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Abstract— Assurance that a modern FPGA is secure is difficult 

to achieve as the manufacturers do not disclose all user-accessible 
circuitry that physically exists on the device. This “undocumented 
functionality” is invisible to the end-user and makes it extremely 
difficult to perform a security analysis of the device.  These 
undocumented features are typically circuitry that a vendor does 
not wish to support or disclose to end users; however, they can be 
vulnerabilities that a bad actor in our global marketplace could 
exploit. To mitigate these undocumented features, the University 
of Southern California, (USC/ISI), is developing BRACE, the 
BitstReam Assurance Checking Engine for undocumented 
functionality.  BRACE is an automated tool to detect user 
reachable undocumented states in COTS FPGA hardware and 
assures bitstreams are prevented from using potentially malicious 
undocumented functionality.  BRACE creates a database of 
known and unknown settings and their mapping to a bitstream, 
which can then be utilized for both static bitstream checking 
during bitstream design and device programming, and runtime 
Hard IP control checking during device operation. These checks 
are lightweight, operate within seconds to minutes, and do not 
require a human analyst in the loop. BRACE is an open 
framework that can be extended to host other 3rd-party bitstream 
assurance analyses, such as automated wiring short detectors or 
other bitstream security tools. By providing both static and 
runtime protection mechanisms, BRACE protects COTS FPGA 
bitstreams through their entire life cycles. 

I. INTRODUCTION 
The objective of the BitstReam Assurance Checking Engine for 
Undocumented Functionality (BRACE) is to provide hardware 
assurance against unknown features within the Very Large 
Scale Integration (VLSI) of Field Programmable Gate Arrays 
(FPGAs). FPGAs are used pervasively throughout DoD 
systems, representing 33% of DoD microelectronics 
expenditures [1]. FPGAs are complex devices, whose creation 
is overseen by fabless semi-conductor companies who use a 
global ecosystem to create, manufacture, and supply them. It is 
common for FPGA vendors to include functionality that is not 
disclosed to the end user for self-test, advanced proto-typing, 
cost savings, and to hide errata. These undocumented features 
can be exploited as hardware trojans during either design or 
runtime.  

FPGAs are critical to the DoD as they are used pervasively 
throughout defense systems for their ability to deliver near 
custom-ASIC level performance at much lower cost, while their 
programmability enables future capability upgrades and errata 
fixes. These benefits come with the tradeoff that these are 
complex devices that are developed by commercial companies 
that may not make their designs fully available for outside 
analysis, making FPGA assurance a difficult challenge. Figure 
1 depicts the three principal components that comprise the 
FPGA ecosystem, their relative relationship to one another, and 
the layers of assurance that are needed to provide a 
comprehensive FPGA assurance solution. The first aspect is the 
user’s design, 3rd party IP, and the CAD tools that the user 
collectively uses to create their application circuit and map it 
into an FPGA programming file, called a bitstream. Prior art, 
such as the FPGA Design Integrity tools developed by 
MacAulay Brown under the DARPA Trust and Vet efforts, has 
developed advanced techniques to ensure the bitstream is free 
of any hardware trojans residing in the user’s circuit level 
representation in the bitstream itself. The bottom aspect is the 
FPGA VLSI device itself, which for assurance purposes can be 
viewed as an ASIC. Here many of the hardware imaging 
techniques developed under the DARPA Trust and IRIS 
programs can be utilized. 

 
Figure 1- FPGA Integrity Elements 
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FPGAs however, introduce a third, middle layer that is not 
often seen in ASICs, which is the interaction, especially during 
run time, between the bitstream, control settings, and the 
underlying FPGA VLSI. As FPGAs have matured, they have 
added increasingly complex Hard IP to the device to 
incorporate functions that end users are commonly utilizing, to 
save device area and increase performance. Hard IP has grown 
in complexity from simple multiple accumulators to full DSP 
units, and now include a range of functions from complex I/O 
standards, tri-mode ethernet media access controllers 
(TEMAC), internal configuration access port (ICAP), digital 
clock managers, and system monitors. Each of these Hard IP 
primitives have control settings that are set either in the 
bitstream during configuration or during runtime through user 
state machines and control signals. In practice, many of these 
control settings are not fully documented. These undocumented 
features may enable built in self-test features only used for 
acceptance testing, enable advanced features that a user needs 
to pay extra for, be proto-types for next generation devices, or 
be a deprecated feature due to an erratum. Due to the extreme 
sensitivity to VLSI cost and area overhead, FPGA vendors 
predominately perform safety and security checking in 
software-based CAD tools using design rule checks (DRCs) 
rather than enforcing configuration rules directly within the 
VLSI. Furthermore, vendors rely on user guides to inform 
FPGA application designers how to control Hard IP and leave 
the responsibility of ensuring correct operation to the designer.  

II. TECHNICAL APPROACH 
BRACE is developing an automated toolset, illustrated in 
Figure 2, to identify undocumented modes and prevent their 
activation during design time, as well as runtime after 
deployment. The key technology of BRACE is a database of 
FPGA Hard IP settings and their mappings to FPGA bitstreams 
[2]. The database is developed utilizing USC/ISI’s Tools for 
Open Reconfigurable Computing (TORC) [3] and leverages 
open-source FPGA bitstream documentation tools [4,5] to trace 
the bitstream mappings. Static bitstream checkers then utilize 
the database to ensure an FPGA bitstream is free of 
undocumented functionality by iterating over the device and 
validating the configuration settings of FPGA Hard IP. Integrity 
Assurance Wrappers similarly leverage the database as runtime 
checkers capable of preventing or alarming if Hard IP control 
is set to illegal values during runtime. The BRACE approach 
addresses assurance for 100% of the user accessible Hard IP 
types on an FPGA device. The BRACE framework currently is 
in development to support Xilinx FPGAs, but the concept is 
inherently adaptable to other Xilinx and Intel (Altera) devices.  

BRACE seeks to deliver a robust prototype tool that can be 
rapidly transitioned into operational systems upon completion 
of the project.  To enable successful transition and to increase 
trust in the final product, BRACE utilizes a robust set of 

validation and testing efforts. The primary goals of testing and 
validation efforts are to 1) demonstrate the completeness and 
correctness of the BRACE database 2) demonstrate the 
accuracy and runtime performance of the static checker, 3) 
demonstrate the correctness and sensitivity of the Integrity 
Assurance Wrappers and 4) demonstrate that the software 
frameworks perform as expected and are reasonably resilient. 

The completeness of the BRACE database will be validated 
by calculating the Database Completeness metric.  Once this 
metric has been computed, the correctness of the database will 
be verified by generating all documented configuration modes 
and ensuring that these modes are not contained in the BRACE 
database (only undocumented modes should be present). Then 
all undocumented modes will be generated and tested to ensure 
that these modes are present in the database. Exhaustive testing 
is feasible given the large degree of parallelism in the bitstream 
structure. 

A. BRACE Static Bitstream Checking 
Once a bitstream is generated there no longer is a vendor 
provided mechanism to validate the configuration settings 
against the original user’s design.  With BRACE’s Static 
Bitstream Checker a comprehensive tool suite is provided to 
read, analyze, and report on the bitstream configuration for 
Hard IP.  Moreover, BRACE’s framework provides the ability 
to report all Hard IP the configuration settings and their relevant 
values in the User’s Guide.  For assurance purposes, BRACE 
goes beyond the known and documented configuration settings 
and reports out the unknown, undocumented, or illegal states.   

Figure 2 - High-Level BRACE design and operation flow 



BRACE’s configuration database is a superset of the known 
configuration settings from User’s Guides and Application 
Notes.  The database is generated for each part within a Xilinx 
FPGA family and combined with bitstream configuration 
settings extracted from open-source tools, such as Project X-
Ray [6].  Each IP is analyzed for bitstream configuration 
coverage, and any missing bits or constrained parameters are 
evaluated to populate the BRACE Enhanced Bitstream 
Database, shown in Figure 3. 
 

The BRACE Static Bitstream Checker generates a report 
that specifies the HARD IP in the design and if any 
undocumented bits or configuration values have been set.  A 
high-level report is used to initially capture the status, seen in 
Figure 4(A) where a DSP and XADC IP block is reporting 1-
bit each of undocumented state space.  In Figure 4(B) the report 
is expanded to include all IP blocks for completeness in a 
design.  Expansions of BRACE Reporting tools include the 
ability to pinpoint the bitstream bits for each undocumented 
state back to functionality, design documentation, or internal 
test cases that were used to derive the undocumented condition. 
 

B. BRACE Run-Time: Integrity Assurance Wrappers 
The need for run-time protection from undocumented 
functionality is an outgrowth of the user’s, or an adversary’s, 
ability to alter the configuration of FPGA Hard IP during 
runtime using control inputs or register-based interfaces such as 
the DRP. These interfaces create a vulnerability that could be 
enabled by data flowing through the device. To protect against 
these vulnerabilities, BRACE inserts run-time checkers known 
as Integrity Assurance Wrappers (IAW).  These wrappers 
enclose FPGA Hard IP and monitor and sanitize control inputs 
that enable undocumented functions.  In addition, alarm signals 
are output to inform high-level hardware (e.g. Xilinx Security 
Monitor) of attempts to enable undocumented functions.  
BRACE’s Static bitstream checking is also used to ensure that 
wrappers are not accidentally removed or disabled by CAD-
flow optimization or intentionally by bad actors.  
 BRACE uses a post-synthesis insertion process for the 
IAWs that is tightly integrated into the Xilinx tool flow 

(implemented using TCL scripts), seem in Figure 5.  The 
insertion process first analyzes the settings of each supported 
IP and determines which runtime checks need to be actualized 
in hardware. In some cases, such as when control inputs are set 
to valid constant values, protection from undocumented 
functionality is inherent in the static configuration of the IP. 
This extra layer of analysis allows BRACE to provide 
maximum protection at a minimum hardware cost. The use of a 
post-synthesis insertion process allows the vendor place and 
route tools to ensure that the final design meets all timing 
requirements.  
 IAWs act as a filter for the runtime control inputs that 
passes valid inputs and suppresses inputs known to enable 
undocumented functionality. This filtering action allows the 
IAWs to preserve in the intended functionality of the device and 
remove undocumented inputs that cause vulnerabilities. The 
insertion process also creates an IP core that collects the alarm 
signals of all IAWs and provides and interface to higher-level 
hardware IP such as the Xilinx Security Monitor (SECMON), 

 
Figure 3 - Creation and Enhancing BRACE's Database for Static 
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Figure 4 - Output Reports from BRACE Static Bitstream Checker 
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Figure 5 - BRACE Integrity Assurance Wrapper Development and 

Testing Framework 
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which then provides an interface that reports which alarm was 
triggered. 
 BRACE also provides a validation mechanism based on 
static bitstream checking and formal verification to ensure that 
all IAWs are unaltered prior the loading the bitstream on the 
device. Due to the complexities of the FPGA tool flows it is 
possible that hardware inserted by an out-of-band tool (such as 
BRACE) might be altered during the optimization process.  It 
is also possible for bad actors and CAD tool flows to 
compromise the integrity of the IAW by intentionally altering 
the bitstream. The validation mechanism operates initially 
using an industry-standard formal verification tool (i.e. 
Synopsys Formality or Cadence Conformal) to assure the 
functional equivalence of the IAWs inserted into the post-
synthesis netlist with those found in the post-place and route 
netlist.  Using the post-place and route netlist, the bitstream 
mappings of wrapper primitives is identified and used to 
generate masks that are placed in the BRACE database. These 
masks can then be compared against the bitstream to ensure that 
the wrappers are still present. The result of this process is a 
light-weight static check that validates the IAWs and can be 
integrated with the static checker.  

C. BRACE Validation and Testing Framework 
BRACE seeks to deliver a robust prototype tool that can be 
rapidly transitioned into operational systems upon completion 
of the project.  The goals of BRACE testing and validation 
efforts in this prototype tool are to 1) demonstrate the 
completeness and correctness of the BRACE database (for 
supported IP within the project scope), 2) demonstrate the 
accuracy and runtime performance of the static checker, 3) 
demonstrate the correctness and sensitivity of the Integrity 
Assurance Wrappers and 4) demonstrate that the software 
frameworks perform as expected and are reasonably resilient.  
 The accuracy and runtime of the BRACE static checker 
will be validated.  The accuracy of the static checker will be 
validated by using the BRACE database and Automatic Test 
Pattern Generation (ATPG) to construct a large battery of test 
bitstreams containing undocumented functions. The test 
bitstreams will represent several devices from the main classes 
(i.e. SX, LX, TX) of Virtex-5 FPGAs.  The validation process 
will report and check coverage metrics to ensure that all 
instances of undocumented functionality are tested across all 
devices in a sufficient number of locations on each device.  
Software development of the static checking software will use 

standard unit and integration testing practices to ensure the 
software is robust.  The runtime complexity of the static 
checker will be evaluated during the testing process by ensuring 
that the test bitstreams represent a variety of devices including 
the largest of the Xilinx devices. 
 The filtering and alarms actions of the IAWs will be 
validated in RTL simulation to ensure that attempts to enable 
undocumented functionality are successfully filtered and 
reported (i.e. alarms are asserted).  A constrained random 
approach will be used in the simulation testbench to ensure that 
all instances of undocumented functionality for supported IP 
are thoroughly tested.  BRACE will further demonstrate the 
operation of IAWs in hardware by injecting undocumented 
control signal values into the IAWs and validate that these are 
indeed filtered and reported.         

III. CONCLUSION 
BRACE is an automated toolset that assures FPGA bitstreams 
do not activate instances of undocumented functionality that 
may result in security vulnerabilities. This is accomplished 
using both static bitstream checking and runtime Hard IP 
control checking during device operation.  These checks are 
lightweight, operate within seconds to minutes, do not require 
a human analyst in the loop, and can be used in-situ in deployed 
embedded systems. By providing both static and runtime 
protection mechanisms, BRACE protects COTS FPGA 
bitstreams through their entire life cycles. BRACE is an open 
framework that can be extended to host other 3rd-party bitstream 
assurance analyses, such as automated wiring short detectors or 
other bitstream security tools. 
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