
Improved Metrics for Obfuscated ICs
Mutian Zhu, Matthew French, and Peter A. Beerel

Ming Hsieh Department of Electrical Engineering
University of Southern California, Los Angeles, California 90089

{mutianzh, pabeerel}@usc.edu

University of Southern California, Information Sciences Institute
Arlington, Virginia 22203

mfrench@isi.edu

Abstract—This paper focuses on combinatoric-centric metrics
to measure the effectiveness of passive obfuscation techniques.
Brute force measures estimate the expected number of guesses
required for an adversary to obtain the obfuscation element
keys, ignoring any correlation data that the attacker may have
between obfuscation elements. We propose an improved formula
for the expected number of guesses that takes into account such
correlation data and show initial results that demonstrate such
data can dramatically lower the expected number of guesses.
We then describe the computational challenges associated with
computing this metric and an approximation approach that may
help mitigate this issue.

I. INTRODUCTION

The globalization of the integrated circuit market has led
to DoD losing secure, trusted, access to state of the art
fabrication nodes. In order to leverage state-of-the-art capabil-
ities provided by commercial foundries, DoD needs solutions
which ensure 1) that the IP fabricated offshore is not reverse
engineered, and 2) that the risk of hardware Trojan insertion is
eliminated through either prevention or detection and mitiga-
tion. Research and development in these areas has been active,
but uncoordinated, resulting in a wide variety of passive and
active obfuscation techniques which address specific pieces
of circuitry or stages in the IC development and fabrication
process, yet no agreement on metrics, making it difficult to
assess the ability of obfuscation IP to protect Critical Program
Information (CPI) and support mission requirements.

One approach for measuring passive obfuscation is to utilize
a combinatoric centric metric which represents the work load
an adversary has to perform to decode in order to begin their
attack (steal IP, bypass active obfuscation, insert a Trojan etc).
Setting defenses, or work load, to be much greater than that
of which an attacker can achieve over a desired window of
operation is a concept that has been well proven and estab-
lished in the selection of cryptographic key lengths [1], [2].
Setting the key length beyond the computational reach of an
adversary for the period of time desired also lends itself well
to establishing mission oriented metrics, defining theoretical
upper bounds, and measuring achieved performance.

DISTRIBUTION A. Approved for public release: distribution unlimited.
Peter A. Beerel is also Chief Scientist at Reduced Energy Microsystems.

In hardware reverse engineering and IP leakage though,
circuits contain additional metadata (cell type, placement,
drive strength etc), which may provide deobfuscation clues
and shorten the effective key length or adversary work load.
Adversaries are constantly innovating new attack types, not
anticipated by defenders. Decoding one obfuscated element,
may provide clues to an attacker on how to decode other
elements obfuscated using the same technique. There may also
be inadvertent similarities in different types of obfuscation.
These correlations can drastically reduce the combinatoric
work load that an attacker would actually encounter. This
paper’s first contribution is to define an improved expected
number of attacks needed by an attacker given correlation
information about obfuscation elements. It then describes
the computational challenges associated with computing this
metric and an approximation approach that may help mitigate
this issue.

II. EXPECTED NUMBER OF ATTACKS

Our model of a circuit is that it has n obfuscation elements,
also referred to simply as gates in this paper, that with-out-
loss-of-generality can have one of 2 possible functions. The
adversary’s job is to guess which of the 2n possible combina-
tions is the correct function by testing one combination at a
time. We assume that each obfuscation gate takes on each type
with equal probability. So a combination can be modeled by
a sequence of identical distributed Bernoulli random variables
Xi(i = 1, 2, ..., n) with p = 0.5. The joint distribution of all
Xi is the probability of each combination, referred to in this
paper as a guess or key, being correct.

A. Brute Force Attack

If an attacker chooses one combination randomly each
attack, the probability of success at the first attack is 1

2n ,
and the probability of success at the k-th (k > 1) attack
is 2n−1

2n
2n−2
2n−1 · · ·

2n−k+1
2n−k+2

1
2n−k+1 which also gives 1

2n . So the
expected number of attacks K is:

E[K] = 2n−1 + 0.5 (1)

B. Correlation Driven Attack

If the correlation coefficients ρij between all pairs of Xi and
Xj are known, the attacker can obtain a better estimation of the
joint distribution. The optimal attack strategy would then be to
sort the probabilities in descending order ps1, ps2...ps2n and
start from the combination with highest probability to lowest
probability. The expected number of attacks K would then be:

E[K] =

2n∑
i=1

i×Psi (2)

C. Entropy Lower Bound

If we know the entropy h(P) = −
∑2n

i=1 Pilog(Pi) of the
joint distribution, we can also directly give a lower bound of
the expected number of attacks [3]:

E[K] ≥ 1

4
2h(P) + 1 (3)

III. SOLVING FOR THE JOINT DISTRIBUTION

Given ρij , we can solve for the marginal distribution
of a pair of gates: PXiXj . Each marginal probability can
be written as a linear combination of joint probabilities:∑2n

i=1 aiPX1···Xn
= PXiXj

. We have
(
n
2

)
pairs which can

give us a system of linear equations:

M × P = b (4)

Here, M is a 4
(
n
2

)
× 2n binary parameter matrix that has

one row for each possible combination of pair values and one
column for every possible guess. For each row, there is a one
in the columns associated with the guesses that include that
specific combination of pair values and a zero in all other
columns. P is the vector of 2n joint probabilities and b is the
vector of marginal probabilities, These linear equations will
give us a family of solutions. According to Maximum Entropy
principle [4], we should choose the solution with maximum
entropy. In particular, if an attacker assumes the distribution
with maximized entropy to build the attack sequence, then the
maximum entropy distribution provides the expected number
of attacks. In fact, this is the largest number of attacks among
distributions that satisfy Equation 4 because the maximizing
entropy gives the distribution that is closest to uniform. In
reality the underlying distribution could have more diversity
so the expected number of attacks can be smaller.

IV. APPROXIMATION ALGORITHM

Unfortunately, solving Equation 4 is computationally chal-
lenging because it involves solving the probability of each
combination. Having n obfuscation elements means we have
2n variables to solve. This motivates developing a faster
means of obtaining an approximation of the expected num-
ber of attacks. One idea for an approximation is that since
each linear equation is a sum of joint probabilities, we can
quickly eliminate an equation by assuming that all variables
in it have identical values. In particular, we propose to use
this estimation to eliminate the equations with smaller sums
quickly and solve the remaining equations to get more precise

probabilities for those most likely combinations. This section
first develops this idea symbolically using binary expressions
and then describes a preliminary implementation in python
using integer sets.

A. Logical Representation

1) Group: We can describe all the keys that are summed
in an equation through a binary expression. For example,
equation PX1X2

(0, 0) =
∑
PX1···Xn

(0, 0, x3, · · · , xn) = b0 is
the sum of probabilities of all keys with the first and second
digits equal to zero. We can use a binary expression to describe
this group of keys:

G0 = ¬1 ∧ ¬2 (5)

2) Operations: Two main operations needed in this approx-
imation approach are finding the overlapped keys between two
groups and the remaining keys in a group after another group
has been removed from consideration. They both can be imple-
mented by the logical operations upon the binary expressions
of two groups. The intersection between two groups is simply
the ∧ operation between the binary expressions of them. For
example, given G0 = 1 ∧ 2 and group G1 = 3 ∧ 4, their
intersection is:

G0 ∩G1 = 1 ∧ 2 ∧ 3 ∧ 4 (6)

If group G0 has been removed from consideration, then the
binary expression of remaining keys in group G1 can be
represented by G0 ∩ (G1)

C :

G0 ∩ (G1)
C = (1 ∧ 2 ∧ ¬3) ∨ (1 ∧ 2 ∧ ¬4) (7)

3) Number of keys In a Group: We need the number of
obfuscation keys in a group given its binary expression to
calculate probabilities and expectation.

For a binary expression that only contains ∧ operation, such
as 1∧ 2∧ · · · k− 1∧ k, the number of obfuscation keys N in
this group is

N(1 ∧ 2 ∧ · · · k − 1 ∧ k) = 2n−k(k ≤ n) (8)

where n is the total number of gates and k is the number
of gates in this expression. For an expression with mixed ∧
and ∨ operations, we can use the inclusive-exclusive law from
probability theory:

N(∪ni=1Bi) =

n∑
i=1

N(Bi)−
∑
i<j

N(Bi ∩Bj) + · · ·

(−1)n+1N(∩ni=1Bi) (9)

where Bi is a binary expression that only contains ∧ operation.

B. Implementation In Python

1) Symbolic Representation: We implemented this algo-
rithm in Python by symbolically representing each gate as
an integer, and representing the binary expression of a group
of keys using a list of sets

[
B1, B2, B3, · · ·

]
, where Bi is

a set of integers which represents the ∧ operation of gates.

For example,
[{
1, 2,−3

}
,
{
1, 2,−4

}]
is the representation of

Binary Expression 7 described above. The positiveness and
negativeness of an integer indicates the type of a gate to be 1
or 0. So, in summary, the ∧ operation is implicitly represented
by sets in python, and the ∨ operation is represented by lists
of such sets.

2) Data Structure: A group of keys G[i] can be represented
by a three tuple 〈A,N,L〉, where G[i].A is the average
probability of each key in group G[i], G[i].N is the number of
keys in this group, and G[i].L is the symbolic representation
of group G[i]’s binary expression. This tuple contains all the
information we need to perform the reduction of groups and
calculate the expected number of attacks. All the groups that
have been removed are put in the list R and the remaining
groups are in the list G. The pseudocode of a preliminary ver-
sion of this approximation algorithm is described in Algorithm
1.

C. Algorithmic Optimization

1) Optimized Resorting: The algorithm iteratively chooses
the group with smallest average probability to remove from
G. After a group is removed from G, we must remove any
overlapping part from the remaining groups and resort them so
that we can choose the group with smallest average probability
in the next iteration. Unfortunately, if we do this naively the
complexity is very high.

To mitigate this complexity issue we observe that the
updated average probability of group G[i], denoted as G[i].A,
will always grow after updating. This is because the removed
keys are always assigned with smaller average probability
than G[i].A since we always choose the group with smallest
average probability to remove first. Hence the new average,
denoted as G[i]′.A, is greater than G[i].A. So if we choose
group G[i] with original average probability G[i].A being
the smallest, and has new average G[i]′.A after updating,
then the groups that with original average probability larger
than G[i]′.A do not need to be concerned. We only need to
update the groups that have original average probability within
the range of

[
G[i].A,G[i]′.A

]
and pick the one that has the

smallest average probability after updating. By applying this
idea we reduce the number of times we resort and number of
groups to resort in each iteration. This is captured in the while
condition (line 13) in Algorithm 1.

2) Simplified Updating: Notice that we may update several
groups in each iteration. The list G is used to store the original
G[i]’s. If G[i] is updated in the current iteration, there is a
new list called Cache to store the updated G[i] at Cache[i].
In the next iteration if G[i] still needs to be updated, we can
use Cache[i] to update with only the newly added group in
R, which is faster than updating G with all the groups in R.
Besides, if G[i] is removed, Cache[i] will be removed as well
so that each group has same index for its original version in
G and updated version in Cache. We applied this idea in our
python implementation but for simplicity did not include it in
the pseudocode shown in Algorithm 1.

Algorithm 1 Iterative Approximation Algorithm
1: procedure APPROXIMATE EXPECTATION(G)
2: G, R = REDUCE GROUPS(G, 0)
3: P = SOLVE FOR REMAINING KEYS(G)
4: E = COMBINE RESULTS(P , R)
5: Return E
6: end procedure
7: procedure REDUCE GROUPS(G, R)
8: removed = 0
9: while 2N - removed > threshold do

10: Sort G in increasing order of G[i].A
11: smallest = 0, i = 1, minavg = UPDATE(G[0],R).A
12: range = range of updates needed
13: while i < len(G) and G[i].A is within range do
14: newavg = UPDATE(G[i],R).A
15: if newavg < minavg then
16: smallest = i, minavg = newavg
17: end if
18: i = i + 1;
19: end while
20: G[smallest] = UPDATE(G[smallest],R)
21: removed = removed + G[smallest].N
22: Append G[smallest] to R;
23: Delete G[smallest] from G
24: end while
25: for the rest of groups G[i] in G do
26: G[i] = UPDATE(G[i],R)
27: end for
28: Return G, R
29: end procedure
30: procedure SOLVE FOR REMAINING KEYS(G)
31: Form Eq. 4 for groups in G
32: Find sol. minizing Euclidean dist. to uniform distr.
33: Shift probabilities so that they are all non-negative
34: Return P
35: end procedure
36: procedure COMBINE RESULTS(P ,R)
37: Sort P in descending order
38: E = 0, start = threshold
39: for i = 1 to threshold do
40: E = E + i * P [i− 1]
41: end for
42: for i = len(K)-1 to 0 do
43: end = start + R[i].N , span = start + 1 + end
44: E = E + R[i].A *

[span∗R[i].N
2

]
45: start = end
46: end for
47: Return E
48: end procedure
49: procedure UPDATE(G[i], R)
50: Store a copy of G[i] in Gcp

51: for each the group R[j] in R do
52: Remove overlapped keys and update Gcp

53: end for
54: Return Gcp

55: end procedure

D. Challenges

There are two challenges in this preliminary version. The
first one is that there can exist groups that have no re-
maining keys left but still have group probability non-zero
after updating. In other words, there can exist equations like
0 + 0 + · · · + 0 = bi where bi > 0 in our system of linear
equations. In our implementation, we skip these bad groups
and choose the next group. But, in the future, we will try to
make better use of them.

The second challenge is related to solving for the prob-
abilities of the remaining keys. In many cases, Equation 4
we generate from the updated G does not have a solution.
This means we cannot use the convex optimization method to
solve for the distribution with maximized entropy. Instead, we
use the pseudo-inverse to solve the problem. In particular, we
observed that given the sum of the probabilities of remaining
keys, if the keys follow the uniform distribution each key
will have probability of sum of probabilities divided by the
number of remaining keys. We denote this distribution as Pu.
If we multiply Pu with the reduced parameter matrix M from
Equation 4, we get the new equation:

M × Pu = bu (10)

Then we subtract Equation 4 by Equation 10 and get:

M × (P − Pu) = b− bu (11)

Consequently, M+(b − bu) is the least square solution with
minimum norm, where M+ is the pseudo-inverse of M . Hence
the solution Pmin that minimize the Euclidean distance from
the uniform distribution Pu is:

Pmin =M+(b− bu) + Pu (12)

However, the problem is that Pmin can contain negative
probabilities which are not realistic. So we shift all the
probabilities in Pmin by the same amount to ensure that every
probability is non-negative.

This shifting is not ideal, but we believe that it has limited
effects for two reasons. First, compared to the total number
of keys, the amount of remaining keys is small and they
have smaller weights in calculating the expectation since they
are at the beginning of the attack sequence. Secondly, since
we neglect all the groups with zero keys but non-zero group
probability, we have reduced the total amount of probabilities
for our distribution and thus shifting Pmin, to some degree,
compensates for this.

The results of these challenges is that we have yet to prove
whether or not this approximation algorithm provides a proper
bound for the expected number of attacks or be able to bound
its accuracy. Addressing this issue is part of our future work.

V. SIMULATIONS AND COMPARISONS

We implemented all described approaches in python running
Anaconda on a 4-core Intel i5-4210M CPU at 2.6GHz. The
input of the program is the correlation coefficient matrix

corr. The program generates the matrix M and marginal
probabilities b and finds a solution of the system of linear
equations that maximizes the entropy of the joint distribution.
It then computes the expected number of guesses using both
the maximum entropy lower bound (Eq. 3), as well as the
direct calculation shown in (Eq. 2), the latter requires us to
rank order the probabilities P .

We evaluate the approach by randomly creating the cor-
relation matrix corr by calculating the sample covariance
matrix of Bernoulli random vectors obtained via a random
affine transformation of Gaussian elementary variables. For
each number of obfuscation elements, we run each algorithm
5 times and take the average of results. We tested two python
libraries to find the distribution with maximum entropy without
group reduction. The first is a basin hopping algorithm [5]
and the second is a convex optimization solver [6]. In both
cases, we pre-process the linear system of equations to remove
redundant constraints via singular valued decomposition.

The results shown in Fig. 1 suggests that knowledge of
the correlations can massively reduce the expected number
of attacks compared to the brute force attack. Note that
the expected number of attacks is always larger than the
lower bound given by the entropy method. The expected
number of attacks calculated by basin-hopping algorithm and
convex optimization method are very close, so their results are
overlapped on the log base graph in Fig. 1(a). For this reason,
we only plot the results of the convex optimization method in
the graph.

Both the basin hopping and convex optimization have
a threshold for number of obfuscation elements where the
running time has a steep increase. In particular, the basin
hopping algorithm exceeds 1 hour of run-time after n = 8
and the convex optimization based algorithm exceeds 1 hour
of run-time after n = 13.

We tested the approximation algorithm for case when the
number of obfuscation elements exceeds 11. We set the
threshold for the number of remaining keys to be 1024 for
stop removing groups. In terms of run-time complexity, the
iterative approximation algorithm does significantly better than
the convex optimization exceeding 1 hour of run-time only
after n = 18. This demonstrates that the approximation
algorithm has some promise. However, given we are inter-
ested in analyzing circuits with hundreds if not thousands of
obfuscation elements, the algorithm must be further refined
to minimize its complexity and maximize the number of
obfuscation elements it can handle. One idea is to store
the symbolic representation and perform logical operation
through more efficient data structures such as a binary decision
diagrams (BDDs). Alternatively, we may need to apply higher
level divide and conquer approaches that decompose circuits
with large number of obfuscation elements into smaller sub-
circuits that are analyzed independently with this approach,
combining the results using more conservative techniques.

VI. CONCLUSIONS

This paper proposes an advanced combinatoric-centric met-
ric to measure the effectiveness of passive obfuscation tech-

(a) Expected number of attacks

(b) Running time

Fig. 1: Simulation result for up to 18 obfuscation elements

niques. In particular, if an attacker follows strategy in this
paper, the proposed metric represents an upper bound to the
expected number of guesses needed by an attacker that has
correlation information about the obfuscation elements. The
paper demonstrates the dramatic reduction in guesses that
correlation may yield as well as describes the computational
challenges associated with computing the metric as well as
explores an approximation approach that may help mitigate
this challenge.

REFERENCES

[1] RSA Labratories, “Whitepaper: A cost-based security analysis of sym-
metric and asymmetric key lengths,” 2017, https://www.emc.com/emc-
plus/rsa-labs/historical/a-cost-based-security-analysis-key-lengths.htm.

[2] A. Lenstra and E. Verheul, “Selecting cryptographic key sizes,” Journal
of Cryptography, 2001.

[3] J. L. Massey, “Guessing and entropy,” in Proc. of the IEEE International
Symposium on Information Theory, 1994, p. 204.

[4] E. T. Jaynes, Probability theory: The logic of science. Cambridge
University Press, 2003.

[5] “SciPy open-source python-based ecosystem,” http://scipy.org/, accessed:
10/01/2017.

[6] “CVXOPT: python software for convex optimization,” http://cvxopt.org/,
accessed: 10/01/2017.

