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Abstract—As more scientific workloads are moved into the
cloud, the need for high performance accelerators increases.
Accelerators such as GPUs offer improvements in both perfor-
mance and power efficiency over traditional multi-core proces-
sors; however, their use in the cloud has been limited. Today,
several common hypervisors support GPU passthrough, but
their performance has not been systematically characterized.

In this paper we show that low overhead GPU passthrough
is achievable across 4 major hypervisors and two processor
microarchitectures. We compare the performance of two gen-
erations of NVIDIA GPUs within the Xen, VMWare ESXi,
and KVM hypervisors, and we also compare the perfor-
mance to that of Linux Containers (LXC). We show that
GPU passthrough to KVM achieves 98–100% of the base
system’s performance across two architectures, while Xen and
VMWare achieve 96–99% of the base systems performance,
respectively. In addition, we describe several valuable lessons
learned through our analysis and share the advantages and
disadvantages of each hypervisor/GPU passthrough solution.

Keywords-virtualization; GPU passthrough; KVM; Xen;
VMWare; LXC

I. INTRODUCTION

As scientific workloads continue to demand increasing
performance at greater power efficiency, high performance
architectures have been driven towards heterogeneity and
specialization. Intel’s Xeon Phi, and GPUs from both
NVIDIA and AMD represent some of the most common
accelerators, with each capable of delivering improved per-
formance and power efficiency over commodity multi-core
CPUs.

Infrastructure-as-a-Service (IaaS) clouds have the poten-
tial to democratize access to the latest, fastest, and most
powerful computational accelerators. This is true of both
public and private clouds. Yet today’s clouds are typically
homogeneous without access to even the most commonly
used accelerators. Historically, enabling virtual machine
access to GPUs and other PCIe devices has proven complex
and error-prone, with only a small subset of GPUs being
certified for use within a few commercial hypervisors. This
is especially true for NVIDIA GPUs, likely the most popular

for scientific computing, but whose drivers have always been
closed source.

Given the complexity surrounding the choice of GPUs,
host systems, and hypervisors, it is perhaps no surprise that
Amazon is the only major cloud provider offering customers
access to GPU-enabled instances. All of this is starting to
change, however, as open source and other freely available
hypervisors now provide sufficiently robust PCI passthrough
functionality to enable GPU and other accelerator access
whether in the public or private cloud.

Today, it is possible to access GPUs at high performance
within all of the major hypervisors, merging many of the ad-
vantages of cloud computing (e.g. custom images, software
defined networking, etc.) with the accessibility of on-demand
accelerator hardware. Yet, no study to date has systemati-
cally compared the performance of GPU passthrough across
all major cloud hypervisors. Instead, alternative solutions
have been proposed that attempt to virtualize the GPU [1]–
[4], but sacrifice performance.

In this paper, we characterize the performance of
both NVIDIA Fermi and Kepler GPUs operating in PCI
passthrough mode in VMWare ESXi, Linux KVM, Xen, and
Linux Containers (LXC). Through a series of microbench-
marks as well as scientific and Big Data applications, we
make two contributions:

1) We demonstrate that PCI passthrough at high perfor-
mance is possible for GPUs across 4 major hypervi-
sors.

2) We describe the lessons learned through our perfor-
mance analysis, as well as the relative advantages and
disadvantages of each hypervisor for GPU support.

II. RELATED WORK & BACKGROUND

GPU virtualization and GPU-passthrough are used within
a variety of contexts, from high performance computing to
virtual desktop infrastructure. Accessing one or more GPUs
within a virtual machine is typically accomplished by one of
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two strategies: 1) via API remoting with device emulation;
or 2) using PCI passthrough.

A. GPU API Remoting

rCUDA, vCUDA, GViM, and gVirtuS are well-known
API remoting solutions [1]–[4]. Fundamentally, these ap-
proaches operate similarly by splitting the driver into a
front-end/back-end model, where calls into the interposed
CUDA library (front-end) are sent via shared memory or
a network interface to the back-end service that executes
the CUDA call on behalf of the virtual machine. Notably,
this technique is not limited to CUDA, but can be used to
decouple OpenCL, OpenGL, and other APIs from their local
GPU or accelerator.

The performance of API-remoting depends largely on
the application and the remoting solution’s implentation.
Bandwidth and latency-sensitive benchmarks and applica-
tions will tend to expose performance bottlenecks more than
compute-intensive applications. Moreover, solutions that rely
on high speed networks, such as Infiniband, will compete
with application-level networking for bandwidth.

B. PCI Passthrough

Input/Output Memory Management Units, or IOMMUs,
play a fundamental roll in the PCI-passthrough virtualization
mechanism. Like traditional MMUs that provide a virtual
memory address space to CPUs [5], an IOMMU serves the
fundamental purpose of connecting a direct memory access
(DMA) capable I/O bus to main memory. The IOMMU unit,
typically within the chipset, maps device virtual addresses
to physical memory addresses. This process also has the
added improvement of guaranteeing device isolation by
blocking rogue DMA and interrupt requests [6], with a slight
overhead, especially in early implementations [7].

Currently two major IOMMU implementations exist,
VT-d and AMD-Vi by Intel and AMD, respectively. Both
specifications provide DMA remapping to enable PCI-
passthrough as well as other features such as interrupt
remapping, hypervisor snooping, and security control mech-
anisms to ensure proper and efficient hardware utilization.
PCI passthrough has been studied within the context of
networking [8], storage [9], and other PCI-attached devices;
however, GPUs have historically lagged behind other devices
in their support for virtual machine passthrough.

C. GPU Passthrough, a Special Case of PCI Passthrough

While generic PCI passthrough can be used with IOMMU
technologies to pass through many PCI-Express devices,
GPUs represent a special case of PCI devices, and a special
case of PCI passthrough. In traditional usage, GPUs usually
serve as VGA devices primarily to render screen output,
and while the GPUs used in this study do not render screen
out, the function still exists in legacy. In GPU-passthrough,
another VGA device (such as onboard graphics built into

Table I: Host hardware configurations

Bespin Delta
CPU (cores) 2x E5-2670 (16) 2x X5660 (12)
Clock Speed 2.6 GHz 2.6 GHz
RAM 48 GB 192 GB
NUMA Nodes 2 2
GPU 1x K20m 2x C2075

the motherboard, or a baseboard management controller) is
necessary to serve as the primary display for the host, as
well as providing emulated VGA devices for each guest
VM. Most GPUs also have a video BIOS that requires full
initialization and reset functions, which is often difficult due
to the proprietary nature of the cards and their drivers.

Nevertheless, for applications that require native or near-
native GPU performance across the full spectrum of appli-
cations with immediate access to the latest GPU drivers
and compilers, GPU passthrough solutions are preferrable
to API remoting. Today, Citrix Xenserver, open source
Xen [10], and VMWare ESXi [11], and most recently
KVM all support GPU passthrough. To our knowledge,
no one has systematically characterized the performance
of GPU passthrough across a range of hypervisors, across
such a breadth of benchmarks, and across multiple GPU
generations as we do.

III. EXPERIMENTAL METHODOLOGY

A. Host and Hypervisor Configuration

We used two hardware systems, named Bespin and Delta,
to evaluate four hypervisors. The Bespin system at USC/ISI
represents Intel’s Sandy Bridge microarchitecture with a
Kepler class K20m GPU. The Delta system, provided by the
FutureGrid project [12], represents the Westmere microar-
chitecture with a Fermi class C2075 GPU. Table I provides
the major hardware characteristics of both systems. Note
that in addition, both systems include 10 gigabit Ethernet,
gigabit Ethernet, and either FDR or QDR Infiniband. Our
experiments do not emphasize networking, and we use the
gigabit ethernet network for management only.

A major design goal of these experiments was to reduce
or eliminate NUMA effects (non-uniform memory access)
on the PCI passthrough results in order to facilitate fair
comparisons across hypervisors and to reduce experimental
noise. To this end, we configured our virtual machines and
containers to execute only on the NUMA node containing
the GPU under test. We acknowledge that the NUMA effects
on virtualization may be interesting in their own right, but
they are not the subject of this set of experiments.

We use Bespin and Delta to evaluate three hypervisors
and one container-based approach to GPU passthrough. The
hypervisors and container system, VMWare ESXi, Xen,
KVM, and LXC, are summarized in Table II. Note that each
virtualization solution imposes its own unique requirements



Table II: Host Hypervisor/Container Configuration

Hypervisor Linux Kernel Linux Version
KVM 3.12 Arch 2013.10.01
Xen 4.3.0-7 3.12 Arch 2013.10.01
VMWare ESXi 5.5.0 N/A N/A
LXC 2.6.32-358.23.2 CentOS 6.4

on the base operating system. Hence, Xen’s Linux kernel
refers to the Domain-0 kernel, whereas KVM’s Linux ker-
nel represents the actual running kernel hosting the KVM
hypervisor. Linux Containers share a single kernel between
the host and guests, and VMWare ESXi does not rely on a
Linux kernel at all.

Similarly, hypervisor requirements prevented us from
standardizing on a single host operating system. For Xen and
KVM, we relied on the Arch Linux 2013.10.01 distribution
because it provides easy access to the mainline Linux kernel.
For our LXC tests, we use CentOS 6.4 because its shared
kernel was identical to the base CentOS 6.4 kernel used in
our testing. VMWare has a proprietary software stack. All
of this makes comparison challenging, but as we describe
in Section III-B, we are running a common virtual machine
across all experiments.

B. Guest Configuration

We treat each hypervisor as its own system, and compare
virtual machine guests to a base CentOS 6.4 system. The
base system and the guests are all composed of CentOS 6.4
installation with a 2.6.32-358.23.2 stock kernel and CUDA
version 5.5. Each guest is allocated 20 GB of RAM and a full
CPU socket (either 6 or 8 CPU cores). Bespin experiments
received 8 cores and Delta experiments received 6 cores.
VMs were restricted to a single NUMA node. On the Bespin
system, the K20m GPU was attached to NUMA node 0. On
the Delta system, the C2075 GPU was attached to NUMA
node 1. Hence VMs ran on NUMA node 0 for the Bespin
experiments, and node 1 for the Delta experiments.

C. Microbenchmarks

Our experiments are composed of a mix of microbench-
marks and application-level benchmarks, as well as a com-
bination of CUDA and OpenCL benchmarks. The SHOC
benchmark suite provides a series of microbenchmarks in
both OpenCL and CUDA [13]. For this analysis, we focus
on the OpenCL benchmarks in order to exercise multiple
programming models. Benchmarks range from low-level
peak Flops and bandwidth measurements, to kernels and
mini-applications.

D. Application Benchmarks

For our application benchmarks, we have chosen the
LAMMPS molecular dynamics simulator [14], the GPU-
LIBSVM [15], and the LULESH shock hydrodynamics sim-
ulator [16]. These represent a range of computational charac-

teristics, from computational physics to big data analytics,
and are representative of GPU-accelerated applications in
common use.

LAMMPS: The Large-scale Atomic/Molecular Parallel
Simulator (LAMMPS), is a parallel molecular dynamics
simulator [14], [17] used for production MD simulation on
both CPUs and GPUs [18]. LAMMPS has two packages for
GPU support, the USER-CUDA and GPU packages. With
the USER-CUDA package, each GPU is used by a single
CPU, whereas the GPU package allows multiple CPUs to
take advantage of a single GPU. There are performance
trade-offs with both approaches, but we chose to use the
GPU package in order to stress the virtual machine by
exercising multiple CPUs. Consistent with the existing GPU
benchmarking approaches, our results are based on the
Rhodopsin protein.

GPU-LIBSVM: LIBSVM is a popular implementa-
tion [19] of the machine learning classification algo-
rithm support vector machine (SVM). GPU-accelerated
LIBSVM [15] enhances LIBSVM by providing GPU-
implementations of the kernel matrix computation portion of
the SVM algorithm for radial basis kernels. For benchmark-
ing purposes we use the NIPS 2003 feature extraction gisette
data set. This data set has a high dimensional feature space
and large number of training instances, and these qualities
are known to be computational intensive to generate SVM
models. The GPU-accelerated SVM implementation shows
dramatic improvement over the CPU-only implementation.

LULESH: Hydrodynamics is widely used to model
continuum properties and interactions in materials when
there is an applied force [20]. Hydrodynamics applications
consume approximately one third of the runtime of data
center resource throughout the U.S. DoD (Department of
Defense). The Livermore Unstructured Lagrange Explicit
Shock Hydro (LULESH) was developed by Lawrence Liv-
ermore National Lab as one of five challenge problems in
the DARPA UHPC program. LULESH is widely used as a
proxy application in the U.S. DOE (Department of Energy)
co-design effort for exascale applications [16].

IV. PERFORMANCE RESULTS

We characterize GPGPU performance within virtual ma-
chines across two hardware systems, 4 hypervisors, and
3 application sets. We begin with the SHOC benchmark
suite before describing the GPU-LIBSVM, LAMMPS, and
LULESH results. All benchmarks are run 20 times and
averaged. Results are scaled with respect to a base CentOS
6.4 system for both systems. That is, we compare virtualized
Bespin performance to non-virtualized Bespin performance,
and virtualized Delta performance to non-virtualized Delta
performance. Values less than 1 indicate that the base sys-
tem outperformed the virtual machine, while values greater
than 1 indicate that the virtual machine outperformed the
base system. In cases where we present geometric means



Table III: SHOC overheads expressed as geometric means of scaled values within a level, while maximum overheads are
expressed as a percentage.

Bespin (K20m) Delta (C2075)
KVM Xen LXC VMWare KVM Xen LXC VMWare

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max
L0 0.999 1.57 0.997 3.34 1.00 1.77 1.00 1.90 1.01 0.031 0.969 12.7 1.00 0.073 1.00 4.95
L1 0.998 1.23 0.998 1.39 1.00 1.47 1.00 0.975 1.00 1.45 0.959 24.0 1.00 0.663 0.933 36.6
L2 0.998 0.48 0.995 0.846 0.999 1.90 0.999 1.20 1.00 0.101 0.982 4.60 1.00 0.016 0.962 7.01

Bespin PCIe-only Delta PCIe-only
KVM Xen LXC VMWare KVM Xen LXC VMWare

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max
L0 0.997 0.317 0.999 0.143 0.995 0.981 0.995 1.01 1.04 0.029 0.889 12.7 1.00 0.01 0.995 4.37
L1 0.998 0.683 0.997 1.39 1.00 0.928 1.01 0.975 1.00 1.45 0.914 20.5 0.999 0.380 0.864 36.6
L2 0.998 0.478 0.996 0.846 1.00 0.247 1.01 0.133 1.00 0.075 0.918 4.60 1.00 N/A 0.869 7.01

across multiple benchmarks, the means are taken over these
scaled values, and the semantics are the same: less than 1
indicates overhead in the hypervisor, greater than 1 indicates
a performance increase over the base system.

A. SHOC Benchmark Performance

SHOC splits its benchmarks into 3 Levels, named Levels
0 through 2. Level 0 represents device-level characteristics,
peak Flop/s, bandwidth, etc. Level 1 characterizes com-
putational kernels: FFT and matrix multiplication, among
others. Finally, Level 2 includes “mini-applications,“ in this
case an implementation of S3D, a computational chemistry
application.

Because the SHOC OpenCL benchmarks report more
than 70 individual microbenchmarks, space does not allow
us to show each benchmark individually. Instead, we start
with a broad overview of SHOC’s performance across all
benchmarks, hypervisors, and systems. We then discuss in
more detail those benchmarks that either outperformed or
underperformed the Bespin (K20m) system by 0.50% or
more. We call these benchmarks outliers. As we will show,
those outlier benchmarks identified on the Bespin system,
also tend to exhibit comparable characteristics on the Delta
system as well, but the overhead is typically higher.

In Table III, we provide geometric means for each SHOC
level across each hypervisor and system. We also include
the maximum overhead for each hypervisor at each level
to facilitate comparison across hypervisors and systems.
Finally, we provide a comparable breakdown of only the
PCIe SHOC benchmarks, based on the intuition that PCIe-
specific benchmarks will likely result in higher overhead.

At a high level, we immediately notice that in the cases of
KVM and LXC, both perform very near native across both
the Bespin and Delta platforms. On average, these systems
are almost indistinguishable from their non-virtualized base
systems. So much so, that experimental noise occasionally
boosts performance slightly above their base systems.

This is in sharp contrast to the Xen and VMWare hy-
pervisors, which perform well on the Bespin system, but
poorly on the Delta system in some cases. This is particularly

evident when looking at the maximum overheads for Xen
and VMWare across both systems. In this case, we see
that on the Bespin system, Xen’s maximum overhead of
3.34% is dwarfed by Delta’s maximum Xen overhead of
24.0%. VMWare exhibits similar characteristics, resulting
in a maximum overhead of 1.9% in the case of the Bespin
system, and a surprising 36.6% in the case of the Delta
system. We provide a more in-depth discussion of these
overheads below.

Figure 1: SHOC Levels 0 and 1 relative performance on
Bespin system. Results show benchmarks over or under-
performing by 0.5% or greater. Higher is better.

There are four level 0 outliers: bspeed download,
lmem readbw, tex readbw, and ocl queue. These are shown
in Figure 1. These benchmarks represent device-level char-
acteristics, including host-to-device bandwidth, onboard
memory reading, and OpenCL kernel queue delay. Of the
four, only bspeed download incurs a statistically significant
overhead. The remainder perform within one standard devi-
ation of the base, despite an overhead of greater than 0.5%.

bspeed download is representative of the most likely
source of virtualization overhead, data movement across
the PCI-Express bus. The PCIe bus lies at the boundary
of the virtual machine and the physical GPU, and requires
interrupt remapping, IOMMU interaction, etc. in order to



Figure 2: SHOC Levels 1 and 2 relative performance on
Bespin system. Results show benchmarks over or under-
performing by 0.5% or greater. Higher is better.

Figure 3: SHOC Levels 0 and 1 relative performance on
Delta system. Benchmarks shown are the same as Bespin’s.
Higher is better.

Figure 4: SHOC Levels 1 and 2 relative performance.
Benchmarks shown are the same as Bespin’s. Higher is
better.

enable GPU passthrough into the virtual machine. Despite
this, in Figure 1 we see a maximum of 1% overhead for
bspeed download in VMWare, and less than 0.5% overhead
for both KVM and Xen.

The remainder of Figure 1 includes a series of SHOC’s
Level 1 benchmarks, representing computational kernels.
This includes BFS, FFT, molecular dynamics, and reduction
kernels. Notably, nearly all of the benchmarks exhibiting
overhead are the PCIe portion of SHOC’s benchmarks. This
is unsurprising, since the Level 0 benchmarks suggest PCIe
bandwidth as the major source overhead. Still, results remain
consistent with the bspeed download overhead observed in
the Level 0 benchmarks, further suggesting that host/device
data movement is the major source of overhead.

In Figure 2 we present the remaining SHOC Level 1
outliers as well as the SHOC Level 2 (S3D) outliers. In these
results we see an interesting trend, namely that VMWare
consistently outperforms the base system in the Spmv PCIe
microbenchmarks on the Bespin system. Spmv’s non-PCIe
benchmarks performed comparably across all hypervisors at
less than 0.5% overhead.

Turning to the Delta system, in Figures 3 and 4, we show
the same benchmarks for the Delta system as was shown in
Figures 1 and 2. Again, we find that the same benchmarks
are responsible for most of the overhead on the Delta system.
This is unsurprising, since PCIe was shown to be the source
of the bulk of the overhead. A major difference in the case
of the Delta system, however, is the amount of overhead.
While the Bespin system saw overheads of approximately
1%, Delta’s overhead routinely jumps above 35%, especially
in the case of the Spmv benchmark for VMWare.

On further examination, we determined that Xen was
unable to activate IOMMU large page tables on the Delta
system. KVM successfully allocated 4k, 2M, and 1G page
table sizes, while Xen was limited to size 4k page tables.
The Bespin system was able to take advantage of 4k, 2M,
and 1G page sizes on both KVM and Xen. It appears that
this issue is correctable and does not represent a fundamental
limitation to the Xen hypervisor on the Nehalem/Westmere
microarchitecture. We speculate that VMWare may be expe-
riencing a similar issue on the Delta system and not on our
Bespin system. Further study is needed in order to determine
with certainty whether pages sizes are contributing to the
performance decreases in the case of Xen and VMWare
ESXi.

In light of this, we broadly find that virtualization over-
head across hypervisors and architectures is minimal for
the case of the SHOC benchmarks. Questions remain as to
the source of the exceptionally high overhead in the case
of Xen and VMWare on the Delta system, but because
KVM shows no evidence of this overhead, we believe
the Westmere/Fermi architecture to be suitable for GPU
passthrough in a cloud environment. In the case of the
Bespin system, it is clear that GPU passthrough can be
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