

Information Sciences Institute & Space Engineering Research Center (SERC)

SENSOR FUSION KALMAN FILTERING FOR STABILITY AND CONTROL OF SATELLITE SWARMS

Dr. Rahul Rughani PhD Graduate in Astronautical Engineering University of Southern California

16th International Conference on Space Operations Cape Town, South Africa Virtual Conference Presentation

Swarm Operations in Orbit

On-orbit assembly

 Enables construction of complex orbital assets, and repair of existing assets.

Cooperative Proximity Operations

 Redundant nature of swarm and large number of spacecraft allow for higher autonomy and reliability

On-Orbit Construction

Current State-of-the-Art

• MEV-1 successfully docked to a retired GEO spacecraft to provide mission extension services [1]

MEV-1 docks with Intelsat-901

Research Goal

Advance the state-ofthe-art for spacecraft swarm operations to enable large-scale inspace manufacturing in the not-too-distant future

Swarm Example (10 Spacecraft)

- Trajectory on right shows example of 10-spacecraft swarm for in-space manufacturing
- Swarm roles split up into the staging area, a comm relay, and close-quarters robotic operations

Trajectory Generation

 Free-flight trajectories, combined with conjunction analysis, used to build safe swarms

SERC

- Optimization performed using genetic algorithms to find solutions satisfying a set of criteria [2,3]
 - Minimize insertion Δv
 - Trajectories with no collision risk for a set period of time

Swarm Sensor Fusion

- Sensor Fusion combines inputs from multiple sensors, spread across the swarm
- Using a Kalman filter, this shared data can be used to pinpoint the relative positions of each spacecraft more accurately, reducing their covariances

Sensor-Fusion Kalman Filtering

- Sensor fusion can be applied to Kalman filters
 - Simulation uses the Unscented Kalman Filter since the perturbed 2-body problem is a nonlinear problem
- Similar to a standard Kalman filter, except the update step is repeated for each sensor in the shared swarm sensor net
 - Adds very little computational overhead, as most of the wall-time is spent on the propagation step of the UKF

Example of Real-Time Kalman Filtering

Greedy Optimization

- Not all sensors will be useful to improve the covariance at a given point in time
- Choosing the right ones is a complex problem, similar to the classic "Knapsack problem"
 - Greedy optimization is used to find a quick solution that is not necessarily the most optimal solution, but will satisfy the required parameters
 - This is done by sequentially selecting the measurement with the largest improvement (discard those that do not improve the state)

Greedy Optimization Example

Sensor Usage over Time

Trajectory Maintenance

- A Sensor Fusion Kalman Filter can be used to maintain GA generated swarm trajectories over time by tracking deviations from the initial trajectory and compensating with periodic correction burns
 - Each spacecraft is assigned a corridor and can deviate within that corridor without risk of collision with other SC (50m in these simulations)

Results

- Simulation shows SFKF can provide position estimates with 10m accuracy
 - Significant improvement over GPS alone, which is limited to 25m accuracy in LEO

USC Viterbi School of Engineering

Conclusion

- With swarms of spacecraft, there is an abundance of data available
 - Its necessary to build autonomous systems to sort and analyze this data in real-time, such as the SFKF
- Future research will test this system on a hardware testbed, such as an Air Bearing Platform

