1 Reasons for Longer or Shorter TTLs
TTLs in use range from as short as 5 minutes, to a few hours,
to one or two days (§5.1). This wide range of time values seen
in TTL configurations is because there are many trade-offs
in “short” vs. “long”, and which factors are most important
is specific to each organization. Here are factors operators
consider:

Longer caching results in faster responses:The largest
effect of caching is to allow queries to be answered directly
from recursive resolvers. With a cache hit, the recursive can
respond directly to a user, while a cache miss requires an
additional query (or queries, in some cases) to authoritative
servers. Although a query to the authoriative is usually fast
(less than 100ms), a direct reply from the recursive resolver
is much faster. We see this effect for Uruguay’s .uy in §5.3,
and demonstrate it with controlled experiments in §6.2.

Longer caching results in lower DNS traffic: caching
can significantly reduce DNS traffic. However, DNS queries
and replies are quite small, and DNS servers are relatively
lightweight. Therefore, costs of DNS traffic are likely smaller
than costs of web hosting or e-mail. We evaluate this effect
in §6.2.

Longer caching results in lower cost if DNS is me-
tered: Some DNS-As-A-Service providers charges are me-
tered, with a per query cost (often added to a fixed monthly
cost). Even if incremental costs are small relative to fixed
charges, caching can reduce this cost.

Longer caching is more robust to DDoS attacks on
DNS: DDoS attacks on a DNS service provider [19] harmed
several prominent websites [39]. Recent work has shown
that DNS caching can greatly reduce the effects of DDoS on
DNS, provided caches last longer than the attack [33].

Shorter caching supports operational changes: An
easy way to transition from an old server to a new one
is to change the DNS records. Since there is no method to
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remove cached DNS records, the TTL duration represents
a necessary transition delay to fully shift to a new server,
so low TTLs allow more rapid transition. However, when
deployments are planned in advance (that is, longer than
the TTL), then TTLs can be lowered “just-before” a major
operational change, and raised again once accomplished.

Shorter caching canhelpwith aDNS-based response
to DDoS attacks: Some DDoS-scrubbing services use DNS
to redirect traffic during an attack [35]. Since DDoS attacks
arrive unannounced, DNS-based traffic redirection requires
the TTL be kept quite low at all times to be ready to respond
to a potential attack.
Shorter caching can with DNS-based load balancing:

Many large services use DNS-based load balancing (for ex-
ample, the Akamai CDN [10] and Bing search engine [9]).
Each arriving DNS request provides an opportunity to adjust
load, so short TTLs may be desired to react more quickly to
traffic dynamics. (Although many recursive resolvers have
minimum caching times of tens of seconds, placing a limit
on agility.)

Organizations must weigh these trade-offs to find a good
balance; we propose two recommendations next.

6.2 Caching Will Reduces Query Volume
and Latency

We know that caching will reduce query volume at the au-
thoritative server and improve latency to users. Exactly how
much depends on the workload: who queries, when, and
from where. We saw a significant reduction in latency for
Uruguay in in §5.3. We next study those questions with a
controlled experiment.
Methodology: We carry out five experiments listed in Ta-

ble 7. We use DNS servers at Amazon EC2 in Frankfurt, with
short (60 s) and long (84,400 s) TTLs, and we use anycast
(Route53, with 45 global sites at experiment time) with 60 s
TTLs.

We place queries to a test domain (unique to this experi-
ment) from 15k Atlas VPs to different types of DNS configu-
rations. We use either unique names (the left two columns)
or a common name (the right three).

Longer TTL reduces authoritatives load: We see that
the traffic to authoritative servers is reduced by about 77%
with the long TTL (from 127k to 43k with unique names, and
from 92k to 20k with shared names). While real traffic loads
may be different (higher or lower), this controlled experiment
shows the economic savings when DNS is provided as a
metered service [5].

Longer TTL improves response time: Figure 10 shows
latency distributions, comparing short TTLs with long TTLs.
We can see that for unique queries (Figure 10a), using a TTL
of 60 s leads to a median RTT of 49.28ms, while a TTL of
84600 s reduces the median to 9.68ms.
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Figure 10: Distribution of client latency from Atlas
VPs to controlled DNS with different TTLs.

For shared query names (Figure 10b), the median RTT
for a TTL60 s is 35.59ms, and 7.38ms for TTL86400, which
can be explained that some VPs benefit from caches be-
ing warmed by others VPs. This controlled experiment con-
firms improved latency seen for Uruguay (Figure 9), since
TTL86400 (the leftmost, green line) has much lower median
latency than TTL60 (the rightmost cyan line).

Longer TTL reduces latency, even more than any-
cast: In addition, this controlled experiment lets us compare
to an anycast service (Figure 10b). We see that caching is far
better than anycast at reducing latency, comparing TTL86400
(the leftmost blue line) against anycast (the center orange
line, median RTT =29.95ms). While anycast helps a great
deal in the tail of the distribution, caching greatly helps the
median. (At 75%ile, 60 s TTLs have 106ms latency, with any-
cast that drops to 67ms, but 86,400 s TTLs reduce it to 24ms.)
This result is consistent with prior work that showed dimin-
ishing returns from very large anycast networks [13]. The
cache in a recursive close to the client is often far faster even
than an anycast site 100 km away.

6.3 Recommendations
From our analysis, we make the following recommendations:
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unique QNAME shared QNAME
TTL60-u TTL86400-u TTL60-s TTL86400-s TTL60-s-anycast

Frequency 600s 600s 600s 600s 600s
Duration 60min 60min 65min 65min 60min
Query PID.mapache-de-madrid.co 1.mapache-de-madrid.co 2.mapache-de-madrid.co 4.mapache-de-madrid.co
Query Type AAAA AAAA AAAA AAAA AAAA
Date 20190227 20190227 20190228 20190228 20190228

Client Side
Probes 9095 9109 9105 9117 8869
Probes (val.) 8991 9009 8950 8981 8572
Probes (disc.) 104 100 155 136 117

VPs 15996 16025 15834 15910 15274
Queries 96438 96585 103666 107912 90553
Responses 96492 96645 103666 107912 90553

Responses (val.) 96469 96603 103640 107861 90553
Responses (disc.) 23 42 26 51 0

Authoritative Server
Querying IPs 12967 10334 11166 7882 13773
Queries 126763 43220 92547 20325 60813(only AAAA)
Responses 126763 43220 92547 20325 60813(only AAAA)

Table 7: TTL experiments: clients and authoritative view [41].

TTL Duration: Choice of TTL depends in part on exter-
nal factors (§6.1) so no single recommendation is appropriate
for all.

For general users, we recommend longer TTLs: at least one
hour, and ideally 4, 8, 12, or 24 hours. Assuming planned
maintenance can be scheduled at least a day in advance, long
TTLs have little cost.

For TLD operators: TLD operators that allow public reg-
istration of domains (such as most ccTLDs and .com, .net,

.org) host, in their zone files, NS records (and glues if in-
bailiwick) of their respective domains. We have seen in §3.3
that most resolvers will use TTL values provided by the child
delegation, but some will use the parent’s TTL. As such, sim-
ilarly to general users, we recommend longer TTLs for NS
records of their delegations (at least one hour, preferably
more).

Users of DNS-based load balancing or DDoS-prevention may
require short TTLs: TTLs may be as short as 5 minutes, al-
though 15 minutes may provide sufficient agility for many
operators. Shorter TTLs here help agility; they are are an
exception to our first recommendation for longer TTLs.

UseA/AAAAandNS records:TTLs of A/AAAA records
should be shorter or equal to the TTL for NS records for in-
bailiwick DNS servers (§4.2). Our reasoning is they will be
treated that way by many resolvers, so the configuration
should reflect what will happen in practice.

For out-of-bailiwick servers, A and NS records are usually
cached independently, so different TTLs, if desired, will be
effective.

In either case, short A and AAAA records may be desired
if DDoS-mitigation services are an option.

Location ofAuthoritativeNameservers: It seems good
practice to operate at least one out-of-bailiwick authoritative
server, since it can help provide service if the zone itself
becomes unavailable (perhaps due to DDoS attack).

Who is in control: Given that most resolvers are child-
centric, one can directly control used TTLs within the zone
itself (§3).

However, one should recognize that aminority of resolvers
will use TTLs from glue records stored served by a zone’s
parents, so operators should either configure both in-zone
and glue TTLs identically, or recognize some users will use
one or the other.

7 RELATEDWORK
DNS performance and caching efficiency: Jung et al. [23], in
2002, carried out simulations based on university traces to es-
timate the DNS cache hit rate given TTL. They showed that
longer TTLs improves caching, but TTLS shorter then 1000 s
were sufficient to reap most of the benefits. In their subse-
quent study [22], they modeled DNS caches as a function of
TTL to explain their earlier results.

Several groups evaluated DNS performance at the root.
Danzig et al. showed that there was a significant number of
misbehaving resolvers [12]. Fomenkov et al. examined Root
DNS latency before anycast was widspread [15], and then
later Liu et al. reexamined performance with anycast [27].
Thomas and Wessels showed how complicated caching is as
seen from the Roots DNS servers [49].

More recently, Moura et al. [33] evaluated caching hit rates
with datasets from production networks and experiments
with RIPE Atlas, finding cache hit rates of around 70% for
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TTLs ranging from 1800–86400 s. While this prior work mea-
sured caching and its effects, our work instead focuses on
how TTLs set in different places interact to create an effective
TTL.

TTL and DNS resilience: Pappas et al.proposed changes
two strategies to improve DNS resilience to DDoS with NS-
record caching [38]. They proposed refreshing TTLs in some
circumstances, and renewing (pre-fetching before expiration)
NS records for popular domains. This kind of pre-fetching is
deployed in Unbound today [36].
Moura et al. investigated the relationship between TTLs

in DNS and resilience in face of DDoS attacks [33]. They
simulated a series of scenarios with various degrees and
packet loss and showed that, together with retries, caching is
a key component of DNS resilience. They showed that, to be
most effective, TTLs must be longer than the DDoS attack.
They recommend long TTLs where possible, but refrain from
suggesting specific values.

Unlike these these two works, we focus we focus on DNS
under normal operations. We examine how different records
create ambiguity in the effective TTL, and make recommen-
dations for TTL values and where they must be set.

8 CONCLUSION
This paper examined DNS TTLs, showing that the effective
DNS TTL is often different from what is configured because
TTLs appear in multiple locations and resolvers make dif-
ferent choices in which TTL they prefer. We use controlled
experiments to demonstrate how these factors interact, and
that one must control TTL in both parent and child zones.
We showed that longer TTLs have important performance
benefits, since caching greatly reduces latency, even more
than anycast, as well as reducing traffic. Our scans of de-
ployed DNS show that operators today have little consensus
on typical TTLs, Initial discussions with selected operators
suggest interest in longer TTLs, and changes at Uruguay’s
.uy, after our discussions, result in much lower median la-
tency to users. We list the issues operators should consider
when selecting TTLs, and suggest while those using DNS-
based load-balancing or DDoS-mitigation may require short
TTLs (5 or 15minutes), others may benefit from longer TTLs
(of a few hours).
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