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Abstract

With the growing popularity of low-cost satellite missions merged with the ability to potentially rendezvous and “connect
on orbit, the potential to enable mission objectives typically reserved for very large monolithic satellites with many small
low-cost satellites arises not just in swarm flight but through the possibility of on-orbit satellite “aggregation”. Ultimately,
such satellite aggregation concepts, resulting in a new singular spacecraft comprised from many individual functioning
elements, must adhere to basic spacecraft design considerations like attitude control and thermal management upon
aggregation/integration. When considering on-orbit operations, an autonomous methodology must be implemented to
ensure seamless spacecraft functionality and control through aggregation. The University of Southern California Information
Sciences Institute (USC ISI) and Space Engineering Research Center (SERC) have fabricated multiple modular pseudo-
satellite prototypes and developed an autonomous GNC reconfiguration algorithm to redefine a singular reaction control
system from multiple contributing spacecraft. These prototypes, bounded by 3 degrees of freedom on a frictionless air-
bearing table, perform individual maneuvers with 8 body mounted thrusters to simulate rendezvous and proximity operations
(RPO) docking and aggregation. Upon aggregation an integrated algorithm demonstrates autonomous reconfiguration of the
aggregate platforms thrusters and execute additional maneuvers with its new control orientation. In parallel, the SERC team
created a simulation environment, which enables additional virtual aggregation to show scale of the algorithm’s capability
in optimizing aggregated GNC subsystem for up to “N” number of elements. This paper will present preliminary results of
the first set of algorithmic experimentation in active autonomous GNC reconfiguration.
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1 Introduction

Within the last 5-10 years, significant change has occurred
within the space industry, transitioning from Government
domination to private commercial organizations who see
space differently. From the amazing new discoveries of in-
habitable planets by the Kepler telescope to Virgin Galactic’s
successful orbital flights and its waiting list of people world-
wide to fly, there is a new energy and excitement not seen for
25 years. This era of “New Space” is opening up access for
millions of people who never considered space accessible
or useful to them in any form. However, these new space
companies and countries have not changed the space systems
they are fielding; today’s satellites look much like the ones
built from 50 years ago. Major systems and subsystems are
combined in the same way whether in the Hubble Space
Telescope, a large geostationary communications satellite,
or today’s Cubesats. The size of elements, components, and
subsystems may change to accommodate the final satellite,
but the fundamental makeup of spacecraft resources of power,
propulsion, attitude control, etc., is no different. Today, mass
has become a proxy in the search for lower cost solutions
to accommodate shrinking budgets, but that comes with a
requisite consequent exchange of performance. The histori-
cal equation of cost as a direct function of mass drives this
solution. However, what if this cost-mass-performance equa-
tion can be broken? What if these limitations in performance
associated with size could be ameliorated or even avoided by
the aggregation of elements? What if aggregation could be
done on orbit?

A new domain in space systems — cellular space platform
morphology, based on biological inspiration has been cre-
ated to explore this new approach [2—4]. The concept utilizes
“cellular” morphology to change satellites from large mono-
lithic entities into platforms built from hundreds of small low
cost “satlets”. In essence, the ability to literally “transform”
an electro-mechanical system on orbit, to allow unlimited
aggregation and assembly of large platforms, may enable
new platforms with high power, propulsion, and exploration
capabilities in space in ways not possible before.

This on-orbit “cellularization” concept is meant to create the
means for a satellite or space platform to literally aggregate,
reconfigure and deaggregate itself on command, and allows
for on-orbit “assembly” to grow any size or volume platform,
much like biological entities use discrete cells multiplied
in the thousands or millions to create complex highly func-
tional bodies. However, one major challenge to do this is
creation of unique software that allows the “cells” to share
their resources and capabilities seamlessly.

2 Aggregation Architecture

To begin characterization and description of what a new com-
putational architecture for aggregation requires, we detail a
notional top-level concept in the depiction shown in Figure
1. Any depiction must consider the physical and virtual lay-
ers which exist with every single element in an aggregation,
as well as the various transport layers for data and control
required to enable ubiquitous autonomous aggregation capa-
bility.

For the purpose of this paper and first step in postulating a
new computational architecture, Figure 1 depicts a layering
of functionality. Each is defined below.

1. Software Layer: At the lowest level, or the software
inside a component layer (with a component with its
own processor or controller), we consider the character-
ization of internal (i.e., cell, component, element) set of
capabilities that inherently exist and the “needs” that are
required outside the cell/component/element for it to
function (i.e., power). This can be considered as inside
the cell or component that can support other cells or
systems, or can be shared with other cells/systems. In
typical space systems an “event scheduler” exists that
runs the physical hardware systems (i.e., cell or compo-
nent or element) based on a single clock or hardware
processing cycle from the main processor (e.g., 100 Hz).
Tasks then represent the mechanism which sends out
capabilities to the rest of the cells, or bring in needs that
the cells or system is asking for. Again, this is usually
performed by a single central processing system.

2. Hardware Layer: At the next layer, or “hardware
layer”, we envision this to represent where the phys-
ical aggregation of various elements occurs. The ele-
ments can be what we have defined as “satlets”, each
having its own inherent “capabilities” (i.e., a proces-
sor, an IMU, a set amount of power available etc.), as
well as something that does not have as much virtual
processing capability like a solar array, a propulsion
element, a payload, etc. This is the layer where the
physical connections are made between the elements,
where the cell/component software layer is embedded
in each of the processing elements (which defines their
capabilities and needs).

3. Data Transport Layer: To enable aggregation across
multiple physical systems, the next layer becomes a
data transport layer. This could be as simple as a wire-
less protocol that is used to “connect” the processing
based elements to each other and transport data (i.e.,
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information that is packetized) from each element to all
the others.

. Hardware Resource Transport Layer: The next
layer could be represented as a separate entity or as
a part of the data transport layer. We define this layer as
the hardware resource transport layer, where the needs
and capabilities of each hardware element are shared
with others and each cell or element are permitted to
operate together.

. System Aggregation Behaviour: The last layer to en-
able the aggregated systems to function as a monolithic
entity, would be the “system aggregation behaviour’
level, which has code that takes advantage of the hard-
ware and data transport layers to create behaviours of
the aggregated system. As an example of this level, the
aggregate system’s thermal response would be evalu-
ated, then individual commands would be sent to ele-
ments with passive or active thermal systems to support
the entire assembly as a whole to be isothermal. An-
other example considers the system’s GNC. The active
aggregated GNC behavioural function would respond to
the CG and MOI changes of the aggregated system and
would send commands to each cell/component/element
to exercise the appropriate GNC hardware.

b}

2.1 Aggregation Considerations - Hardware

Enabling aggregation requires two elements, the hardware
itself that will physically “connect” and the supporting soft-
ware that controls and operates the specific hardware. Pre-
viously, we described an “architecture” that includes data
and resource transport layers that could provide overarching
control and communications to the cells (i.e., components,
elements, satlets, etc.). Now, let us examine key considera-
tions to implement actual aggregation, with respect to both
hardware and operational software.

Aggregation can occur on either a heterogeneous or homo-
geneous spectrum. Figure 2 shows a graphical identification
of that spectrum, where potentially aggregatable cells can
either be “system level” or pure “component level”. Today
all satellite hardware is component level, tied together with a
central processing system and custom code to operate each
component. In an aggregated architecture, each component
becomes a cell with capabilities and needs as previously
discussed. An aggregated system should be able to merge
any level of hetero or homogeneity component/cell/element
ubiquitously, without concern for new code being written or
what its operation requires.

Hardware examples of aggregatable elements that represent
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the spectrum are shown in Figure 3.

Hardware aggregation then requires physical connectivity
between all the elements. Specialized interfaces for both
legacy and new components would be required, for which
the two hardware instantiations shown in the Figure above
have been developed (cited here [7] [8]).

2.2 Aggregation Considerations - Software

As described in the previous section, software is currently
bespoke to the hardware that is being used, and thus highly
rigid. To extend the capabilities to allow aggregation, the
software must be robust enough to manage the hardware
resources and their corresponding constraints at both an indi-
vidual/component and an aggregation level.

The desired architectural goal is to have an autonomous dis-
tributed computational architecture across individuals that
once aggregated behave as a single entity. Thus, it is neces-
sary for the aggregation computational architecture to have
an automated resource management system. The aggregation
must facilitate typical spacecraft functions with respect to the
coordination and allocation of physical and computational
resources. This resource management strategy must also

consider the complexities of having a distributed system of
interacting components.

To achieve scalablility with the aggregation’s distributed
resources, there must be either protocols or management
systems enabling resources sharing. For example, the com-
putational resource manager may delegate tasks to free re-
sources, allowing for efficient scheduling and execution of
tasks across different individuals/components within the ag-
gregation.

In this distributed system it is important to clarify two types
of computational architectures, centralized and decentralized.
In a centralized architecture, coordination of the aggregation
is managed by a single master entity with all others behav-
ing as slaves. All information is processed by the central
authority, which determines the aggregation’s behaviour. As
the aggregation grows in size, the centralized architecture
must be able to handle the increased workload, including re-
ceiving and processing data from the entire aggregation. An
advantage of a centralized architecture lies in its simplicity,
yet a severe disadvantage is the lack of redundancy if the
master fails. In a decentralized architecture, the increased re-
dundancy ensures robustness of the aggregation in the event
of any failures, but also greatly increases the complexity of
software architecture. Information sharing is not handled by
any single component, rather all components are aware of
the aggregation state or will request information which is
relevant from sources distributed in the aggregation.

2.2.1 Component Level Behaviour Control

This is the internal operation of the hardware. Some may
have control (i.e., processors), others may be controlled by a
separate processor that is attached to it. As an example, an
electric propulsion system may have a processor on board
to control the power processing unit and flow rates of the
propellant.

2.2.2  System Level Behaviour (The Aggregation Level)

System level behaviour may be unique software that merges
the needs/capabilities of hundreds of individual elements
together, at one time. An example here would be an over-
arching algorithm that can coordinate a number of electric
propulsion subsystems that integrates their firing time to
conform to lateral thrust, or a maneuver.



3 First example of aggregation behaviour software-
GNC

Researchers at the SERC developed pseudo-satellite proto-
types, dubbed “Satbots,” with a supporting computational ar-
chitecture to demonstrate a first application of multi-satellite
aggregation. The initial instantiation focused on the concept
of merging multiple independent GNC subsystems to operate
as an aggregated platform.

3.1 Satbot Prototype Design

The Satbot is built to emulate orbit operations on a ground
testbed (Figure 4). An on-board compressed air tank feeds
through three flat-round air bearings at 60 psi to lift the
Satbot platform 5 microns on top of a float glass platen, es-
tablishing a near-frictionless environment resulting in 3DOF.
Compressed air is also redirected through eight unidirec-

(a)

tional output solenoid valves at 100 psi to support the GNC
subsystem. The current Satbot design places these solenoid
valves at the edge of its circular platform, maximizing the
ability to generate torque about the center of mass at the
Satbot’s geometric center. For future reference in this paper,
the terms “actuator” or “thruster” represent these solenoid
valves. The Satbot holds two docking ports for aggregation
and RPO demonstration. Additionally, each Satbot carries
a Wi-Fi enabled Odroid-C2 single-board computer with a
Linux Operating System to support GNC software and sen-
sor operations. An example of proposed Satbot aggregation
is shown in Figure 5.

3.2 Satbot Proposed GNC Operations

The proposed concept of operations of the Satbots is meant
to demonstrate the potential of autonomous GNC and multi-
spacecraft aggregation. Each has continuous communication
between the other Satbots, thus each will determine the nec-

(b)

Fig. 3: (a) NovaWurks implementation of a ‘“system satlet”, called “HISAT’s”’ . (b) Module from iBoss Inc., which

is an implementation of a heterogeneous module
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Fig. 5: An example of an aggregate system consisting of
three Satbots.

essary states which drives the GNC subsystems.

Still in its early development phase, the Satbot is manually
provided the desired states to perform GNC. Onboard sensors
measure the navigational state, which is stored for guidance
and control calculations. Sensor data is passed through a
Kalman filter for state estimation. After calculating the er-
ror, or difference between the desired and estimated state,
the controller determines the necessary forces and torques
required and then the corresponding firing time for each
thruster. This GNC operation continues until the Satbot
achieves the desired state.

To support aggregation, the relative knowledge between all
Satbots must be known at some level. Therefore, each Satbot

possess an uploaded “identification file,” which is a set of
hardware parameters relative to the Satbot’s body frame. If
the Satbot identifies that a docking face is active, such that
an aggregate system exists, then each Satbot transfers its
parameters into the data transport layer of the computational
architecture to create an aggregation identification file to
support the system’s GNC. To simulate a docking event (i.e.,
aggregation event), we create a new reconfiguration algo-
rithm, which imports the appropriate Satbot parameters from
the architecture’s data transport layer to calculate the new
aggregate properties. The algorithm feeds this information
back into one of the Satbots, and GNC operation continues
for the aggregate system. As the aggregate system is intended
to operate with the proposed decentralized computational
architecture, each Satbot possesses the capability to carry
on aggregated GNC for the system to operate as a single
monolithic entity.

For the Satbot prototype an autonomous distributed resource
management system is not required. Rather, in this Satbot
prototype demonstration, a single “Master” Satbot runs the
GNC algorithm written in C. Positional data received from
all the aggregated satbots is received and processed using
an EKF and the GNC algorithm performs the necessary cal-
culations to create the aggregation firing time matrix. The
other aggregated Satbots run a separate “Slave” code which
receives the firing times and fires thrusters for the given in-
terval. This implementation provides a simple mechanism to
test the GNC code for up to N-number of Satbots, provided
the communication network allows all firing times to fire
thrusters concurrently. Each of the Satbots has the capability
to behave as the “Master” or “Slave”. Each of the guidance,
navigation and control elements relative to our demonstration
is described in greater detail in the following sections.

3.3 Guidance and Navigation

In the SERC labs, each Satbot uses a Pozyx tag, a real-
time location system electronics board that measures the
navigation state. Determining the positional state relies on
multilateration, the methodology of GPS radio-navigation.
Like GPS, four unique “anchors,” or Pozyx modules that
serve as fixed reference points, transmit an ultra-wide band
signal to the Pozyx tag to locate its position with an accuracy
down to 10 cm on the testbed. Onboard the Pozyx tag lies a
3-axis accelerometer and a 3-axis gyroscope, providing the
capability to measure accelerations and orientation. Each
Satbot measures the vector presented in Equation 1 and cre-
ates the state vector as seen in Equation ??. The state is then



processed through an EKF to determine the state estimate
and its associated covariance matrix.

5;: [x7)7;6117¢]2a513a5147amay7wz]T (1)

The orientation represented via quaternions, where g; > 3 rep-
resents the quaternion vector components and g4 represents
the quaternion weight. Accelerations are denoted as a, and
ay respectively, where the subscript corresponds to a particu-
lar direction. Lastly, the angular velocity is represented by
@, . In regards to the state vector, X and y represent velocity
in x and y, respectively and 0 represents rotation about the
Z-axis.

Provided the desired state, the Satbot determines the devia-
tions from its trajectory, which is sent to the controller.

3.4 Control Scheme

A controller is implemented to determine the required control
inputs necessary for the system to reach the desired state
based on current deviations from the ideal trajectory.

Though a variety of controllers exist, only a few are deemed
suitable to support the concept of aggregation and au-
tonomous GNC, where stable performance is maintained
for potentially varying system dynamics from physical ag-
gregation. Upon aggregation, the controller designed for the
individual cells will need to adapt in order for the aggre-
gated system to remain autonomous. Without adaptation, the
control system designed for one individual cell will prove
ineffective, as it was designed for a system with different
mass properties. Adaptive controls have been studied for
the pasts decades and are useful for systems with any sort
of uncertainty. In the case of an aggregated satellite sys-
tem, the controller must be compatible for any system of N
aggregated cells.

Simulations provide a rapid way to design different adaptive
control algorithms and are usually used for stability analysis
due to the lack of existing stability metrics, compared to
traditional control theory. A co-simulation using Simulink
for the control design and NX Motion for system dynamics
was used to build and validate the controller, and will be
discussed later.

3.4.1 Simple PD Controller

Since we currently focus on demonstrating the development
of the reconfiguration algorithm (discussed later), we de-
signed a simple Proportional-Derivative (P-D) controller for
the first initial stages of testing. With the state deviations and
predetermined controller gains, Equations 2 to 4 calculate
the control input vector. [9]

Fe = Ky position Oy + K position S @)
Fy = Kp,position 5y + Kd,pasiti(m 6)" (3)
T = Kpp artirude 00 + Ka artirude O “)

The K terms represent the controller gains, where the sub-
scripts p and d correspond to the proportional and derivative
terms respectively. The & terms correspond to the state devi-
ations as designated by its subscript.

However, in addressing the aggregation behaviour, the se-
lected controller will not maintain stability and performance
for large scale configurations. Each Satbot addition changes
the system response of the controller and will eventually
drive the controller to instability. This fact influences the
controller design to consider the implementation of adaptive
control.

3.4.2 Model Reference Adaptive Control (MRAC)

As a first look at an “adaptive” control methodology we
evaluated the MRAC design.

Model Output

Updated
controller
parameters Process Output
Outer Loop

F—

Inner Loop

b4

Fig. 6: Block diagram of a generalized MRAC scheme. [1]

As seen in Figure 6, a typical MRAC consists of an additional
outer loop, compared to a traditional controller with (one)



feedback loop. In this outer loop, the state estimates are
compared to reference model outputs, rather than a desired
state. This error is then fed into an adjustment mechanism
in which the on-board processor estimates the control gains
that are then combined with a predetermined control law
to calculate the system’s control inputs. In this way, the
system’s controller is continuously updating and adapting to
system dynamics.

The reference model selected reflects desired system be-
haviour and typically is formulated as a LTT model. [10] For
an aggregated satellite system consisting of N Satbots with a
nonlinear plant modeled as:

Fee M — A £(X) + Bii 5)
and a reference model: [10]
TS = Amn + BT (©6)

A control law to cancel undesired nonlinear behaviour is
developed as follows:

i = K7~ Of (%) )
Using a Lyapunov function, the adaptive law for the control
gains K, and © are found to be:

O = —¢" By Yo f(¥)sgn(b) (8)

K, = ¢" By Yrsgn(b) 9)

where e represents the error between the reference model and
estimated state vector, and By, 79 and By, %, act as adaptive
gains. Equations 8 and 9, once implemented into software,
are meant to be integrated internally and then fed to the inner
control loop.

Three different reference models were determined by model-
ing the system dynamics for two platforms using Simulink
and linearizing the system about different trim points (for
translational motion about only X, only y, and rotational mo-
tion). In this way, the idea is to implement a regulator using
MRAC as an inner loop, where a set point is reached by
using one of 3 different modes: 2 for translational motion
and one rotational motion. Simulation results for two of the
three different modes are found in Figure 7a and 7b.

There is hesitation in accepting these results for face value,
as they show the system behaviour matching the reference
model in less than a second. Tracking the desired model’s
states in less than a second is unrealistic given the dis-
crete nature of the physical system, i.e., actuators/sensor

data/controller calculations are limited by their operational
frequency and that of the on-board processor. Future work
involves discretizing the model used in simulation, in addi-
tion to creating a higher fidelity model by adding actuator
and sensor models.

Given the known limitations of the current MRAC designed,
it was decided against implementing MRAC during initial
testing of aggregation behaviour, as it would provide an ad-
ditional unknown variable to the reconfiguration algorithms
that are to be discussed later in this paper. For this reason,
the simple P-D controller previously discussed was imple-
mented on the Satbots. Upon validation of the reconfigura-
tion algorithms, and possible improvements to the designed
MRAC, through the creation and use of a higher fidelity
model, MRAC shall be implemented in the Satbots and tested.
The rest of the GNC and reconfiguration algorithms, which
are now to be discussed, would still apply.

3.5 Thruster Mapping Matrix

After determining the necessary control input for the Satbot
to achieve the desired state, the GNC algorithm computes
the required firing times for each thruster. However, control-
ling multiple thrusters on different Satbots simultaneously
requires the concept of a scalable thruster mapping matrix,
which translates the physical contribution from each thruster
into a mathematical model. [6] [11] The diagram in Figure
8 visualizes our approach to orient forces and torques equal
about each axis for simplicity.

To simplify several different thrusters and orientations, each
force contribution is collected into a simple table, as seen in
Table 1.

Table 1: Directional force contributions from each thruster
for the Satbot

Thruster Resultant Body-Axis Force
+X -X +9 -y

1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
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Fig. 7: Results for two of the three different modes of the MRAC designed.
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Fig. 8: An illustration of the top view of the Satbot model is
presented here. In both diagrams, the yellow rectangles repre-
sent the docking face mechanisms. The left image depicts the
actuators’ thrust output as the arrows extending tangentially
from the Satbot’s circumference. The right image depicts the
corresponding resultant force from each thruster.

Furthermore, firing a single thruster generates a body-axis
torque. Since the thrusters are mounted on the edge of the
Satbot’s circular base, determining each thruster’s torque
calculation is straight forward. We can map the Satbot’s
body-axis torque similarly to Table 1. When combining the
body-axis force (excluding the z-component) and body-axis
torque contributions (about the z-axis) from each thruster,
we create its thruster mapping matrix, as seen in Equation 10.
Here, the first two rows represent the forces in x and y com-
ponents respectively, and the third row represents the torque
components. Each column corresponds to the particular
thruster of that current value; e.g., column one corresponds
to thruster one. The benefit to this mapping matrix lies in

its scalability, since incorporating more or less thrusters will
simply change the number of columns. Additionally, the
thruster mapping matrix can be modified accordingly to the
location and orientation of each thrusters.

~1 41 0 0 41 -1 0 0
M=|0 0 +1 -1 0 0 —1 =+1| (10
1 41 —1 41 —1 41 —1 +1

Another benefit to the thruster mapping matrix arises in its
conceptual simplicity in devising autonomous control as the
Satbot will understand which thrusters to actuate. Continuing
with Figure 8, if the Satbot identifies that it must move only
in the positive x-direction (relative to its body frame), then
the thruster mapping matrix dictates that the Satbot must
use both thrusters two and five. Firing individual thrusters
contribute to a resultant rotation, which may not be desirable
in achieving the final state. Therefore in this example, the
system must identify two (or more) thrusters that generate
positive force contributions while offsetting each other’s
torque contribution. With this concept, we form the equation
that demonstrates how the control output is achieved by the
set of thrusters, as seen in Equation 11.

i=Mf (11)

The control output vector, thruster mapping matrix, and firing
forces vector are represented by i, M, and f respectively.



The Satbot needs to solve for the necessary forces and torques
to be supplied by each thruster to achieve the desired con-
trol output, which is previously determined by the selected
controller scheme. Since M may be a non-square matrix, the
pseudoinverse, denoted as M*, is computed to find the appro-
priate firing times. This is shown in Equation 12. A scaling
factor of two is applied to account for both the positive and
negative contributions of the thrusters. [11] In essence, if a
force is requested in the positive x-direction, thruster two
and thruster five would be activated, where each thruster
provided half the requested force. Additionally, scaling the
firing forces vector allows the Satbot to ignore any negative
force components from the calculation. Logically in terms
of the solenoid valve’s unidirectional output, a given thruster
cannot contribute a negative force, but rather a positive force
in its fixed directional output.

12)

3.6  Pulse-Width Modulation

Since the thrusters actuate in an ON/OFF manner, a modu-
lation scheme must be implemented to perform the maneu-
vers. [5] Though a variety of modulators may achieve the
proper control, like Schmitt Triggers and sigma-delta modu-
lators, we opt for the common pulse-width modulator (PWM)
to enable Satbot functionality for ease of initial testing. [12]

The PWM converts the requested, non-negative firing forces
to solenoid valve opening times. This results in impulses for
each thruster for a defined actuation interval or duty cycle.
This active time for a given impulse can be determined from
Equation 13 and is represented by T, ;.

Toni = fl

Finax (13

tpwm

The maximum force output represents the physical capability
of the thruster and is denoted as F,,,. The PWM pulse
duration is zpyys and is determined by the duty cycle and
total modulation period. Each component of the requested
firing forces is denoted by f;.

Additionally, if the determined firing time is less than the
minimum opening time of the solenoid valve (approximately
10 ms), then that thruster’s contribution is set to zero. If the
requested force exceeds the maximum force capability that
the thruster can supply, then the firing time is constrained to
the maximum pulse duration.

3.7 Aggregation Algorithm Development and the N-Case

Configuration

The concept of multi-satellite aggregation introduces the im-
portance of appropriate subsystem reconfiguration, in which
the space system must manage N-number of subsystems
while adhering to the fundamentals of spacecraft operations.
When considering the GNC subsystem, new questions appear
regarding the logistics of operation. Firstly, how is spacecraft
control ensured for varying configurations and mass prop-
erties? Will all actuators remain necessary to function; if
not, how can the aggregate system automatically determine
which actuators to maintain and disable?

With the framework of the aggregation computational ar-
chitecture, we devise an algorithm to address the aggregate
system behaviour of autonomous GNC reconfiguration. To
calculate the aggregate properties for the system, i.e., the new
center of mass, moments of inertia, and thruster mapping
matrix, we need a system to account for the parameters of
N-number of Satbots. Therefore, for each Satbot, we define
“spacecraft identification file,” or a collection of its GNC
components relative to its body axis. Upon aggregation, each
Satbot sends its file into the data transport layer of the compu-
tational architecture to support the algorithm as needed. For
a given Satbot, the spacecraft identification file is comprised
of the parameters seen in Table 2. The current table is not
comprehensive, and more parameters may be added.

Table 2: The identification file parameters for each Satbot

Parameter
Spacecraft Identifier
Docking Status Matrix
Mass
Moments of Inertia
Docking Face Position Matrix
Sensor Position Matrix
Thruster Position Matrix
Force Contribution Matrix
Torque Contribution Matrix
Thruster Mapping Matrix
Direction Cosine Matrix

Number

o000 AW -

When aggregation occurs, each Satbot exports its identifica-
tion file through the data transport layer to build a system
level “aggregated” identification file, which encompasses all
actively docked Satbots. Per the concept of operations de-
scribed in the early section, the aggregate identification file is
distributed to the operating Satbot to continue guidance and
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control. However, to model the space system dynamics ac-
curately for GNC, the mass properties must be accounted as
any instance of thruster misalignment will result in improper
control. Therefore, the challenge in GNC reconfiguration
depends on the center of mass and moments of inertia, param-
eters which continually change upon additional aggregation.
Ultimately, the devised algorithm must maintain robustness
regardless of the number of components to achieve true au-
tonomy.

First, the algorithm must determine the system’s aggregate
mass and center of mass. The aggregate mass is simply the
sum of all current Satbot masses, as depicted in in Equation
14.

(14)

Then, the center of mass calculation is represented in Equa-
tion 15. Denoted in Equation 15 is the center of mass relative
to reference frame A; this is not typically the case, as the de-
centralized architecture allows for any Satbot’s body frame to
act as the reference point. In this case, when multiple docked
Satbots have differently aligned body frames, as visualized
in Figure 9, transforming between body frames must be ac-
complished through the use of the direction cosine matrix.

I O
Arcg = Z’n?rcg,t (15)
Magg i=1

Fig. 9: An illustration of two distinct Satbots, docked with
varying orientations. Since parameters are specific to each
Satbot’s body frame, a transformation to the appropriate
frame is required.

As each Satbot measures its current orientation through
quaternions, the direction cosine matrix can be computed.
We note that the Pozyx board measures the quaternions rel-
ative to the set inertial frame; simple matrix mathematics
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allow us to derive the transformation between two different
Satbot frames. Considering the direction cosine matrix, de-
noted generically as C, the center of mass equation can be
expanded as seen in Equation 16. This generically represents
the center of mass relative to the A-frame, though this idea
is applicable for any selected reference.

1
A A A (BB
Flg = ——|myrega +mp(“Fpra —"C" Fprp)+
Mygq

ek mytrgn]) (16)

Similarly, the moments of inertia change with each additional
Satbot, which can be determined by using the general form
for the parallel axis theorem in Equation 17. [9] Here, I,g,
represents the aggregate moment of inertia tensor. I, ; rep-
resents the inertia tensor for a given Satbot. Ej3 is the identity
matrix. From before, the Satbot reference frames may differ,
hence the transformation of the inertia tensor must be applied
as shown in Equation 18.

N
Magg = Y Megi+mil(*Regi MRegi)Es — AR i @ *Reg ]
i=1
17

Al = (ACP)(PLeg ) (*CP) (18)
Combining Equations 17 and 18 expands the parallel axis
theorem to become Equation 19 for N-number of Satbots.

Mage = ega +ma(“Rega - *Rega)Es
—MRegn @ Rega] + o+ (AC) (T ) (ACHT
(AR .. Ap . AR o AR
+ml[( Regi ch,t)ES_ Regi ® ch,z] (19)

Lastly, the change in the center of mass and the addition
of thrusters will modify the thruster mapping matrix. Since
the Satbots are designed with eight similar thrusters, the
size of M simply becomes [3x8N] for N-number of Satbots.
More importantly, the force and torque contributions change
according to the selected reference frame and the thruster
distances from the new center of mass. Therefore, the ap-
propriate direction cosine matrix must transform the relative
thruster position and directional force output vectors. As a
result, the new torque contributions from each thruster must
be recalculated.



Another important consideration requires that the thrusters
adjacent to the active docking faces deactivate to prevent
potential damage or interference to any Satbot. Pairing the
aggregated docking status with M allows the Satbots (and
thus future space systems) to identify which thrusters to dis-
able. With the reconfiguration algorithm and GNC subsys-
tem developed through software, we connect its application
with hardware to test the first instance of demonstrating the
aggregation behaviour.

3.8 Test Case

In testing the reconfiguration algorithm, we sought to demon-
strate the following:

1. Sufficient GNC response and maneuvering to the de-
sired state

2. Proper real time data transfer between multiple Satbots

3. Proper thruster history for an aggregate system after
identifying active and deactivated thrusters

The first metric assesses the Satbot’s ability to perform the
first stage of autonomous GNC, which is imperative to operat-
ing any number of Satbots. The second metric addresses the
capability to operate an aggregated system. The third metric
signals the success in reconfiguring the GNC by exhibiting
the proper thruster actuation.

For initial demonstration, two Satbots are fixed together with
velcro at the docking port to emulate an aggregation for
reconfiguration testing. Each Satbot is pre-configured with
the necessary aggregate identification file parameters that
feed into the algorithm.

As the current algorithm does not account for continuous
varying mass, both Satbots are set to the same wet mass to
ensure that the aggregate center of mass calculation properly
defines this location. Considering the concept of the thruster
mapping matrix, adding more thrusters equally divides the re-
quired force and torque contributions. In this case, propelling
the aggregate system forward would activate the appropriate
thrusters from both Satbots. Given that the Satbots begin at
the same wet mass, both Satbots will maintain equal masses
throughout operation, and the aggregate center of mass does
not change.

Once docked, one of the two Satbots will be selected to
perform the bulk of the GNC operation and reconfiguration
algorithm. The other Satbot continuously loops through a
receiver function that accepts the calculated aggregate fir-
ing times and actuates its thrusters. The GNC operation

continues until the aggregate center of mass approaches the
final desired state. Though the full-scale computational ar-
chitecture has not been fully developed, we utilize several
communication protocol to support the first stages of aggre-
gation testing.

3.9 Communication Protocol in Firing Time Transfer

The two standard communication protocols used to transfer
data between devices are TCP and UDP. Each of these proto-
cols have their advantages and disadvantages, and the choice
between them is dependent on the constraints of data being
transferred and its importance to the overall system. TCP is
a reliable transport layer protocol, as such TCP guarantees
that the data packet that is sent and received by the commu-
nicating devices are in order and error free. The draw-back
of TCP is in the overhead that it introduces in order to ensure
reliability, not only does it increase the data packet size (for
all the error checking and packet ordering) but it also reduces
the effective through put. For small aggregations this may
be admissible as the number of hardware devices are few,
as such the amount of data to be passed will be small. But
as the aggregation scales, the reduced bit rate and reliability
guarantee could potentially reduce the overall responsive-
ness of the overall aggregation. UDP on the other hand is
an unreliable transport layer protocol, it makes no guarantee
on the order of the data packets nor any errors in the data
packets. The lack of any guarantees reduces the overhead in
each data packet that is sent, allowing for a higher throughput
of data. Given these properties, UDP provides the speeds
and throughput needed to scale the aggregation, but lack of
guarantee poses a huge drawback. In order to preserve both
speed and reliability, another protocol is needed. Asbsuch
RUDP would provide the best balance between TCP and
UDP for future development. For the purpose of proof of
concept and lower development time, UDP has been used for
the transport layer.

As we develop and test the physical aggregation of the
Satbots, we seek additional validation of the aggregation
model’s GNC operation through simulation.

3.10 Simulation

Currently, two different simulations have been utilized for
the cases of N =1 and N = 2 Satbots. The first involves
a simulation built using Simulink, in which the plant was
modeled using mathematical equations of the expected sys-
tem dynamics, and was primarily used to design the MRAC
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adaptive controller. The second is a NX Motion/Simulink
co-simulation. This simulation involves using NX Motion
for the system’s dynamics (using the Satbot’s CAD proper-
ties) and Simulink for the controller design. Once the NX
Motion simulation is designed with the desired control inputs
and outputs, a solution can be created in NX Motion, which
produces a corresponding Matlab script. By running this
script, a NX Motion Plant block (a Simulink mask) is created
in Simulink. A feedback system can be created in Simulink
and when the simulation is ran, NX Motion uses control
inputs determined in Simulink and feeds its sensor outputs
back to Simulink for every timestep. Once the simulation
is complete, the results can be animated using NX Motion,
providing a visualization tool.

The second of these two simulations will prove especially
useful in validating the GNC algorithms previously described
throughout this paper for cases where N > 3, as testing with
the Satbots is limited by hardware and resources. With the
current work presented in this paper, the co-simulation was
used to test some of the GNC algorithms, particularly the
thruster mapping matrix. Results from this testing showed
the need to modify the mapping matrix for a more general
solution. In this way, when the mapping matrix was used
in Simulink to determine the appropriate control inputs, it
resulted in unexpected rotation. The algorithm can be modi-
fied with a simple fix in which the distances to each thruster
from the CG is accounted for, as seen in Equation 20.

1 1 0 0 1 -1 0 0
M=|0 0 1 -1 0 0 -1 1
—di d —dy di —ds ds —d7 ds

(20)

When the pseudoinverse of this matrix was determined using
the thruster distances measured in the CAD model and imple-
mented into the co-simulation, it resulted in appropriate sys-
tem behavior, given requests corresponding to non-rotational
motion. Implementation of the modified mapping matrix is
to be considered for possible future work.

4 Future Work

The future of the Satbot focuses on developing the overarch-
ing architecture, the control system’s adaptability, and main-
taining valid spacecraft design while facilitating N-number
aggregations. Current considerations include the:

* Construct the framework of the computational architec-
ture.

* Potential to refine simulation and design Self-Tuning
Control (STC) and compare performance.

* Implement and test MRAC on platforms.

* Further developments to the simulation tools for N-
number of Satbots.

* Fabricating the next generation of Satbots (Figure 10).

Fig. 10: The proposed design of the Satbot. This new model
aims to facilitate four docking ports, decrease the system
mass, and improve daily operation.

5 Conclusion

The value proposition of cellularization to enable aggrega-
tion on orbit depends upon some sort of computational ar-
chitecture that enables ubiquitous connections. USC SERC
identified two elements to a new architecture, the transport
and element identifications, and behaviours for an aggre-
gated system. This paper took the first step to demonstrate
one space system function that is required to be maintained
during aggregation, GNC. The preliminary concepts of an
autonomous GNC subsystem and reconfiguration algorithm
and simulation results were detailed through the development
of a simple Satbot that represented a 3DOF thruster-based
control satellite in a test facility. The current testing shows
direct results that proves the possibility to aggregate two
disparately controlled Satbots and operate as a single mono-
lithic entity. The architecture identified showed a possible
vector that can apply to N cells/elements/components/satlets
on orbit, and further research and simulation to show tens
to hundreds of elements to explore the boundaries of the
various layers will be done.
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