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Satellite swarms are groups of spacecraft that operate cooperatively to perform a common
task or goal in orbit. Examples of this are in-space assembly of structures, manufacturing,
cooperative sensing platforms, on-orbit servicing, asteroid mining, etc. Swarms would be
operating in relative-motion orbits, working around a common point in space, within a few
kilometers of each other. Such swarms would share information between each member of the
swarm, allowing them to have a shared situational awareness of the entire mission. This paper
describes a novel approach to optimize relative-motion orbital trajectories for a spacecraft
swarm of arbitrary size and function, using genetic algorithms. The use of genetic algorithms
allows convergence to an optimal set or family of trajectories for each member of the swarm
regardless of the size of the swarm or mission functions required, should a solution exist.
These trajectories will be such that each spacecraft can perform their required individual
actions while minimizing the fuel required for maneuvering and also avoiding conjunctions, to
a prescribed probability of collision, for a given amount of time. Genetic algorithms have been
used previously for optimization of low thrust orbit transfers, drone delivery networks, and
control of self-driving cars, among other applications.

I. Nomenclature

Npop = population size
Ngen = number of generations
Nsat = number of spacecraft
pcross = probability of crossover
pmut = probability of mutation
δr = relative position
δv = relative velocity

II. Introduction
With the emergence of the space servicing sector, along with the anticipated return of manned missions beyond low

earth orbit, there is a need for quick, efficient, and most of all, safe Rendezvous and Proximity Operations (RPO). More
than that, the next technologic step forward in the space domain will be building objects in space using robotic vehicles,
which will involve large numbers of spacecraft cooperating in close proximity to each other, all subjected to the laws of
orbital mechanics. Currently, there is a lack of knowledge about how to safely operate a swarm of spacecraft in close
quarters in a dynamically changing environment (i.e., what is considered a “space construction site”), without creating a
high risk of collision and potential debris creation. Methods for swarm RPO safety are being developed but have not yet
been tested in space, primarily due to a lack of focused application-based funding on the theoretical side, and a lack of
matured technology on the hardware side, given the high risk of operating many spacecraft in close proximity to each
other in orbit.

Many people talk about a future in which spacecraft and structures are manufactured and built in space, and indeed
there are a handful of companies focusing today on making that dream a reality. However, there is no framework as of
yet to be able to setup or control a group, a swarm, of individual spacecraft working cooperatively in close proximity to
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each other. This is different from traditional formation flying [1, 2], where a small number of spacecraft are in a static or
highly-controlled pre-planned configuration, typically to collect scientific measurements. Swarms, by contrast, are
inherently dynamic in nature, shifting in size and scope as the mission progresses. In the case of the on-orbit assembly or
construction site example, it is expected that the object under construction would grow in a non-linear fashion over time,
and thus each independent construction or servicing spacecraft would be required to constantly modify its movement
around the growing central object, continuously avoiding any conjunction.

Whereas there is currently a focus on either the design of a spacecraft that can perform on-orbit assembly [3–5], or
large structures to be manufactured in space from a single spacecraft [6–8], there is a distinct lack of research into the
processes of in-space construction and how to enable large-scale cooperative actions safely around a central object that
is growing over time (i.e. an assembled large scale structure). This paper proposes a new framework and universal tool
for spacecraft swarms that enables both building of a set of trajectories for a swarm with distributed tasks and mission
goals, and orbit maintenance/control to compensate for gravitational perturbations and unexpected events, including a
swarm architecture that is fluctuating in size and shape.

III. Swarms
Satellite swarms are groups of spacecraft that operate cooperatively to perform a common task or goal in orbit.

Examples of this are in-space assembly of structures, construction, cooperative sensing platforms, on-orbit servicing,
asteroid mining, etc. The swarm framework is designed using relative-motion orbits, working around a common point
in space, usually within a few kilometers of each other. Such swarms can share information between each member of
the swarm, allowing them to have a shared situational awareness of the entire mission. Although not all members of the
swarm may have the same functionality, i.e. some may be communication nodes, others may have robotic arms, and yet
others may have scanning cameras and LIDARs, it is expected that they will all have propulsive capabilities to allow
them to maneuver in relative orbits around each other and/or a common target.

As swarms are composed of many spacecraft operating in relatively close proximity to each other, there is an
inherent risk of possible collision, requiring complex planning to ensure safe operations in orbit. A large part of safety
to-date for satellite swarms is passive, where free orbital trajectories will not cause a conjunction within a given amount
of time, preventing unnecessary maneuvering and risk. In order to ensure passive safety of orbital trajectories of satellite
swarms operating in close proximity, such that one vehicle’s failure does not impact any other members of the swarm for
a prescribed amount of time, a new set of orbital optimization algorithms are required to obtain these trajectories. This
process will consider low collision risk and low delta-v, but also allow each member of the swarm to perform their
specific set of tasks assigned to them.

The method of swarm movement optimization that will be investigated in this paper is the use of genetic algorithms
to converge on an optimal set or family of trajectories for each member of the swarm. These trajectories will be such
that each member can perform their required individual actions while minimizing the fuel required for maneuvering and
also avoiding conjunctions, to a prescribed probability of collision, for a given amount of time. While near term it
is expected that ground command uplink intervention would be needed to determine and execute remedial actions in
the case of failure on orbit of a single element in the swarm, the long term goal is to develop autonomous algorithms
to enable a swarm to accept and remediate failures, in real time. Genetic algorithms have been used previously for
optimization of low thrust orbit transfers [9], drone delivery networks [10], and control of self-driving cars [11], among
other applications.

The expected result from this analysis will be a methodology to use genetic algorithms for optimization of orbital
trajectories for satellites swarms. A genetic algorithm is a very powerful optimization tool, but it requires a great deal
of fine tuning to work properly and efficiently. An important result of this analysis will be the identification of a cost
function that will govern the optimization of the swarm, while allowing each member of the swarm to complete their
specific assigned mission, without endangering the swarm as a whole.

IV. Relative Motion
The equations of motion that are used to model the gravitational forces throughout the optimization process are

initially the Clohessy-Wiltshire (C-W) equations. These are linearized solutions of the relative orbital motion problem,
in which two spacecraft are both orbiting the same central body in similar orbits. The solution space for this problem is
in the LVLH (Local-Vertical-Local-Horizontal) reference frame, centered on the target spacecraft, making it a rotating
reference frame and thus a non-inertial space, which is why linearized solutions are much easier to solve. After creating
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a working algorithm and cost function for the linearized solution, a non-linear solution of the relative motion problem
will be applied to the genetic algorithm to test for variations between the nonlinear model and the linearized model [12].

For the purposes of this analysis, the definition of a swarm is: a group of two or more spacecraft cooperating
towards a common task or goal [12]. The analysis is performed in the relative motion non-inertial coordinate system
defined by the C-W equations [13].

Fig. 1 Slightly eccentric orbit allows relative motion

As seen in Fig. 1, the spacecraft depicted (1 and 2) are in slightly different orbits from each other (upper subfigure),
such that in the relative motion space (lower subfigure) spacecraft 2 appears to be "orbiting" around spacecraft 1. The
mechanics of the free-trajectory motion following these relative motion orbital tracks are well known and understood,
having been used for more than fifty years, prior to the Apollo missions [14].

V. Genetic Algorithms
Genetic Algorithms (GAs) are a method of optimization, applicable to a wide variety of problems, that use a process

similar to Darwinian evolution to evolve a set of random (or pseudo-random) initial conditions to find an acceptable
solution, or even a globally optimal solution, to a problem [15]. These initial conditions form the initial population, of
size Npop . This initial population is then propagated, in this case using the C-W equations, to the final state at time t f .
Fig. 2 shows a depiction of the GA process, explained in detail in the following section.
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Fig. 2 GA Example Flowchart

Once the initial population is created and propagated, the solutions are ranked based on how close they come to the
desired solution, using a fitness function. For simplicity, we created our fitness function such that it ranges from 0 to 1,
where a value of 0 has no attributes of a desired solution, and a value of 1 is the desired solution. For the initial problem
of finding closed and repeating trajectories in the LVLH frame, this was defined as:

F =
(
1 + Cr



®r(t f ) − ®r(t0)

 + Cv



®v(t f ) − ®v(t0)

)−1 (1)

where

Cr : coefficient of position
Cv : coefficient of velocity

Given a start time t0 and end time t f , Eq. (1) defines a fitness function that prefers solutions that are closed
trajectories. The closer the final conditions, ®r(t0) and ®v(t0) are to the initial conditions, ®r(t f ) and ®v(t f ), the higher the
fitness function’s value will be, since an desired solution is one where the final conditions and initial conditions are
the same. Once the population members are ranked based on their fitness, the bottom half is culled as they are not
desirable solutions. However, we need to rebuild the population back to size Npop for the next generation (Npop = 200
in our case), so this is where genetic crossover is implemented. To perform crossover, each member of the population
(chromosome) should be represented in binary notation in order to represent the data with the most number of genes
(string elements), since binary is lowest-order possible data-encoding scheme, with a radix of 2. In the case of swarm
trajectories, where our population is composed of 3 position and 3 velocity variables, each of these are represented in
binary as 16 bit floats and appended to form a 96 bit string, called a chromosome, seen in Fig. 3.
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Fig. 3 GA Binary Representation

Crossover is then performed by choosing two of the remaining solutions as parents, and taking portions of their
chromosomes (in this case bits) to form members of the next generation. There are many methods of genetic crossover
that can be used in GAs, the simplest of which is random pairing [16]. As random pairing is inefficient at reaching a
solution, our method uses roulette selection, which assigns a weighting factor to each parent based on their fitness values.
Then pairs are selected to be mated using the weighting factors, such that the chance of selecting a parent with a fitness
value of 0.5 is five times higher than selecting one with a fitness value of 0.1. When mating pairs for the crossover, a
random number between 1 and 95 is selected for each crossover event, to determine at which point in the chromosome to
cut and swap, as depicted in Fig. 4. Then, the chromosomes of each of the two parents are cut at this crossover point
and swapped to make two new offspring. This is done until the population size has been rebuilt to Npop for the next
generation’s computations.

Fig. 4 GA Crossover Example

After crossover is completed, the final step of the GA sequence is to perform a mutation on the chromosomes. The
crossover process spreads genetic diversity throughout the population, but does not introduce any new possibilities to
the population. This is where mutation comes in; mutation allows new structures or solutions to appear by randomly
flipping bits throughout all the chromosome. A variable, pmut , is used to control this probability, and thus a small
subset of all bits in all chromosomes are flipped, introducing new and random solution possibilities (see Fig. 5). Good
mutations will survive to the next generation and undesirable mutations will not, by means of the fitness function.
Although mutation is an important part of the GA process, it must be used sparingly to avoid conflicting with the
crossover process. In this case, we use a probability of mutation of 0.2% (pmut = 0.002).
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Fig. 5 GA Mutation Example

Once the mutation is completed, the binary data is then decoded back into their separate variables, and the process
begins again for the next generation. This process continues until a fitness value of one is achieved for a member of the
generation, or the maximum number of generations has been reached (Ngen = 100). In practice, however, a threshold
must be specified, since it is impossible to converge to an exact solution [16]. For an accurate solution, a threshold of
0.001 is used; however, in practice it is more computationally efficient to use a threshold of 0.01 to get near the solution
and use another targeted optimization technique to further refine the solution. This is due to the fact that the Genetic
Algorithm (GA) method is designed to search across the entire solution space and find a solution among many possible
solution spaces, and thus is very good at identifying the location of an optimal solution, but lacks efficiency in arriving
at the exact solution itself [15].

VI. Solving for Spacecraft Swarms

A. Initial Trajectory Generation
In order to solve for a set of trajectories for a swarm of spacecraft, multiple genetic algorithms are used, one for each

spacecraft, all nested within a larger GA to de-conflict for collisions.

Fig. 6 Hierarchy of Genetic Solvers

Each spacecraft is assigned its own fitness function, and this is defined by the mission requirements for a spacecraft.
For example, a spacecraft that has a requirement to be within dmax but no closer than dmin from a Client spacecraft
will have a fitness function as defined in Eq. (2). Note that for the three coefficients, they can be used to tweak which
parameters are desired to be solved to a higher accuracy. By default they are all set to 1, but if velocity knowledge is
valued at higher precision over position knowledge, then Cv can be set lower (e.g., Cr = 1 and Cv = 0.5 will result in a
twofold increase in precision for velocity)

F =
(
1 + Cr



®r(t f ) − ®r(t0)

 + Cv



®v(t f ) − ®v(t0)

 + Cdδdist
)−1 (2)

where

δdist =


dmin − rmin if rmin < dmin

rmax − dmax if rmax > dmax

0 otherwise
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Cr : coefficient of position
Cv : coefficient of velocity
Cd : coefficient of distance

rmin : closest range to Client spacecraft [km]
rmax : farthest range to Client spacecraft [km]
dmin : closest permissible distance to Client spacecraft [km]
dmax : farthest permissible distance to Client spacecraft [km]

These separate fitness functions allow the optimizer to solve for each spacecraft using its own GA, which can be
run in parallel to save on computation time. Once a trajectory is generated for each spacecraft (identified by its initial
position and velocity vectors), the outer GA checks for collisions. This is done by propagating each of the trajectories
over the course of an orbit, sampling at a fixed timestep (60 s in our case). These position vs. time values are compared
for all the spacecraft to determine if there is a chance of collision (for simplicity, a collision is determined to be possible
if the two spacecraft are predicted to be within 1 km).

If there is a collision predicted, then the outer GA will isolate the two spacecraft that are involved in the collision
and determine how to most efficiently mitigate it, as well as which spacecraft has the least restrictions on it to modify its
trajectory. The simplest solution is not to change the trajectory at all, but instead adjust the insertion time of one into
its trajectory so as to adjust its phase, thereby avoiding a collision. If this is not possible, or if this results in further
collisions, then the solver will try slight variations of the trajectories until one is found that does not result in any
conjunction.

Running this for a set of 10 spacecraft, with a requirement to be between 0.5 km and 10 km of the Client, and to
avoid conjunctions within a 1 km buffer corridor of each spacecraft, Fig. 7 shows a set of closed and repeating relative
motion trajectories that satisfy this criteria

Fig. 7 Swarm Solution for 10 Spacecraft

It should be noted, however, that this is not a unique solution. There is a family of an infinite number of solutions
that satisfy this criteria, we are only interested in one of them.

B. Trajectory Modification for New Spacecraft Insertion
Now that a set of trajectories are generated for the swarm, the next problem to tackle is the dynamic nature of the

swarm: what to do when the number of spacecraft or their requirements changes?
The problem of adding or removing a spacecraft from a set of swarm trajectories that have already been generated is

fundamentally different from the problem above, since we cannot simply regenerate the trajectories for all spacecraft, we
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already have a set of spacecraft in their respective trajectories and want to modify this as little as possible. When adding
a spacecraft to the swarm, its understood that some or all of the other spacecraft in the swarm may have to modify their
trajectories, thereby using some of their fuel reserves, to enable a set of safe, mission-specific trajectories for the new
swarm. However, it is desirable to do this in such a way that the delta-v used by the swarm as a whole is minimized, as
well as the delta-v used by individual members of the swarm so as not to excessively deplete the reserves of a single
spacecraft.

This is performed once again by using genetic algorithms, using the same nested GA scheme (see Fig. 6), but with a
modification to the outer de-confliction GA to take into account the delta-v cost to attain a given trajectory from an
existing one, and a modification to the spacecraft-level GA fitness function that uses the existing trajectory at the starting
point for a solution rather than a random seed (see Eq. (3)).

Finsert =
(
1 + Cr



®r(t f ) − ®r(t0)

 + Cv



®v(t f ) − ®v(t0)

 + Cdδdist + ∆v
)−1 (3)

An example of this can be seen in Fig. 8, which depicts a modification of the solution shown in Fig. 7 with an 11th
spacecraft added into the swarm. The trajectories of the original 10 spacecraft have been modified slightly to allow for
the addition of the 11th, conserving delta-v.

Fig. 8 Modified swarm solution for the addition of an 11th spacecraft

C. Considerations for Construction and Aggregation
When applying this methodology to in-space construction or aggregation of swarm members, consideration needs to

be taken not only for the addition and removal of members from the swarm, but also for the dynamically changing
dimensions, mass, and moment of inertia of the Client being constructed. As the structure grows, so will the keep-out
zone specified for all spacecraft, especially if it is spinning. Although these simulations have not yet been performed,
this is the next stage of research that is currently underway at the USC Space Engineering Research Center (SERC).

VII. Conclusion
As the use of on-orbit servicing grows in Earth orbit, so will the use of satellite swarms to perform more complex

maneuvers. The methodology outlined above, using genetic algorithms to narrow down a set of acceptable, efficient,
and stable trajectories for spacecraft comprising a swarm, is one of many possible methods, but is adaptable to various
scales and mission restrictions. The implementation of on-orbit construction is drawing closer and closer day by day,
become less like science fiction and more like reality. Great strides have been made to design spacecraft that can
perform on-orbit assembly, and to develop structures that can be assembled in space; its now time to do the same for the
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methodology of how to perform these cooperative actions in a non-intuitive micro-gravity environment in as safe and
autonomous manner as possible.
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