
Bitstream Assurance Checking Engine for
Undocumented Functionality (BRACE)

Andrew G. Schmidt, Justin Wilford, Benedict Reynwar, Ting-Yuan Sung, and Matthew French
Information Sciences Institute

University of Southern California
Arlington, VA, USA

{aschmidt, jwilford, breynwar, tsung, mfrench}@isi.edu

Abstract— Assurance that a modern FPGA is secure is difficult

to achieve as the manufacturers do not disclose all user-accessible
circuitry that physically exists on the device. This “undocumented
functionality” is invisible to the end-user and makes it extremely
difficult to perform a security analysis of the device. These
undocumented features are typically circuitry that a vendor does
not wish to support or disclose to end users; however, they can be
vulnerabilities that a bad actor in our global marketplace could
exploit. To mitigate these undocumented features, the University
of Southern California, (USC/ISI), is developing BRACE, the
BitstReam Assurance Checking Engine for undocumented
functionality. BRACE is an automated tool to detect user
reachable undocumented states in COTS FPGA hardware and
assures bitstreams are prevented from using potentially malicious
undocumented functionality. BRACE creates a database of
known and unknown settings and their mapping to a bitstream,
which can then be utilized for both static bitstream checking
during bitstream design and device programming, and runtime
Hard IP control checking during device operation. These checks
are lightweight, operate within seconds to minutes, and do not
require a human analyst in the loop. BRACE is an open
framework that can be extended to host other 3rd-party bitstream
assurance analyses, such as automated wiring short detectors or
other bitstream security tools. By providing both static and
runtime protection mechanisms, BRACE protects COTS FPGA
bitstreams through their entire life cycles.

I. INTRODUCTION
The objective of the BitstReam Assurance Checking Engine for
Undocumented Functionality (BRACE) is to provide hardware
assurance against unknown features within the Very Large
Scale Integration (VLSI) of Field Programmable Gate Arrays
(FPGAs). FPGAs are used pervasively throughout DoD
systems, representing 33% of DoD microelectronics
expenditures [1]. FPGAs are complex devices, whose creation
is overseen by fabless semi-conductor companies who use a
global ecosystem to create, manufacture, and supply them. It is
common for FPGA vendors to include functionality that is not
disclosed to the end user for self-test, advanced proto-typing,
cost savings, and to hide errata. These undocumented features
can be exploited as hardware trojans during either design or
runtime.

FPGAs are critical to the DoD as they are used pervasively
throughout defense systems for their ability to deliver near
custom-ASIC level performance at much lower cost, while their
programmability enables future capability upgrades and errata
fixes. These benefits come with the tradeoff that these are
complex devices that are developed by commercial companies
that may not make their designs fully available for outside
analysis, making FPGA assurance a difficult challenge. Figure
1 depicts the three principal components that comprise the
FPGA ecosystem, their relative relationship to one another, and
the layers of assurance that are needed to provide a
comprehensive FPGA assurance solution. The first aspect is the
user’s design, 3rd party IP, and the CAD tools that the user
collectively uses to create their application circuit and map it
into an FPGA programming file, called a bitstream. Prior art,
such as the FPGA Design Integrity tools developed by
MacAulay Brown under the DARPA Trust and Vet efforts, has
developed advanced techniques to ensure the bitstream is free
of any hardware trojans residing in the user’s circuit level
representation in the bitstream itself. The bottom aspect is the
FPGA VLSI device itself, which for assurance purposes can be
viewed as an ASIC. Here many of the hardware imaging
techniques developed under the DARPA Trust and IRIS
programs can be utilized.

Figure 1- FPGA Integrity Elements

FPGA VLSI

Bitstream

User Design, CAD Tools,
3rd Party IP

Hardware Integrity

Design Integrity

Programmable
Hard IP IntegrityBRACE

DISTRIBUTION STATEMENT A. Approved for public
release. Distribution is unlimited (PA# AFRL-2021-3136)

FPGAs however, introduce a third, middle layer that is not
often seen in ASICs, which is the interaction, especially during
run time, between the bitstream, control settings, and the
underlying FPGA VLSI. As FPGAs have matured, they have
added increasingly complex Hard IP to the device to
incorporate functions that end users are commonly utilizing, to
save device area and increase performance. Hard IP has grown
in complexity from simple multiple accumulators to full DSP
units, and now include a range of functions from complex I/O
standards, tri-mode ethernet media access controllers
(TEMAC), internal configuration access port (ICAP), digital
clock managers, and system monitors. Each of these Hard IP
primitives have control settings that are set either in the
bitstream during configuration or during runtime through user
state machines and control signals. In practice, many of these
control settings are not fully documented. These undocumented
features may enable built in self-test features only used for
acceptance testing, enable advanced features that a user needs
to pay extra for, be proto-types for next generation devices, or
be a deprecated feature due to an erratum. Due to the extreme
sensitivity to VLSI cost and area overhead, FPGA vendors
predominately perform safety and security checking in
software-based CAD tools using design rule checks (DRCs)
rather than enforcing configuration rules directly within the
VLSI. Furthermore, vendors rely on user guides to inform
FPGA application designers how to control Hard IP and leave
the responsibility of ensuring correct operation to the designer.

II. TECHNICAL APPROACH
BRACE is developing an automated toolset, illustrated in
Figure 2, to identify undocumented modes and prevent their
activation during design time, as well as runtime after
deployment. The key technology of BRACE is a database of
FPGA Hard IP settings and their mappings to FPGA bitstreams
[2]. The database is developed utilizing USC/ISI’s Tools for
Open Reconfigurable Computing (TORC) [3] and leverages
open-source FPGA bitstream documentation tools [4,5] to trace
the bitstream mappings. Static bitstream checkers then utilize
the database to ensure an FPGA bitstream is free of
undocumented functionality by iterating over the device and
validating the configuration settings of FPGA Hard IP. Integrity
Assurance Wrappers similarly leverage the database as runtime
checkers capable of preventing or alarming if Hard IP control
is set to illegal values during runtime. The BRACE approach
addresses assurance for 100% of the user accessible Hard IP
types on an FPGA device. The BRACE framework currently is
in development to support Xilinx FPGAs, but the concept is
inherently adaptable to other Xilinx and Intel (Altera) devices.

BRACE seeks to deliver a robust prototype tool that can be
rapidly transitioned into operational systems upon completion
of the project. To enable successful transition and to increase
trust in the final product, BRACE utilizes a robust set of

validation and testing efforts. The primary goals of testing and
validation efforts are to 1) demonstrate the completeness and
correctness of the BRACE database 2) demonstrate the
accuracy and runtime performance of the static checker, 3)
demonstrate the correctness and sensitivity of the Integrity
Assurance Wrappers and 4) demonstrate that the software
frameworks perform as expected and are reasonably resilient.

The completeness of the BRACE database will be validated
by calculating the Database Completeness metric. Once this
metric has been computed, the correctness of the database will
be verified by generating all documented configuration modes
and ensuring that these modes are not contained in the BRACE
database (only undocumented modes should be present). Then
all undocumented modes will be generated and tested to ensure
that these modes are present in the database. Exhaustive testing
is feasible given the large degree of parallelism in the bitstream
structure.

A. BRACE Static Bitstream Checking
Once a bitstream is generated there no longer is a vendor
provided mechanism to validate the configuration settings
against the original user’s design. With BRACE’s Static
Bitstream Checker a comprehensive tool suite is provided to
read, analyze, and report on the bitstream configuration for
Hard IP. Moreover, BRACE’s framework provides the ability
to report all Hard IP the configuration settings and their relevant
values in the User’s Guide. For assurance purposes, BRACE
goes beyond the known and documented configuration settings
and reports out the unknown, undocumented, or illegal states.

Figure 2 - High-Level BRACE design and operation flow

BRACE’s configuration database is a superset of the known
configuration settings from User’s Guides and Application
Notes. The database is generated for each part within a Xilinx
FPGA family and combined with bitstream configuration
settings extracted from open-source tools, such as Project X-
Ray [6]. Each IP is analyzed for bitstream configuration
coverage, and any missing bits or constrained parameters are
evaluated to populate the BRACE Enhanced Bitstream
Database, shown in Figure 3.

The BRACE Static Bitstream Checker generates a report
that specifies the HARD IP in the design and if any
undocumented bits or configuration values have been set. A
high-level report is used to initially capture the status, seen in
Figure 4(A) where a DSP and XADC IP block is reporting 1-
bit each of undocumented state space. In Figure 4(B) the report
is expanded to include all IP blocks for completeness in a
design. Expansions of BRACE Reporting tools include the
ability to pinpoint the bitstream bits for each undocumented
state back to functionality, design documentation, or internal
test cases that were used to derive the undocumented condition.

B. BRACE Run-Time: Integrity Assurance Wrappers
The need for run-time protection from undocumented
functionality is an outgrowth of the user’s, or an adversary’s,
ability to alter the configuration of FPGA Hard IP during
runtime using control inputs or register-based interfaces such as
the DRP. These interfaces create a vulnerability that could be
enabled by data flowing through the device. To protect against
these vulnerabilities, BRACE inserts run-time checkers known
as Integrity Assurance Wrappers (IAW). These wrappers
enclose FPGA Hard IP and monitor and sanitize control inputs
that enable undocumented functions. In addition, alarm signals
are output to inform high-level hardware (e.g. Xilinx Security
Monitor) of attempts to enable undocumented functions.
BRACE’s Static bitstream checking is also used to ensure that
wrappers are not accidentally removed or disabled by CAD-
flow optimization or intentionally by bad actors.
 BRACE uses a post-synthesis insertion process for the
IAWs that is tightly integrated into the Xilinx tool flow

(implemented using TCL scripts), seem in Figure 5. The
insertion process first analyzes the settings of each supported
IP and determines which runtime checks need to be actualized
in hardware. In some cases, such as when control inputs are set
to valid constant values, protection from undocumented
functionality is inherent in the static configuration of the IP.
This extra layer of analysis allows BRACE to provide
maximum protection at a minimum hardware cost. The use of a
post-synthesis insertion process allows the vendor place and
route tools to ensure that the final design meets all timing
requirements.
 IAWs act as a filter for the runtime control inputs that
passes valid inputs and suppresses inputs known to enable
undocumented functionality. This filtering action allows the
IAWs to preserve in the intended functionality of the device and
remove undocumented inputs that cause vulnerabilities. The
insertion process also creates an IP core that collects the alarm
signals of all IAWs and provides and interface to higher-level
hardware IP such as the Xilinx Security Monitor (SECMON),

Figure 3 - Creation and Enhancing BRACE's Database for Static

Bitstream Checking

BRACE enhanced
Bitstream Database

Process User’s
Bitstream and
produce FASM file

Generate BRACE
Database for Part

Figure 4 - Output Reports from BRACE Static Bitstream Checker

(A) Example with only Hard IP coverage

(B) Example with all coverage

Figure 5 - BRACE Integrity Assurance Wrapper Development and

Testing Framework

Test that the
DRP Spec is
consistent

with the test

Cocotb test of
the generated

verilog

Test that output
clocks are as

expected and that
we detect undocs.

JSON Specification – i.e. DSP

Generated Verilog

Test Sequence – i.e. DSP

Create JSON
Specification

for Hard IP Block

Check the
Specification

based on
User Guides

Generate Test
Platform and
integrate with
BRACE CI/CD

Pipelines

Generate
BRACE Wrapper
(IAW) for Hard

IP Block

BRACE Module and
System Simulation (IAW)

IAW Run-Time Testing on FPGA

which then provides an interface that reports which alarm was
triggered.
 BRACE also provides a validation mechanism based on
static bitstream checking and formal verification to ensure that
all IAWs are unaltered prior the loading the bitstream on the
device. Due to the complexities of the FPGA tool flows it is
possible that hardware inserted by an out-of-band tool (such as
BRACE) might be altered during the optimization process. It
is also possible for bad actors and CAD tool flows to
compromise the integrity of the IAW by intentionally altering
the bitstream. The validation mechanism operates initially
using an industry-standard formal verification tool (i.e.
Synopsys Formality or Cadence Conformal) to assure the
functional equivalence of the IAWs inserted into the post-
synthesis netlist with those found in the post-place and route
netlist. Using the post-place and route netlist, the bitstream
mappings of wrapper primitives is identified and used to
generate masks that are placed in the BRACE database. These
masks can then be compared against the bitstream to ensure that
the wrappers are still present. The result of this process is a
light-weight static check that validates the IAWs and can be
integrated with the static checker.

C. BRACE Validation and Testing Framework
BRACE seeks to deliver a robust prototype tool that can be
rapidly transitioned into operational systems upon completion
of the project. The goals of BRACE testing and validation
efforts in this prototype tool are to 1) demonstrate the
completeness and correctness of the BRACE database (for
supported IP within the project scope), 2) demonstrate the
accuracy and runtime performance of the static checker, 3)
demonstrate the correctness and sensitivity of the Integrity
Assurance Wrappers and 4) demonstrate that the software
frameworks perform as expected and are reasonably resilient.
 The accuracy and runtime of the BRACE static checker
will be validated. The accuracy of the static checker will be
validated by using the BRACE database and Automatic Test
Pattern Generation (ATPG) to construct a large battery of test
bitstreams containing undocumented functions. The test
bitstreams will represent several devices from the main classes
(i.e. SX, LX, TX) of Virtex-5 FPGAs. The validation process
will report and check coverage metrics to ensure that all
instances of undocumented functionality are tested across all
devices in a sufficient number of locations on each device.
Software development of the static checking software will use

standard unit and integration testing practices to ensure the
software is robust. The runtime complexity of the static
checker will be evaluated during the testing process by ensuring
that the test bitstreams represent a variety of devices including
the largest of the Xilinx devices.
 The filtering and alarms actions of the IAWs will be
validated in RTL simulation to ensure that attempts to enable
undocumented functionality are successfully filtered and
reported (i.e. alarms are asserted). A constrained random
approach will be used in the simulation testbench to ensure that
all instances of undocumented functionality for supported IP
are thoroughly tested. BRACE will further demonstrate the
operation of IAWs in hardware by injecting undocumented
control signal values into the IAWs and validate that these are
indeed filtered and reported.

III. CONCLUSION
BRACE is an automated toolset that assures FPGA bitstreams
do not activate instances of undocumented functionality that
may result in security vulnerabilities. This is accomplished
using both static bitstream checking and runtime Hard IP
control checking during device operation. These checks are
lightweight, operate within seconds to minutes, do not require
a human analyst in the loop, and can be used in-situ in deployed
embedded systems. By providing both static and runtime
protection mechanisms, BRACE protects COTS FPGA
bitstreams through their entire life cycles. BRACE is an open
framework that can be extended to host other 3rd-party bitstream
assurance analyses, such as automated wiring short detectors or
other bitstream security tools.

IV. REFERENCES
[1] B. Cohen, "IDA DoD Semiconductor Market Estimation," 2015
[2] M. French, A. Schmidt and A. Dasu, "Initial Approaches for Discovery of

Undocumented Functionality in FPGAs," in NDIA Trusted
Microelectrons Conference: "Special Topic: Field Programmable Gate
Array (fpga) Assurance" , Mclean, VA, 2017.

[3] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas and M. French,
"Torc: Tools for Open Reconfigurable Computing," in 19th ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Salt Lake
City, UT, USA, 2011.

[4] C. Lavin and A. Kaviani, "RapidWright: Enabling Custom Crafted
Implementations for FPGAs," in IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), Boulder, CO, USA, 2018.

[5] SymbiFlow.	Project	x-ray.	https://github.com/ SymbiFlow/prjxray,	20

