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Introduction to Obfuscation
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Obfuscated NAND and NOR gate
Can perform either as XOR, NAND , or NOR based on
which contacts are true and dummy

* Cannot easily tell the function of an obfuscated element by observing its layout.

[J Rajendran, 2013]
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Introduction to Obfuscation
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* Obfuscation elements
can be put at the key
part(s) of a circuit.
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[Circuit from Wikipedia]
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Our Assumption: Identities may be Correlated

Obfuscated elements

<«—— Pair-wise correlation between identifies of
obfuscation elements exist
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Expected Number of Attacks

A. Brute Force Attack
E[N]=2"1+0.5

n: Number of obfuscation elements

B. Correlation Driven Attack
2n

E[N]=2ixPsi

i=1

i: Success with i attacks, P;: Probability of success with the it" attack
C. Entropy Lower Bound [James L. Massey, 1994]

1
E[N] = <Z> 2H(P) 4 1

P: Joint distribution of all possible key combinations.
H(P): The entropy of P

USC Viterbi

School of Engineering University of Southern California




Constraints on the Joint Distribution

B—

— Type O: out  With probability 0.5

A
— Typel: | D—Q With probability 0.5

A
B —

* Then the mathematical definition of p;; gives:

Pl-]-(l, 1): Probability of obfuscation element i and j both taking type one.
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Constraints on the Joint Distribution

« The definition of marginal distribution gives the system of equations:

PL(]-) - PU(O’]‘) + Pl](l,l) = 0.5

* By solving them gives us:

i~

1 ..
P;;(0,0) = P;;(1,1) = il %
Pij(1,0) = P;;(0,1) = 7 — %
 Each P;;(u,v) also satisfies
271
z akplz...n(xli "'!xn) = Pij(ur U) A € {011}
k=1

where a; equals one ifand only if x; =u and x; =v and u,v € {0,1}2

USC Viterbi

School of Engineering University of Southern California




Constraints on the Joint Distribution

* This yilds system of linear equations:

: Obfuscated elements

( P12
'D?g (P;;(0,0)
—p ' P;:(0,1) 2"
Xn 4 pij > ij
: P;j(1,0) » > agPi; n=Pij(w,v) ,a, €{0,1}
P;:(1,1 k=1
\Pn-1n \ y (L)
AXP=b
P13 (0, ...,0) P;,(0,0)
A :Boolean parameter P = : b = :
matrix of a;’s P, o(1,..,1) P,_1,(1,1)
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Choosing the Joint Distribution

* Choose the solution with maximum entropy:

271
argpminz P(i)log[P(i)]
- =1

subjectto P(i) =0, i=12,..,2"
AXP=b

* Yields the largest number of expected guesses
e Can be implemented using known optimization algorithms

e Easily implemented
e But limited to small n due to exponential number of constraints
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Complexity Reduction: Approximation Algorithm
k4 * k;: The key with i-th highest
Solve for value k, probability to be correct.

High probability

Take average ) .

Low probability

Take average —
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Approximation Algorithm

« Take another look at the equation:
21’1

D Py (1, tn) = Py, v) g € 0,1}
k=1

d 4

A group of
probabilities
of different
keys

Sum of those
probabilities

USC Viterbi

School of Engineering University of Southern California




Approximation Algorithm

—> AXP=b

1

* Remove overlapped
parts
* UpdateAand b

= Solve for solution

_ High average probability

<Taking average .

Low average probability
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Experimental Results: Simulation

Generate a sample of n dimensional

Bernoulli random vectors n : the number of
l obfuscation elements
Compute sample corr corr: correlation
coefficient matrix

1Input: sample corr

Algorithm

10utput: Expectation and lower bound

Output file
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Generate a Bernoulli Random Vector

Sample L XZHE g—)l 0.5 —»E
Re_peath m, =0 m, =0 m, = 0.5 my = 0.5
times K, =1 K, = HHT K, =HHT —m,m,T K, =?

« w: follows elementary Gaussian distribution N(0,1)
* m: mean vector
* K :covariance matrix.

« H : Arandom matrix used to create the correlations

« 1(0.5): Indicator function with threshold 0.5.

x : Sampled Bernoulli random vector with non-identity covariance matrix.
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Compute Sample Correlation Coefficient Matrix

Repeatedly perform sampling procedure: X = [xq, X, e Xs]

{

_ T Yy Xi
Sample Correlation matrix: R, = %, Sample mean: m, = 1_51_
Sample covariance matrix: K, = R, — m;m, "
. o K (i, §)
Sample correlation coefficient: p;; = ———=———
VE (6 DVE ()

=

Sample correlation coefficient matrix: corr
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Simulation Results

» Tested two built-in python functions to directly find the arg-min
« Basin hopping algorithm and convex optimization solver

« Implemented approximation algorithm in python using numPy
« Use convex optimization to solve for critical keys

o]

—e—Brute force

—e—Convex optimization/basin hopping

wn

Entropy bound

I

Approximation algorithm

Expectated number of attacks(log)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of obfuscation elements

USC Viterbi

School of Engineering University of Southern California




Simulation Results

» The complexity is still a concern.

—e—Basin hopping algorithm
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—e—Convex optimization
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Summary and Conclusions

* Our metric shows that correlation information can reduce the number of
attacks needed to reverse engineer a chip dramatically.

« If an attacker follows the strategy in our paper, the proposed metric
represents an upper bound on the expected number of guesses.

« Complexity scaling exponentially with number of obfuscated elements is
a challenge to both us and attackers.

* Addressing this complexity scaling problem is future work
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