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Motivation

Docking mechanisms are essential in space missions. Determining a
low-risk, low-cost alternative to past docking techniques advances the
frontier of space technology.
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Research Objective

Study maximum shear forces of Electroadhesion samples composed of
space-rated materials on substrates, test geometries of samples with air-
bearing platforms as docking mechanisms, and propose a metric for
capturing.
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Applications of Electroadhesion
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Electroadhesion Technology
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Electroadhesion Technology
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Electroadhesion Technology
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Materials and Method

e Measure maximum shear forces of Electroadhesion samples at

variable input voltages (1 kV - 5 kV)

o Configure samples into proposed geometries and test with air-
bearing platforms

o Materials

 Electrode Material
e Heavy Duty Aluminum Foil

o Substrate Materials
* Anodized Aluminum
e Bare Aluminum
e Aluminized Mylar

o Clamping (Insulating) Material
» Kapton

Experiment
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Static Response
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Figure 1: Experimental setup of electroadhesion sample attached to substrate with measured shear
force.
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Dynamic Application

[Hard Structure] [Soft Structure]
5 - (1) Flat Plate
.  Cubesat
ﬂi\\;f » Flat Spacecraft
e Side

(2) Concave Cylinder
e Cylindrical

@ = :;‘Ji = Spacecraft
J -fHH‘I « Torque Mitigation

- (3) 4-Arm Clamp

» Variety of shapes
on Spacecraft

o Other small objects

Figure 2. Geometry configurations of samples.
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Dynamic Application

Figure 3: Experimental setup of air bearing platform with attached substrate and
electroadhesion device of geometry (3). Experiment
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Static Response

Results and Discussion
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Static Response
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Figure 4: Static shear pressure. Results and Discussion
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Constructed Geometries

Figure 5: Clamp Geometry (1) (left) and Geometry (2) (right) of electroadhesion samples.

Results and Discussion
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Constructed Geometries

Figure 6: Clamp Geometry (3) of electroadhesion samples. ) )
J g y@©) b Results and Discussion

16 of 25

USC Viterbi

School of Engineering University of Southern California




Dynamic Application

Figure 7: Air-bearing platform isometric and side views. : i
Results and Discussion
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Dynamic Application
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Figure 8: Comparison of time for electroadhesion

geometry to stop movement. Results and Discussion
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Proposed Metric for Capturing
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Summary of Results

e  Superior geometry is dependent on scenario

e Lag of material from hard structure determined best docking
scenarios

o Implies soft structures are optimal

o Flexible aluminized Mylar material produced greatest shear
pressure with electroadhesion sample

* Linear relationship between initial approach velocity, residual
motion, and surface area of contact

A metric is proposed to determine the stop time of initial and
residual motion dependent on electroadhesion geometry and contact
surface area

Conclusions
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Future Research

e \Varying Insulating
Material

e Manufactured
electroadhesion samples
to acquire greater shear
forces (NASA-JPL)

« Additional sample
geometries

« Control algorithms for
docking with claw
geometry
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