
Improving Testbed Experiment Design Through
Shifting User Interface Emphasis

Genevieve Bartlett
ISI/USC

Marina del Rey, CA
bartlett@isi.edu

Jelena Mirkovic
ISI/USC

Marina del Rey, CA
mirkovic@isi.edu

Jim Blythe
ISI/USC

Marina del Rey, CA
blythe@isi.edu

Abstract—Considerable funding and effort over the past fifteen
years have been invested in building large and versatile network
testbeds, to support distributed experimentation. Most of the
work to date on these network testbeds has been in support
of dynamically reserving and configuring the physical resources.
This focus on the physical resources of an experiment, and
their interconnection, aka experiment structure, has lead network
testbed user interfaces (UIs) to be centered around just the
structure of an experiment, and have little to no support to
help the testbed user design the behavior of her experiment—
the actions and orchestration needed to carry out her experi-
ment goals. In our previous work we proposed a new UI for
experiment design. Our UI asks users to define the behavior
of their experiment, and then derives experiment structure
and orchestration automatically from the behavior definition.
In this paper we extend our previous work with a survey,
to evaluate expressiveness and user-friendliness of our UI. We
implement a prototype of our behavior-centric UI, and ask survey
respondents to compare it to the traditional, structure-centric
UI. We hypothesize that testbed experiment design is improved
when users are asked to focus on their experiment behavior,
rather than the common practice of defining the experiment
structure directly. We use this preliminary survey, to explore
our hypothesis, and evaluate next steps in our effort to design
better a network testbed UI. Our work presented here is a small
step towards identifying fruitful directions in expanding tools
and user interfaces to support network testbed users in rigorous
and systematic experiment design.

Index Terms—testbed UI, network testbeds, experiment design,
user interface, human factors in testbed experiment design, NLP

I. INTRODUCTION

Progress in computer systems, networking and security fields
today is driven by industry and academic research. Central to
such research is the demonstration of research solutions using
distributed, large-scale and complex experiments on network
testbeds. Additionally, these testbeds serve as training and
educational resources [2]. Considerable funding and effort over
the past fifteen years has gone into building such testbeds (e.g.,
Emulab [13], GENI [4], National Cyber Range [5], Deterlab
[9], Cloudlab [8], Orbit [11], Fire [10]), however most of
the testbed research to date focused on support for efficient
allocation and sharing of physical resources.

Far less effort has been spent on supporting testbed exper-
imentation itself, and developing tools and interfaces which
support the user in designing rigorous experiments. Today’s net-
work testbed user interfaces (testbed UIs) focus on describing

an experiment’s structure—the physical compute machines
and interconnections between these machines comprising
an experiment’s topology. Once such a topology has been
instantiated on a testbed, users are on their own to choose
tools to define, configure, and orchestrate the experiment’s
behavior—the actions carried out on the structure to test and
validate an hypothesis.

This lack of UI for capturing experiment behavior has several
negative effects on sharing, building upon, and disseminating
best-practices for testbed experiments. First, capturing many
of an experiment’s details are left up to the user—a process
often forgotten—leaving many testbed experiments difficult to
reproduce and share. Additionally, this disconnect in support for
experiment behavior means that creating experiments is often
an ad-hoc and highly manual process, which requires users
to become testbed experts to construct and run even basic
experiments. The steep learning curve and tedious manual
process of constructing a testbed experiment can introduce
frustrating errors in experiment design, which prevent the user
from successfully instantiating an experiment. Worse, large
manual effort in designing and running an experiment can
introduce subtle errors, which can lead to incorrect results and
conclusions. Ultimately, current testbed experiment UIs stymie
scientific advancement.

In our previous work [7] we have proposed a new UI for
experiment design, which focuses on behavior and not on
experiment structure. From this behavioral description, we then
aim to automatically synthesize experimental structure and
orchestration scripts, which realize the desired behavior. The
paper [7] introduced our behavior-centric UI and a language
to express experimental behavior and constraints, Anon-Lang.
We designed Anon-Lang to capture the salient details of an
experiment’s behavior while still remaining human-readable [7].

To illustrate the current, structure-centric approach to exper-
iment design, and our proposed behavior-centric approach, we
can use a toy experiment. In this toy experiment, a user wants
one machine, machine A, to send ping traffic to machines B
and C.

The structure-centric approach would have the user manually
enter a topology (e.g., A connects to B and C via LAN) and
then manually write a script to send pings from A to B and C.

Our behavior-centric approach would ask the user to first
define “roles” of nodes. In our example, there is a “sender”—



currently played by node A—and a “receiver”—currently
played by each of the nodes B and C. We would then ask
about the behavior of each role. The user could express that
the sender sends ping traffic to the receiver. Finally, we ask
about any structural “constraints”, e.g., if sender and receiver
are connected directly or not. In this example, there are no
interconnection constraints, but there are two receivers. From
this input we would automatically synthesize a topology with
three nodes—a sender and two receiver on a LAN. We would
also synthesize a script where the sender sends some traffic
to the receiver. The user could either give us a pointer to the
executable generating traffic (e.g., ping) or we would generate
a “template” script, where the path to the executable is left
for the user to populate during runtime. It is easy to see how
our approach helps users design experiments in a top-down
approach, and how it is easy to generate any number of similar
structures (e.g., 1 sender and 5 receivers, 5 senders and 2
receivers) from the same behavior description.

In this paper, we extend our previous work, by implementing
a prototype UI, which enables users to play with the core
concepts of our approach, and we evaluate the direction of
our efforts using a limited survey. This survey is the first
step towards understanding where to focus our efforts going
forward. Through our prototype UI, we had survey respondents
compare our behavior-centric UI to a traditional structure-
centric UI. For this initial survey, we restricted the traditional
testbed UI we compare with to the Anonymized Network
Testbed1, and recruited novice, intermediate and expert users
from the Anon-Testbed community to participate. Even though
we restrict our comparison to a single testbed, we expect the
results of this comparison to hold for network testbeds in
general, since today’s standard approach to network testbed UI
shares the common focus on structure and not behavior. We
gather qualitative feedback about behavior-centric and structure-
centric UI from survey respondents, and also perform a more
quantitative comparison through having respondents produce
the necessary inputs to create a basic experiment via both UIs.

We believe focusing on the behavior of an experiment first
is more natural to how experiments are formulated in the mind
of the testbed user, and that following this flow results in
better experiment design. We confirm this belief through our
survey. Additionally, our prototype UI and survey are designed
to gain preliminary feedback on two different UI methods
to capture experiment behavior. First, in our prototype, users
can express their experiment’s behavior in natural language.
Using Natural Language Processing (NLP) we extract details
about roles and actions in the experiment, and any ordering
of the actions, and convert this into Anon-Lang. Second, our
prototype helps users write Anon-Lang directly, by offering
predictive suggestions and pointing out errors as statements
are written. Our user interface also automates some of the
more tedious set up aspects of working with testbeds, and can

1To abide by CACOE’s Anonymous Submission requirement, we have
anonymized the name of the testbed as the authors are closely associated with
this testbed. We have also anonymized the terminology for the specific inputs
for this testbed (e.g. Anon-File) and our referenced prior publication [7].

automatically generate orchestration scripts and topology—a
process often done by hand with current UIs.

In the following sections, we detail the user interface
in our prototype, and discuss the survey we created to
evaluate behavior-centric and structure-centric UIs. We close by
discussing the survey responses—both the qualitative responses,
gathered from user feedback and the quantitative responses,
gathered by comparing the output participants produced.

II. USER INTERFACE AND APPROACH TO EXPERIMENT
DESIGN

Our approach focuses on experiment behavior by enabling
the user to define their experiment in terms of the actors,
actions and dependencies between these actions in their exper-
iment. The actors are the distinct roles within an experiment,
which exhibit unique behaviors, such as “server”, “monitor”,
“attacker”, “firewall”, “client”, and so on. Each actor may
be realized as a separate physical machine, virtual machine,
a process or a container and multiple actors may reside on
the same machine. Each role may be carried out by a single
instance or multiple instances. This mapping of actors to the
experiment structure is separate from defining the behavior of
the experiment. Users first define the actors and their actions
and dependencies. Next, users define the mapping of actors to
structure by using constraints, such as saying that there are ten
instances of the client actor in the experiment, constraining
how clients are connected to a server (e.g. via a LAN) or
defining what types of hardware or software can be used to
realize a client.

Separating out the mapping from defining the behavior means
the user can focus on the events in their experiment first. Details
about structure and mapping to structure—such as scaling,
topology, hardware and software—can fall out of the defined
behavior, rather than be first-order concerns.

To emphasize this “behavior first” approach and evaluate
this approach, our prototype UI supports four views: two input
views (one for natural language input and one for Anon-Lang
input), and two output views, where users can visualize their
workflow and structure derived from their input. In the next
subsections, we describe these views in detail.

A. Natural Language Input

Our NLP view, based on the SpaCy tool kit [3], enables
users to write free-form English sentences. These sentences
are then processed to extract actors, actions and statements
which imply dependency or ordering. For example, "after A
happens, B happens" gives information about the dependency
between “A” and “B”.

As an example of NLP input, a user can type:
After the server starts the listener
and the measure script, the client will
start its traffic.

The UI would identify two actors (a “server” and a “client”),
three events (starting the “listener”, starting the “measure script”
and starting “client traffic”), and the condition that the server



server runListener emit sListenerSig
server runMeasure emit sMeasureSig
when sListenerSig, sMeasureSig client

start_traffic emit sTrafficSig↪→

Fig. 1 Example Anon-Lang input.

Fig. 2 Screenshot of Anon-Lang UI tab.

must start the listener and measure script, before the client
starts its traffic).

B. Structured Input via Anon-Lang

Natural Language Processing is not perfect, and often
requires correct spelling and punctuation to be fully utilized.
These and other limitations mean that users may want a more
direct way to specify their experiment behavior, and can do so
through our Anon-Lang. Anon-Lang statements take the form
of <optional trigger><actor><action><optional emit stmt>.
The actor and action is mandatory, but an optional “trigger” can
specify the conditions that set off this action and an optional
“emit” statement attaches a label to the action that can be
then referred to in other statements in their trigger clause. For
example, Figure 1 shows a few lines of Anon-Lang, which
specify that after a “runListener” action and a “runMeasure”
action have completed on the server actor(s), a “startTraffic”
event is started by the client actor(s).

Figure 2 shows our Anon-Lang input view in our prototype
UI. This view is populated by any input from the NLP view,
but it also allows users to edit and directly type Anon-Lang
statements. This enables the user to directly use Anon-Lang,
or correct and refine Anon-Lang statements, which were
automatically generated from the natural language input. The
Anon-Lang tab also has input frames for Actors and Constraints.
The Actors frame is also populated by the NLP tab, but can
be directly edited and corrected here. Constraints specify how
actors should be mapped to the structure. For example, if, in the
above example, the user wants three clients, they would enter
the “num client 3” constraint. Last, the UI offers a suggestion
tab, which helps users with syntax as they type, for Anon-Lang
and for the constraints.

Fig. 3 Screenshot a Event Dependency Graph.

C. Output: Visualizing Experiment Behavior

To help users understand how the behavior they described
in natural language or Anon-Lang is distilled into scriptable
events, we have a Dependency Graph tab. All event dependency
graphs are a directed, acyclic graph with a green node indicating
the start of an experiment. All other nodes represent an event.
Arcs represent that one event is triggered by the connected
event’s node.

Figure 3 shows the Dependency Graph for the previous
example of a client starting traffic after other events have
started.

D. Output: Visualizing Structure

Last, our prototype UI has a view to visualize the structure of
an experiment. This view is a common visualization in current
testbed UIs, but as discussed previously, unlike in current
approaches, in our approach the structure is automatically
derived from the behavior and constraints on how this behavior
is mapped to the structure. This view in our UI helps users
identify additional constraints they may need to specify to tune
the automatically generated experiment structure.

III. SURVEY

Our preliminary evaluation survey was approved by our
Institutional Review Board (IRB) as an exempt study. It
consisted of four main parts:

1) User Background: short-answer and multiple choice
questions aimed at understanding a user’s experience with
network testbeds.

2) Structure-centric UI Task: an experiment design task,
which users were asked to perform through traditional
means—using any methods or tools they typically use
when working with Anon-Testbed

3) Behavior-centric UI Task: the same experiment design
task, but users were asked to download and use our
prototype UI after being given some background about
our approach and how to use our UI.

4) Feedback: a mix of open-ended questions and multiple
choice questions to gather feedback about comparing and
contrasting the structure-centric and behavior-centric UI.



The order of the survey tasks for all respondents was the
same. We were not concerned about a learning effect between
the two UI tasks (parts 2 and 3 above), as the actual methods to
get to the required output for each part were entirely different.
In the structure-centric UI (part 2), respondents were asked
to write the input for the experiment’s structure and scripts
for orchestrating behavior. When using behavior-centric UI
(part 3), respondents were asked to input a description of the
behavior for the experiment through natural language or Anon-
Lang statements, or a combination of both. The only presented
material, which is repeated between these two parts is the
experiment description.

In the following sections, we provide a few more details
about each of these survey parts.

A. User Background

Respondents were asked how long they had worked with
network testbeds in general and were asked to give a list of
the testbeds they had worked most with. To understand each
respondent’s experience level, we asked for an estimate of
how many experiments they had run on network testbeds and
we asked them to rate their own experience level as either
“novice”, “intermediate” or “expert”. Since this preliminary
study recruited participants from Anon-Testbed users, we also
asked respondents about their experience with Anon-Testbed
specifically.

B. Experiment Design Task

In both the structure-centric and behavior-centric experiment
design task—parts 2 and 3 of our survey—respondents were
asked to produce the programmatic encoding for the structure in
Anon-Testbed’s format and scripts to carry out the behavior for
the same basic experiment. We describe our basic “experiment”
as a list of straightforward criteria. We chose to describe the
design task this way—rather than use a higher-level description,
such as describing the experiment’s hypothesis and goals—to
avoid ambiguity. We wanted the task to be readily understood
by novices and experts alike, and ultimately wanted a small
enough task that volunteer participants could complete the task
in a moderate amount of time. Further, we chose to specify
very simple experiment behavior, which could be completed
even by novice users.

We asked respondents to design a testbed experiment which
met the following three criteria:

1 You have three machines: Machine X, Machine
Y, and Machine Z.↪→

2 Machine X sends a ping packet to Machine Y.
3 After Machine Y receives a ping packet from

Machine X, Machine Y sends a ping
packet to Machine Z.

↪→

↪→

The above experiment design task was constructed to be
open ended enough, so that it could mimic the open ended
nature of research experiments. We also wanted to signal to
users that there may be many correct ways to complete the

task we specified. For example, a respondent could specify that
Machine X, Y and Z are all interconnected via a lan, or she
could specify individual links between machines (e.g., X↔Y
and Y↔Z).

1) Via Traditional Structure-Centric UI: Anon-Testbed’s
user interface, like other network testbeds, focuses on the
structure of an experiment, not the behavior. To instantiate an
experiment through the Anon-Testbed UI, users must write a
programatic encoding—called an Anon-File—which informs
Anon-Testbed, which resources are needed and how these
resources need to be interconnected. We asked respondents
to supply an Anon-File which would instantiate the needed
topology of three connected physical machines (X, Y and Z)
on Anon-Testbed, in addition to any extra resources needed
for orchestration. Respondents were encouraged to use any
additional tools necessary (such as a syntax checker, which
Anon-Testbed’s UI provides) to ensure their Anon-File would
run correctly.

We also asked users to supply the scripts needed to
orchestrate the behavior of the above experiment—a task the
Anon-Testbed UI does not directly support. This task must
usually be done manually by a user, or through some scripting
tools like Jupyter. For example, orchestrating the two events
(1. Machine X sends to Y, and then 2. Machine Y sends to
Machine Z) could be done by kicking off each event from a
separate orchestration node (as might be done when using ssh
or tools like Ansible [1] to orchestrate), or through custom
scripts on each of the machines and kicking off the events by
starting the short chain of events on X. Participants could use
the tools and languages they were most familiar with and could
reuse any tools or scripting they had used in past experiments.

We asked respondents to take no more than twenty minutes
to produce the Anon-File and the scripts needed to orchestrate
the behavior of this experiment. Respondents were prompted
to upload their Anon-File and all scripts and other artifacts
to our survey server. We asked respondents to describe their
approach to capturing the behavior of an experiment, the tools
they used and the tools they typically use.

After producing the necessary traditional input, respondents
were presented with the Anon-File they submitted, and asked to
modify the file to scale up the experiment to use six machines,
all performing the task Machine Y performed in the original
basic experiment. This scaling was done to understand how
well users naturally design their testbed inputs to facilitate easy
scaling. We did not ask respondents to scale their scripts for
orchestrating behavior, since we believed this would be too
time consuming for most participants.

2) Via Our Behavior-Centric UI: After specifying the
basic experiment through traditional means, we then asked
respondents to download and try our prototype user interface.
We again asked participants to take twenty minutes to design the
basic experiment again—produce the programmatic encoding
for the experiment structure and supply scripts to orchestrate
the experiment—but this time through our UI. This meant that
the users would specify experiment behavior, and our UI would
automatically generate the structure and the scripts from user



input. Respondents were able to check the experiment structure
and behavior dependency graph derived from their inputs, and
once satisfied with the results, they were instructed to save the
Anon-File and orchestration script outputs.

Though our prototype UI produces a bash script to orches-
trate events, the events in this script use user-supplied labels,
and do not map to actual executables. Mapping of user labels
to executables must be done through a “binding” stage, which
we did not yet implement. Nonetheless, the orchestration script
produced through our UI captures the necessary steps needed
for maintaining event dependencies as described by the user.

C. User Feedback

Users were asked if they found the new UI useful, what
features they found promising, which they did not and which
they would like further developed.

IV. SURVEY RESPONSES

We recruited survey participants from the Anon-Testbed
user community. We selected this community as we are closely
linked to Anon-Testbed testbed and collectively have over 30
years of experience with Anon-Testbed. All respondents had
some experience with the Anon-Testbed and Anon-Testbed’s
UI. In total, twelve individuals responded, ranging from novice,
with less than 1 month of experience, to experts with up to
twelve years of experience. Nine of the twelve respondents
completed the full survey.

In the next sections, we discuss the lessons we can draw from
the survey responses. We first look at what we learned from
the experiment artifacts produced by respondents through the
structure-centric UI and through behavior-centric UI (parts 2
and 3 of our survey). We then discuss the qualitative responses
gathered from user feedback.

A. Understanding event dependence is easy with the behavior-
centric UI

The first thing we note is that our behavior dependency
graph is handy when looking at experiment artifacts. Our
approach enables a quicker understanding of event dependence
and experiment behavior than the traditional approach of
understanding an experiment through viewing scripts and
documentation.

When reviewing how respondents designed their experiment
behavior with the structure-centric UI, we noted that despite
our basic experiment being simple, there was a broad range of
experiment behavior design from the respondents. Specifically,
all respondents managed to send pings between correct actors
but they had varying levels of success when specifying behavior
dependencies.

For example, Figure 4 shows an Ansible [1] orchestration
script provided by a self-identified “expert” testbed user. Unlike
the majority of collected orchestration scripts, this script
explicitly takes into account the main event dependency in our
simple experiment. Specifically, Machine Y sends a ping packet
to Machine Z only after Machine Y actually receives a ping

1 ### Ansible file
2 ---
3 - name: start ping on serverX
4 command: "nohup ping -c 50 10.0.0.2 &"
5

6 - name: listen for ping on serverY
7 command: "nohup sudo tcpdump -l src host

10.0.0.1 dst host 10.0.0.2 icmp -c 1 &&
ping -c 50 10.0.0.3"

↪→

↪→

8 hosts: 10.0.0.2
9

10 - name: listen for ping on serverZ
11 command: "sudo tcpdump -l src host 10.0.0.1

dst host 10.0.0.2 icmp -c 1 && echo
success"

↪→

↪→

12 hosts: 10.0.0.3

Fig. 4 Ansible orchestration from a self-identified expert
user for the survey experiment. This orchestration takes into
account event dependence, as the ping packet from Machine Y
to Machine Z is not sent until Machine Y receives a packet from
Machine X.

1 #!/bin/bash
2

3 ssh x "ping -c 1 y"
4 sleep 2
5 ssh y "ping -c 1 z"

Fig. 5 Bash orchestration from a self-identified intermediate
level user for the survey experiment. This orchestration does not
correctly include event dependence as the ping packet from Y to
Z is sent regardless of whether the ping from X to Y is received.

packet from Machine X. Figure 5 shows a different respondent’s
approach using a bash shell script (who self-identified as an
“intermediate” testbed user). Under normal circumstances (no
network errors or network slow down), this script will carry
out the events as listed in our survey instructions, but there is
no built-in dependence between Machine Y receiving a ping
packet, and Machine Y sending a ping packet to Machine Z. If
the ping packet from Machine X to Machine Y is lost, Machine
Y will still send a ping packet to Machine Z. Such a missed
dependence may lead to incorrect experiment behavior, and
potentially incorrect research conclusions.

Understanding a testbed experiment’s behavior through read-
ing orchestration scripts is fairly straightforward for something
as simple as the basic experiment in our survey, so identifying
the variants in respondents’ approaches was tedious, but doable.
However, scripts quickly become complicated for real testbed
experiments, and identifying flaws in an experiment design can
be difficult if not impossible through reviewing scripts.

In contrast, when reviewing how respondents designed
their experiment behavior with our prototype UI, we simply



compared the shapes of the behavior dependency graphs.
Figure 6 shows the three variants of the experiment design for
the respondents who completed designing our basic experiment
through our UI. In Figure 6, we normalized the event names
using these three labels for the events in our basic experiment:

1) sendPingY: Machine X sends a ping packet to Machine
Y.

2) YgetPing: Machine Y receives the ping packet from X.
3) sentPingZ: Machine Y sends a ping packet to Machine

Z.
In Figure 6, we can easily understand the three variants without
digging into orchestration scripts.

B. The behavior-centric approach is less tedious

We hypothesize that having the users use structure-centric
UI is error-prone and tedious. During the structure-centric
UI part of the survey, users were encouraged to use any
helper tools they typically used in experiment design, and
while syntax checkers are available for the Anon-Testbed
structure encoding, only one respondent used these tools. Four
respondents reported they needed to refer to documentation to
complete the structure encoding and five reported referring back
to previously defined experiments to copy and modify portions
of previously written encodings. All nine who completed a
structure encoding the traditional way had to refer to previous
examples or documentation or both, indicating that writing the
encoding by hand is a tedious task.

When completing the behavior scripting task using traditional
methods (i.e. writing scripts by hand, from scratch) only
two respondents completed a fully orchestrated experiment.
Three were close to a fully runnable experiment, and the
remaining four had significant portions missing. In contrast,
the automatically generated script from the new UI produced
a fully-orchestrated skeletton of the script, with hooks to be
supplied by the user for paths to executables.

C. The behavior-centric approach reduces errors

In comparing the structures input by users manually in task
2, with those generated automatically by our UI in task 3, all
nine of the automatically generated ones passed a syntax check
and produced feasible topologies for the supplied experiment.
In contrast, of the manually produced encodings, four out of
nine had syntax errors.

D. Users do not write to enable future scaling

When asked to scale their manually-created experiment
structure, most respondents simply copied and pasted portions
from their original structure, repeating portions over and over
again. Two respondents, both self identifying as experts, instead
used programmatic functions to scale (e.g. a “for loop”). For
these two experts, additional scaling, or modifications to scaled
portions would be fairly trivial. For other respondents though,
more work would be required to correctly modify and/or scale
their experiment structure easily. Ultimately, using a UI to
generate structure encodings enables enforcing best practices,
such as using programmatic functions to scale.

a

b

c

Fig. 6 Three variations of behavior dependency graphs from
respondents: (6a) Most robust and correct experiment behavior:
Machine Y does not ping Machine Z until Y receives a ping
(“YgetPing”). (6b) Less robust experiment behavior: the action
of pinging Machine Z is dependent on having sent a ping to
Machine Y, however, if Y never receives the sent ping, the action
of pinging Z still happens, which does not fully follow the basic
experiment criterion. (6c) Least robust behavior: the action of
pinging Machine Z is not dependent on any other action. (Event
labels from original respondents’ graphs were normalized to the
same names.)



E. Lessons from respondents’ feedback

When asked, all respondents said that they typically design
the structure of their experiment first, not the behavior. As one
respondent commented,

It is structure first simply because all existing testbeds
that I know require the structure first and behavior
is up to the experimenter to create.

This reaffirms that designing behavior first is not a testbed
supported concept. Yet, the behavior of an experiment is
vital to hypothesis testing, whereas structure just enables the
experimentation. As another respondent noted,

Writing an experiment as a series of actions felt more
intuitive.

Respondents were asked whether they found the UI useful,
with possible answers “not at all”, “somewhat”, “mostly” and
“completely”. Of 9 respondents, 2 answered ‘completely’, 4
answered ‘mostly’ and 3 answered ‘somewhat’.

Respondents were asked which features of the UI they
found useful. 5 listed NLP and 4 left this section blank.
When asked which features of the UI were not helpful, 2
listed the behavior dependency graph and 7 left the section
blank. That the behavior dependency graph was seen as
not helpful was likely due to the simplicity of the survey
experiment. Anecdotally, more complicated experiments benefit
from viewing the interdependency of events. Respondents were
asked which features were most promising for future versions
of the tool. Four respondents mentioned improvements to the
NLP feature, and five left this section blank. While NLP-based
interfaces can sometimes lead to surprising behavior, and in this
case the use of pronouns caused difficulties, all who responded
saw NLP as a desirable feature to be improved.

Indeed, in a free text section of the survey, one respondent
noted how the NLP approach encourages a description of
behavior over structure:

"The NLP translation is interesting. Writing a story
leads to an event-driven model instead of a structure
driven model."

Another respondent commented on the tool’s value for inexpe-
rienced users:

"As a novice, I found the UI enabled much easier
expression of my goals."

V. RELATED WORK

We believe we are the first to apply Natural Language
Processing to network testbed experiment design. However, our
goal of capturing behavior of experiments, and not just structure
is shared with several other works, in particular, GPLMT [12]
and the Experimentation Workbench [6].

The Experimentation Workbench by Eide et al. [6] proposed
new constructs to the structure encoding to describe experiment
behavior in addition to structure. This work was an inspiration
for our work, but it lacks sophistication and user-friendliness
that we hope to achieve. The Experimentation Workbench
combines structure and behavior, while our approach keeps
these separate by using actor roles as an abstraction, and

constraints to tie actor roles to structure based only on important
features. This makes our approach more easily scalable and
more broadly useful, as the same experiment can be used with
many different testbeds and topologies.

GPLMT [12] proposes a new experiment-description lan-
guage, but produces descriptions which are much less readable
by humans, more verbose and less structured than those written
in our Anon-Lang. Ultimately, our hope for our Anon-Lang is
to capture enough information about an experiment to either
hand-craft or automate an experiment on multiple testbeds,
thus improving repeatability and shareability.

VI. DISCUSSION AND FUTURE DIRECTIONS

Though we view the survey feedback as an indication we
are on the right path, we have a long road ahead.

First, many respondents expressed our NLP UI as both useful
and frustrating. Ideally, one could automatically generate a
testbed experiment set up, complete with behavior orchestrated
with the same description one would use for the experiment
documentation. However, we expect we need additional tools to
create a fully useful NLP interface. Specifically, without some
form of supervised machine learning (ML), many details users
can express in English, which apply in precise and specific
ways to testbed experimentation will be lost. With ML, we
potentially can derive meaning from context where otherwise
traditional NLP techniques alone would leave interpretation
too ambiguous to act on.

Second, the automatic generation of scripted behavior is
non-trivial. Our UI can generate scripts based on anything that
can be expressed in our Anon-Lang, however, we expect to
have to improve our script generation and expand Anon-Lang
to capture the complete behavior of more complex and nuanced
experiments.

Last, our focus has been on developing for Anon-Testbed. We
expect porting to other network testbeds to be straightforward,
and involve only back-end development which will not affect
our UI approach. Our future work will focus on testing this
hypothesis.

ACKNOWLEDGMENT

The authors would like to thank all respondents to our survey.
This material is based upon work supported by the National
Science Foundation number 1835608.

REFERENCES

[1] Ansible. https://www.ansible.com.
[2] DETERLab Education Site. https://education.deterlab.net/, 2019.
[3] Explosion AI. Industrial-strength natural language processing—in python.

https://spacy.io/, 2018.
[4] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao,

Max Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni:
A federated testbed for innovative network experiments. Computer
Networks, 61:5 – 23, 2014. Special issue on Future Internet Testbeds
âĂŞ Part I.

[5] Test Resource Management Center. National cyber range. https://www.
acq.osd.mil/dte-trmc/ncr.html, 2018.

[6] Eric Eide and Leigh Stoller. An experimentation workbench for replayable
networking research. In 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI 07), Cambridge, MA, 2007. USENIX
Association.

https://education.deterlab.net/
https://spacy.io/
https://www.acq.osd.mil/dte-trmc/ncr.html
https://www.acq.osd.mil/dte-trmc/ncr.html


[7] Anonymized Author List. Anonymized title. In Proceedings of
Anonymized, Anon Location, 201X. Anon Pub.

[8] University of Utah. Cloudlab. https://www.cloudlab.us, 2017.
[9] DETER Project. Deterlab web page. http://www.deterlab.net, 2018.

[10] FIRE Project. Future internet research and experimentation. https:
//www.ict-fire.eu/tag/testbed/, 2018.

[11] Orbit Project. Open-access research testbed for next-generation wireless
networks (orbit). http://www.orbit-lab.org/, 2018.

[12] Matthias Wachs, Nadine Herold, Stephan-Alexander Posselt, Florian
Dold, and Georg Carle. GPLMT: A lightweight experimentation and
testbed management framework. In PAM, volume 9631 of Lecture Notes
in Computer Science, pages 165–176. Springer, 2016.

[13] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental
environment for distributed systems and networks. In Proceedings of the
Operating System Design and Implementation, pages 255–270, 2002.

https://www.cloudlab.us
http://www.deterlab.net
https://www.ict-fire.eu/tag/testbed/
https://www.ict-fire.eu/tag/testbed/
http://www.orbit-lab.org/

	Introduction
	User Interface and Approach to Experiment Design
	Natural Language Input
	Structured Input via Anon-Lang
	Output: Visualizing Experiment Behavior
	Output: Visualizing Structure

	Survey
	User Background
	Experiment Design Task
	Via Traditional Structure-Centric UI
	Via Our Behavior-Centric UI

	User Feedback

	Survey Responses
	Understanding event dependence is easy with the behavior-centric UI
	The behavior-centric approach is less tedious
	The behavior-centric approach reduces errors
	Users do not write to enable future scaling
	Lessons from respondents' feedback

	Related Work
	Discussion and Future Directions
	References

