Distributed Algorithms for Sensor Networks (SCADDS)
Deborah Estrin, Ramesh Govindan and John Heidemann

- Develop distributed algorithms for sensor networks which provide:
 - Unattended operation
 - Robustness under dynamic operating conditions
 - Scalability to thousands of sensors
 - Energy efficiency (for untethered operation)

- To provide this, the focus is on:
 - Automatic adaptation (for unattended robustness)
 - Local processing (for scalability and efficiency)
Our Approach: Directed Diffusion

- Key constructs that support automatic adaptation and local processing
 - Naming data, not nodes, makes it robust to node mobility, failure, disruption
 - Rapid, energy efficient adaptation by localizing interactions to neighboring nodes
 - Processing (correlation, aggregation) of data in “transit” promotes scaling of signals and energy as network/density increases

How Diffusion uses these constructs
- Requests and responses diffuse based on named data in localized hop-by-hop manner
- Adaptation to preferable paths achieved by reinforcing/inhibiting local gradients
- Allows flexible distributed algorithm design
 - More easily express local processing of sensor data
 - Unlike end-to-end communication in Internet
 - More easily adapt network paths
 - When nodes fail or move

“What do you see in the southwest?”