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Abstract

The proposed work has been developed within the project LEAPFROG (Lunar En-
try and Approach Platform For Research On Ground) at the University of Southern
California. The project concerns the realization of a lunar lander test bed prototype
with the aim of testing GNC algorithms for simulated lunar flight and descent. The
main focus is the realization of a newly designed thrust vectoring system (TVC)
that exploits the thrust given by a main engine in order to control the attitude of
the platform. This new attitude control system is combined with current tradtional
reaction control system (RCS) based on cold-gas thrusters. After a preliminary
hardware design phase, a linear LQR controller, based on a reduced quaternion
model, and a non-linear sliding mode controller are designed for the TVC system.
Linear Quadratic Regulator o [erk a simple implementation, an optimal control law.
However it can be a[edted by un-modeled dynamics and the solutions provided are,
in general, only locally valid. Sliding mode control (SMC) guarantees robustness
against disturbances, unmodeled dynamics and uncertainties about the mass prop-
erties of the prototype, olering also a global stability. Cons of this method are
the hard implementation and the request of an high-frequency actuation. A MAT-
LAB/simulink simulation is set up in order to validate and compare the designed
controllers and to analyze if the thrust vectoring system leads to the desired results.
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Chapter 1

Introduction

1.1 Introduction to LEAPFROG project

In the last few years, lunar exploration has been experiencing a new "golden age”,
after the intense period of interest from the well-known Apollo missions. News
from the recent Chandrayaan-2 mission by Indian Space Research Organisation and
NASA's 2024 goal to bring back humans to the Moon's surface, Moon exploration
and lunar landing are of great interest not only for big national or international
agencies, like NASA or ESA, but also for private companies, research centers and
universities. University of Southern California’'s (USC) Space Engineering Research
Center (SERC), with the support from the Information Sciences Institute (ISI),
started its personal research in prototype lunar lander technology in 2006, with the
birth of the LEAPFROG project.

LEAPFROG (Lunar Entry and Approach Platform For Research On Ground) is a
lunar lander prototype built by students with the aim of simulating lunar gravity

on Earth. Since the very beginning, the main goal of the project has been the
development of a test bed lunar prototype vehicle that can y multiple times in
Earth's gravity through free ight to simulate a lunar descent and landing sequence.
The concept was inspired by NASA's Lunar Landing Research Vehicle (LLRV),
created to investigate and analyze di erent piloting techniques that could be used
for the descent and landing of the Apollo Lunar Module [5]. The LLRV project,
in fact, was started even before NASA had selected the landing strategies to use
for the Lunar Module (LM). The LLRV led to the Lunar Landing Training Vehicle
(LLTV), a vehicle designed with characteristics closer to the planned LM, to better
represent the nal descent phase, used for a more advanced training of the Apollo
astronauts [20].






	Introduction
	Introduction to LEAPFROG project
	Generation 2: proposal and goals
	Thesis work and outline

	Theoretical background
	Landing on a celestial body
	Frames of reference
	Attitude representation
	Euler Angles representation
	Quaternions representation

	Attitude kinematics
	Rigid body attitude dynamics
	Thrust vector control: literature review
	Reactive fluid injection
	Exhaust flow deflection
	Engine mechanical manipulation


	Preliminary hardware design
	Project budget and requirements
	Structure
	Chassis
	Legs
	Platforms

	Propulsion system
	Reaction control system
	Thrust Vector Control system
	Gimbal joint design
	Actuation system
	Embedded electronics


	Control system design
	System Dynamics
	Linear Quadratic Regulator
	Cost function and Riccati equation
	Reduced quaternion model
	Asymptotic stability 

	Sliding Mode Control
	Sliding manifold and control law definition
	Chattering phenomenon


	Control system simulation
	Input parameters
	LQR controller simulations
	Ideal case
	Perturbed case

	Sliding mode controller simulations
	Ideal case
	Perturbed case


	Conclusions and future work
	Appendix A
	Bibliography
	Acknowledgements

