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Abstract

With the emergence of the space servicing sector, along with the return of manned missions beyond low
earth orbit, there is a need for quick, efficient, and most of all, safe Rendezvous and Proximity Operations
(RPO). More than that, the next big step forward may be manufacturing in space, which will involve large
swarms of spacecraft cooperating in close proximity to each other, all subjected to the same laws of orbital
mechanics. Currently, there is a lack of knowledge about how to safely operate a swarm of spacecraft in
close quarters in a dynamically changing environment (i.e., a “space construction site”), without creating a
high risk of collision and potential debris creation. Satellite swarms are groups of spacecraft that operate
cooperatively to perform a common task or goal in orbit. Examples of this are in-space assembly of structures,
manufacturing, cooperative sensing platforms, on-orbit servicing, asteroid mining, etc. Swarms would be
operating in relative-motion orbits, working around a common point in space, within a few kilometers of
each other. Such swarms would share information between each member of the swarm, allowing them to
have a shared situational awareness of the entire mission. Although not all members of the swarm may
have the same functionality, i.e. some may be communication nodes, others may have robotic arms, and yet
others may have scanning cameras and LIDARs, it is expected that they will all have propulsive capabilities
to allow them to maneuver in relative orbits around each other and/or a common target. Once a set of
orbits are created for a swarm to perform is operations, primarily done by taking into account the individual
tasks of the various members of the swarm while keeping collision avoidance in mind, these orbits need to be
maintained. Unlike a single spacecraft operating alone, a spacecraft swarm cannot rely on inertial navigation
methods or large navigational systems such as GPS, as these methods cannot provide the high-fidelity data
required to determine the relative position of the members of the swarm with respect to each other. Instead,
a system of relative positions sensors, along with data from RF communications between the spacecraft
can be used. Upon receiving this wealth of data from various sensor inputs, each of varying resolution and
quality, this data can be parsed in real-time by the on-board system on each spacecraft in the swarm, and
then fed into a sensor fusion Kalman filter, also aboard the spacecraft, to maintain the relative motion orbit
of the swarm in the face of gravitational perturbations
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Nomenclature

CLIEN T e e e e Satellite or Platform to be Serviced
SERVICER ... o e Satellite or Platform that provides Service
SWARM ............... ... Group of two or more spacecraft cooperating towards a common task or goal

G- Clohessy-Wiltshire
GO Geostationary Earth Orbit
GN O Guidance Navigation and Control
L O o Low Earth Orbit
LV LH Local Vertical Local Horizontal
OO0 On Orbit Servicing
RO Rendezvous and Proximity Operations
SE K Sensor Fusion Kalman Filter

1 Introduction

Given the recent advancements in satellite servicing technologies and space robotics [1-7], the collective
capabilities of the space industry as a whole are moving towards in-space manufacturing. The ability to
manufacture or assembly anything in space using robotics is a crucial technology for deep space exploration
and the eventual colonization of Mars and beyond, as current platforms are limited to the volume and mass
constraints of a single rocket fairing. Although the existing On-Orbit Servicing (OOS) methodology employs
the use of large, monolithic robotic spacecraft; the method of OOS and in-space manufacturing proposed in
this research study considers taking the leap from using one spacecraft to a swarm of dozens, potentially even
hundreds, of small robotic spacecraft. These swarms of spacecraft would operate like a colony of bees, each
individual member of the swarm performing its own dedicated task, culminating in the successful execution
of a large and complex operation [8].

To control a large number of spacecraft cooperating in close proximity, each member of the swarm must be
able to maneuver on its own, as well have the capability to sense the position and velocity of other nearby
members of the swarm to communicate and avoid collisions if anything goes wrong [9]. To streamline this
process, for a given swarm function a set of optimized trajectories needs to be determined such that there
are no predicted collisions between the spacecraft for a prescribed amount of time, barring any malfunctions,
and the AV required to insert to the swarm is minimized.

There has been some prior research into the use of safety metrics and collision avoidance for RPO in Earth
orbit [10]; however, no previous research has sought to combine the use of all of these for swarm operations.
For example, Gaylor, Brent, and Barbee [11] outline a framework for safe rendezvous algorithms using safety
ellipses and linear optimization techniques, but it is applied only to one-on-one RPO, and is not suited for
swarm operations. Izzo and Pettazzi [12] analyze the use of equilibrium potential functions to determine
optimal orbits for satellites in the swarm to avoid collisions. Lopez and McInnes [13] employ virtual vector
fields to control the final approach trajectory during RPO, but only for one-on-one satellite rendezvous.
Slater, Byram, and Williams [14] create probability functions to determine the collision risk of members of
satellite formations with foreign objects or drifting members of the formation. However, they do not set up
the formation (swarm) in a way that reduces the probability of these collisions in the first place. Ross, King,
and Fahroo [15] investigate optimization techniques for formations and swarms, though they concentrate on
propellant optimization rather than safety and collision avoidance optimization.



This paper will cover the use of Sensor Fusion and Kalman Filtering to accurately determine the relative
states of all spacecraft in a swarm, in real-time, accounting for deviations due to errors and perturbations.

2 Swarm Architecture

The goal of swarm Rendezvous and Proximity Operations (RPO) is to enable cooperative on-orbit construc-
tion and assembly projects, allowing for the creation of large structures in space while potentially using
in-situ resources. These trajectory generation and verification methods are designed to minimize the overall
risk of collisions between any spacecraft in the swarm, or with any object that is in close proximity to the
swarm. The methodological solutions presented in this paper use Genetic Algorithms to evolve a set of
initial conditions into a viable and efficient solution, while also applying a Sensor Fusion Unscented Kalman
Filter to predict the relative positions of the spacecraft for real-time collision detection and avoidance. These
algorithms result in a set of trajectories for each spacecraft that enable it to achieve its mission goals within
its AV budget, while also leveraging the combined sensor data of the entire swarm to accurately determine
the relative positions between each spacecraft to a higher precision than GPS data alone.

2.1 Trajectory Generation

Genetic Algorithms (GAs) can be used to converge on an optimal set or family of trajectories for each
member of the swarm [8]. These trajectories will be such that each member can perform their required
individual actions, while minimizing the fuel required for maneuvering and also avoiding conjunctions, to
a prescribed probability of collision, for a given amount of time. However, there are inherent errors in any
system, and in order to react to them, autonomous algorithms, operating in real time, are required.

Running this for a set of 10 spacecraft, with zoning restrictions set out in Table 2.1 with respect to the Client
spacecraft, and to avoid conjunctions within a 50 m buffer corridor from each spacecraft, Fig. 1 shows a
set of closed and repeating relative motion trajectories that satisfy this criteria. The trajectories shown are
for a 10 day propagation of the initial states determined by the GA solver, during which the Sensor Fusion
Kalman Filter determined that there was no probability of collision within a 3-sigma covariance.

Table 1: Constraints for 10 Spacecraft Swarm Example

Constraint Constraint
Swarm Member Ellipsoid Ellipsoid Center

Dimensions [km] [km)]
Spacecraft 1 2,2,2 [0,0,0]
Spacecraft 2 2,22 [0,-5,0]
Spacecraft 3 3,3,3 0,2,0
Spacecraft 4 5,5,5 0,7,3
Spacecraft 5 2,24 0,10,0
Spacecraft 6 2,24 0,10,0
Spacecraft 7 2,2,4 [0,-20,0]
Spacecraft 8 5,5,5 0,30,0
Spacecraft 9 5,5,5 0,30,0
Spacecraft 10 5,5,5 0,30,0
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Fig. 1: Swarm Solution for 10 Spacecraft

3 Kalman Filtering

In real-world operations, it is impossible to know the position and velocity of a spacecraft with 100% precision.
Position and velocity are measured using on-board sensors, which have inherent error tolerances. These
errors, from inputs such as GPS and relative Radar ranging, result in a covariance matrix attached to the
state vector for each spacecraft in the swarm. These covariance matrices can be computed not only with
respect to an inertial state, but also between each spacecraft in the swarm. This means that if the covariance
between spacecraft A and B is desired, sensor fusion between all other spacecraft and spacecraft B can be
used to refine the state vector and covariance matrix of spacecraft B, thus minimizing the measurement error.
By combining the measurements from multiple spacecraft, the measurement accuracy can be improved over
a simple computation of the covariances on each spacecraft separately.

A Kalman filter can be used to reduce the error in an estimated state by propagating a set of points through
time, each corresponding to the boundaries of the covariance “bubble of uncertainty” that surrounds the
spacecraft. As this is propagated, the covariance ellipsoid is refined by using measurements taken from a
sensor at a known position, with a known precision. This is used successively over time to predict what
states are more likely, and which are less likely, using a weighted scheme to determine where the spacecraft
lies within a 3-sigma Gaussian distribution. The Kalman filtering method is useful for not only simulations,
but for real-time operations, since the computational cost of the algorithm is very low, and can be run in
real-time onboard a satellite.



3.1 Mathematical Formulation

There are two common types of Kalman filters used in practice, an extended Kalman filter (EKF) and
an unscented Kalman filter (UKF). The EKF, although more computationally efficient, requires that the
Jacobian matrix of the equations of motion be known and well defined, which is quite complex to derive for
the nonlinear perturbation equations of RPO. Instead, the UKF uses what is known as sigma-points, a set
of virtual points surrounding the unknown object at a 3-sigma distance, which are then propagated using
the equations of motion to determine the covariance drift over time. While this is more computationally
intensive than modelling the covariance drift using a Kalman filter, it is less sensitive to nonlinear changes
in the system, and can be computed in real-time without a-priori knowledge of the Jacobian matrix [16].

To run a step of a Kalman filter, first the previous state is needed. This can either be the initial state, or
the end state of a previous step of the Kalman filter. We’ll define these known quantities using 553’ x_q for
the spacecraft position, and :?::r,ﬁl for each of the sigma points. Note that there are two sigma points for
each dimension of the probleH{, including position, velocity, and noise dimensions. The plus sign denotes
that this is a corrected estimate, and thus has been run through a filter (or is the initial state). The k& — 1
indicates that it is from the previous time-step, and the hat denotes that it is an estimate generated by the
filter, and not a raw measurement from a sensor. Over time, when using a Kalman filter, the estimate will
converge to a minimal covariance offset from the truth value so long as the system remains observable [17].
This minimal covariance will depend on the accuracy of the measurement sensors, and the process noise
variances — how much the measurements should be trusted above the model.

First, the points can be run through a propagation function, which in this case is the equations of motion
for RPO with gravitational perturbations.

Ty = f(j:j:kflvqak—l) (1)

Here, g; ,—1 represents the process noise, which are unknowns that affect the propagation. Typically, in
terrestrial applications, this is attributed to wind or other variable sources. There are few of these sources
in LEO, though this could be used to model aberrations in atmospheric drag, or thruster variations during
a maneuver. For our purposes, the process noise is left as zero for simplification.

Once the sigma points have all been calculated and propagated, the mean predicted state is computed as a
weighted average of all the sigma points.

n
By = Wokg, + W Z ik (2)

i=1

Where Wy and W are the weights associated to the middle point and the sigma points, respectively. Using
this weighted information, the sample covariance can be computed around this new covariance, with the
covariance weights W, and W, similar to the mean predicted state

n
Py o= Weldg, — &) (g, — 2) " + WY (7, — &) (@, — 23)" (3)
=1

The next step, now that the estimated position and covariance has been computed, is to use this knowledge
to attempt to correct the estimated position, to get our predicted state. To do this, the overall predicted
measurement 2 is computed

é’@k = h(i'i_,kari,k) (4)



Where r; ;; is the measurement noise with covariance R, a property of the sensors in use. Then the weighted
mean of this predicted measurement is computed:

Ge=Wolok + W Zik (5)

=1

This predicted measurement is then used to correct the state using yi, which is the innovation vector, or
residual. This is the vector pointing from the predicted measurement to the actual measurement, which is
scaled using K the Kalman gain.

Yk = 2k — 2k (6)
& =3, + Ky (7)

The Kalman gain is a scaling matrix that enables mapping of the estimates to the true location, based on
the covariance matrices. Thus, to compute the predicted measurement, and move forward to the next time-
step in the filter, the Kalman gain must first be computed. This is done by first computing the weighted
sample covariances of both the estimated measurement value with the estimated position, and the estimated
measurement value with itself.

Poy = Weldg, —2;) oy — 50T+ WY _(F - 3G — 2)" ()
i=1
_ s— 5=\ (5— s—\T e T
Py, = WC(ZO,k — %k )(Zo,k =) + WZ(Zm — %k )(Zlk — %) 9)
i=1

The Kalman gain is then the ratio of these two covariance matrices

K =P, P} (10)

Finally, the covariance values need to be corrected, similar to how the position estimates were corrected, in
order to be used in the next time-step of the filter.

&y = g+ Kz — Zig) (11)

The new covariance matrix can be computed as a sample covariance of the corrected sigma points, P,j' :
+ _ At S (At ~\T S+ atyat _ aR\T
b= Wc(%,k; - Ly )(%,k —&0)" + WZ(xzk - Ty )(xzk — &) (12)
Which can be simplified to be:

Pf =P — KRyK" (13)

Where Ry, is the covariance of the measurement error, taken from the datasheet of whatever sensor is in use
(in this case a radar or LIDAR sensor). The covariance values can then be used to generate an error ellipse,
or egq of death, around the spacecraft, which provides the volume of space within which we expect to find
the spacecraft with 3o precision.
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Fig. 2: Example Error Ellipse for a Satellite

Figure 2 above shows an example egg of death around a satellite. The size of the egg is primarily based on two
factors; the measurement error from the radar ranging system used to determine the position and velocity
of the satellite, and the propagation of error between measurements. The measurement error (covariance)
itself cannot be removed, but it can be compensated for and narrowed down using a Kalman filter to sort
out readings that are not very likely given the physics of orbital mechanics.

3.2 Sensor Fusion Kalman Filter

In order to take into account the shared data of the swarm, which is the combination of the radar ranging
sensors on each spacecraft, a sensor-fusion Kalman Filter is used. This is a modification of the standard
Kalman filter described above, which uses multiple measurement update cycles to incorporate the shared
data of the swarm to further refine the covariance ellipsoid for each spacecraft. Figure 3 shows an example
of the sensor fusion process, where the covariance of the position between Sat #1 and the Client spacecraft
can be improved by fusing the data from all the swarm spacecraft, even taking into account the GPS position
errors defining the locations of each swarm spacecraft with respect to Sat #1.
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Fig. 3: Sensor Fusion Diagram

In order to take into account multiple sensor inputs, the unscented Kalman filter algorithm itself must be
modified to be able to process this additional data. As described in Section 3.1 the Kalman filter operates
by propagating an initial state in time using known equations of motion, and then a position and covariance
update step is performed using data from an onboard sensor to filter out noise and erroneous data from the
sensor data. With a sensor fusion Kalman filter, the propagation step remains the same (see Equation 1),
however the correction and update step (see Equation 7) is performed multiple times — once for each sensor.
This process is depicted in Figure 4 using pseudocode.
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Since the majority of the computation time in the Kalman filter is spent on the propagation step, rather than
the update step, repeating the update step adds very little computational overhead, while greatly improving
the spacecraft covariance.

4 Kalman Filtering for Real-Time Operations

In order to maintain safe trajectories that avoid collisions between spacecraft in the swarm, a Sensor Fusion
unscented Kalman Filter (SFKF) is used to accurately determine, in real-time, the position and velocity of
each spacecraft. This is done using only the information available to the swarm members themselves, through
external sensors, and without additional information from operators on the ground. Using the Kalman filter,
a set of covariance matrices are obtained for each predicted position and velocity, setting the upper limits of
the error bars on the measured and processed data.

In this manner, trajectories can also be assigned a specific corridor, where if the spacecraft drifts too far
from the designated trajectory (as determined by fusing sensor data and filtering it through the SFKF), a
small correction maneuver is performed to re-align the spacecraft to its target.
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Fig. 5: Filtered Rendezvous Maneuver

Figure 5 shows a two-stage rendezvous process, where the first step of the trajectory is a non-intersecting
free-flight trajectory. This means that if the burn to transition from the first to the second segment were to
fail, there would be no collision. The total Av for this maneuver is 4.1 m/s, with 0.29 m/s of that due to small
course corrections applied by the automated Kalman filter system to remain on-track. The blue trajectory
is the projected course, and the purple trajectory is the path perceived by the spacecraft to be where it has
actually travelled. This differs from the nominal trajectory due to injection errors, attitude knowledge errors
on the spacecraft, and uncertainty of true position. Two corrective maneuvers are performed during this
transfer, dictated by the Kalman filter, to maintain the desired destination. In this case there is no truth
trajectory of where the spacecraft truly was, as there is no independent observer to determine this. Instead,
the swarm Kalman filtering method uses sensors aboard all spacecraft to compute the relative position of
each swarm member, and to determine if any sensors are aberrant.

5 Patched RPO using Kalman Filtering

In order to transition between various relative motion trajectories, a method of patched RPO has been
devised. This method takes two defined states, separated by a defined period of time, to determine the most
efficient set of impulsive maneuvers to be able to safely transition between these states. This is done using
two, three, or four impulsive maneuvers, depending on what method yields the lowest Av consumption, while
maintaining safe operations with nearby spacecraft.

Each impulsive maneuver begins a new trajectory segment. To compute the shape of the transfer trajectory,
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and the initial velocity vector required to place the spacecraft on that trajectory, a two stage solver is used,
using the solution of the linearized C-W equation to seed the nonlinear solver for the perturbed gravitational
field solution.

Ty = B,y (Ff — ®rpiy) (14)

17]0 = D@70 + Py (15)

Equations 14 & 15 describe the process used to solve for the initial and final velocities on a transfer arc, when
the initial and final positions are known, as well as the transfer time. ®,.., ®,,, ®,,., and ®,, come from
the definition of the C-W equations [18]. When solving with the C-W equations, the value for vy is close to
the desired solution, however it is a linearized approximation of the unperturbed solution. The perturbed
solution can be solved iteratively, numerically solving the second order ODE in Equation 16.

d*7 7 - - -
@ = _,U/W + Qgrav—pert + Gsun—moon T ASRP (16)

Where Ggrqv—pert accounts for the perturbations in Earth’s asymmetrical gravitational field, @syun—moon
accounts for the Sun and Moon gravitational perturbations, and 7¥sgp accounts for the solar radiation
pressure. This system of second order ODEs is then solved iteratively to find the initial velocity j,,,, such
that the final position, 7, is the desired trajectory endpoint. This was done using the fsolve method in
MATLAB, using the velocity vy from the C-W linear solution as the initial solver guess to jumpstart the
iterative process.

This is initially done prior to the start of the maneuver, in order to plan out the trajectory being travelled
and prepare the spacecraft for the burn. Once the initial Av is applied, the spacecraft has been injected
onto the transfer trajectory. A Kalman filter is then used to compute the estimated true position of the
spacecraft in real-time, using its onboard sensors. This estimated position is then used to recompute the
target point at the end of the transfer arc, at a rate of once per second. If the trajectory is determined
to deviate by more than 5m, then Equation 16 is solved again iteratively, and a small impulsive maneuver
is performed to align to the updated trajectory, maintaining the original target point as the destination.
Figure 6 depicts this process graphically. This is done continuously in real-time during all swarm operations
to maintain trajectories within their corridors.
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6 Results

Using the following assumptions, a set of simulations were run to determine the estimated position vs time
for each spacecraft in the swarm, computed using the SFKF. This produced a set of covariance matrices for
each spacecraft at each timestep.

Swarm spacecraft assumptions (conservative w.r.t COTS products):

1.

ANl

On-board propulsion system and fuel source (preferably refuelable) with a minimum 200m/s Av ca-
pacity.

Three-axis attitude control, and attitude knowledge with 0.5° accuracy.
Relative motion position sensors to determine range to nearby spacecraft with 5% accuracy
Relative motion speed sensors to determine the speed of nearby spacecraft with 1% accuracy

Redundant communication systems to transmit and receive data between all spacecraft in the swarm.
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Comparing the data from this simulation (see Fig. 7) with GPS position accuracy [19], it can be seen that
the SFKF offers greater fidelity in close proximity, providing position estimates within 10 m, as compared to

GPS in LEO which offers 25 m accuracy.
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7 Conclusions

When dealing with large swarms of spacecraft, there is an abundance of data available to the swarm as a
whole. In order to make efficient use of this data for navigation and mission operations purposes, new sets
of algorithms are needed to process this data in real-time and extract the relevant point for immediate use.
The Sensor Fusion Kalman Filtering algorithm for spacecraft swarms presented in this paper is one method
to achieve this for large swarms of spacecraft, as demonstrated through simulated models.

A common method of validation for real-time space operations with hardware-in-the-loop is the use of an
Air Bearing Platform (ABP) for near-frictionless simulations in three to six degrees of freedom [20-23].
The authors would like to expand upon this research with future hardware demonstration on an ABP to
demonstrate a closed-loop control system that implements the SFKF.
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